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Preface

Statistics and stochastic processes are often neglected mathematical disci-
plines in the education of chemists and biologists, although modern exper-
imental techniques allow for investigations on small sample sizes down to
single molecules and most measured data are sufficiently accurate to allow
for direct detection of fluctuations. The progress in the development of new
techniques and the improvement in the resolution of conventional experiments
has been enormous within the last fifty years. Indeed, molecular spectroscopy
provided hitherto unimaginable insights into processes down to the hundred
attosecond range and current theory in physics, chemistry, and the life sci-
ences cannot be successful without a deeper understanding of randomness
and its causes. Sampling of data and reproduction of processes are doomed to
produce artifacts in interpretation unless the observer has a solid background
in the mathematics of limited reproducibility. As a matter of fact stochastic
processes are much closer to observations than deterministic descriptions in
modern science and everyday life. Exceptions are the motions of planets and
moons as encapsulated in celestial mechanics, which stood at the beginnings
of science and modeling by means of differential equations. Fluctuations are
so small that the cannot be detected even in highest precision measurements:
Sunrise, sunset, and solar eclipses are predictable with practically no scatter.
Processes in the life sciences are often entirely different. A famous and char-
acteristic historical example are Mendel’s laws of inheritance: Regularities
are detectable only in sufficiently large samples of individual observations,
and the influence of stochasticity is ubiquitous. Processes in chemistry are
between the extremes: The deterministic approach in conventional chemical
reaction kinetics has neither suffered a loss in applicability nor did the results
become less reliable in the light of modern experiments. What has increased
rather dramatically is the accessible resolution in detectable amounts, space,
and time. Deeper insights into mechanisms provided new access to molecular
information for theory and practice.

Biology is currently in a state of transition: The molecular connection to
chemistry revolutionized the sources of biological data and is setting the stage
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for a new theoretical biology. Historically biology was based on observation
and theory in biology was engaged only in interpretations of the observed
regularities. The development of biochemistry at the end of the nineteenth
and the first half of twentieth century introduced quantitative thinking in
terms of chemical kinetics into some biological subdisciplines. Biochemistry
attributed also a new dimension to experiments in biology in the form of
in vitro studies on isolated and purified biomolecules. A second import of
mathematics into biology came in the form of population genetics, which
was created in the nineteen twenties as a new theoretical discipline uniting
Darwin’s natural selection and Mendelian genetics more than twenty years
before evolutionary biologists completed the so-called synthetic theory per-
forming the same goal. Beginning in the second half of the twentieth century
molecular biology started to build a comprehensive bridge from chemistry to
biology and enormous progress in experimental techniques created a previ-
ously unknown situation in biology insofar as new procedures were required
for data handling, analysis, and interpretation since the volume of informa-
tion is drastically exceeding the capacities of human mind. Biological cells and
whole organisms are now accessible to complete description at the molecular
level and the overwhelming amount of information thought to be required for
a deeper understanding of biological objects is simply a consequence of the
complexity of biology and the lack of a universal theoretical biology.

The current flood of results from molecular genetics and genomics to sys-
tems biology and synthetic biology requires apart from computer science
techniques primarily suitable statistical methods and tools for verification
and evaluation of data. Analysis, interpretation, and understanding of ex-
perimental results, however, is impossible without proper modeling tools.
These tools were so far mainly based on differential equations but it has been
realized within the last few years that an extension of the available reper-
toire by methods derived from stochastic processes is inevitable. Moreover,
the enormous complexity of the genetic and metabolic networks in the cell
calls for radically new methods of modeling that resemble the mesoscopic
level of description in solid state physics. In mesoscopic models the over-
whelming and for many purposes dispensable wealth of detailed molecular
information is cast into a partially probabilistic description in the spirit of
dissipative particle dynamics, and such a description cannot be successful
without a solid background in stochastic methods. The field of stochastic
processes has not been bypassed by the digital revolution. Numerical calcu-
lation and computer simulation play a decisive role in present day stochastic
modeling in physics, chemistry and biology. Speed of computation and digital
storage capacities are growing exponentially since the nineteen sixties with
an approximate doubling time of eighteen month, a fact that is commonly
addressed as Moore’s law [221]. It is not so well known, however, that the
spectacular exponential growth in computer power has been overshadowed
by the progress in numerical mathematics that led to an enormous increase
in the efficiency of algorithms. To give just one example, which was reported
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by Martin Grötschel from the Konrad Zuse-Zentrum in Berlin [133, p. 71]:
The solution of a benchmark production planning model by linear program-
ming would have taken 82 years CPU time in 1988, using the computers and
the linear programming algorithms of the day. In 2003 – fifteen years later –
the same model could be solved in one minute and this means an improve-
ment by a factor of about 43 million. Out of this, a factor of roughly 1 000
resulted from the increase in processor speed whereas a factor of 43 000 was
due to improvement in the algorithms, and many other examples of similar
progress in the design of algorithms can be given. Understanding, analyz-
ing, and designing high-performance numerical methods, however, requires a
firm background in mathematics. The availability of cheap computing power
has also changed the attitude towards exact results in terms of complicated
functions: It does not take so much more computer time to compute a sophis-
ticated hypergeometric function than to calculate an ordinary trigonometric
function for an arbitrary argument, and operations on confusing expressions
are enormously facilitated by symbolic computation. In this way the present
day computational facilities have also large impact on the analytical work.

In the past biologists had often quite mixed feelings for mathematics and
reservations against the use of theory. The recent developments in molecular
biology, computation, and applied mathematics, however, seem to initiate a
change in biological thinking since there is practically no chance to shape
modern biology without mathematics, computer science and theory as the
biologist Sydney Brenner, an early pioneer of molecular life sciences, points
out [26]: “... it is clear that the prime intellectual task of the future lies in

constructing an appropriate theoretical framework for biology. Unfortunately,

theoretical biology has a bad name because of its past. ... Even though alter-

natives have been suggested, such as computational biology, biological systems

theory and integrative biology, I have decided to forget and forgive the past

and call it theoretical biology.” He and others are calling for a theoretical bi-

ology new that allows for handling the enormous complexity. Manfred Eigen
stated very clearly what can be expected from theory [49, p. xii]: “Theory
cannot remove complexity but it can show what kind of ‘regular’ behavior can

be expected and what experiments have to be done to get a grasp on the ir-

regularities.” Theoretical biology will have to find the appropriate way to
combine randomness and deterministic behavior in modeling and it is not
very risky to guess that it will need a strong anchor in mathematics in order
to be successful.

In this monograph an attempt is made to collect the necessary mathe-
matical background material for understanding stochastic processes. In the
sense of Albert Einstein’s version of Occam’s razor [28, pp. 384-385; p. 475],
“... Everything should be made as simple as possible, but not simpler. ...”, dis-
pensable deep dwelling in higher mathematics has been been avoided. Some
sections that are not required if one is primarily interested in applications
are marked for skipping by readers who are willing to accept the basic results
without explanations. On the other hand the derivations of analytical solu-
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tions for the selected examples are given in full length because the reader who
is interested to apply the theory of stochastic processes in practice should be
brought in the position to derive solutions on his own. An attempt was made
to use a largely uniform notation throughout the book that is summarized in
a separate table an the end. A glossary is added to define the most important
notions used in the text. We refrained from preparing a separate section with
exercises, instead case studies, which may serve as good examples for calcu-
lations by the reader, are indicated in the book. Sources from literature were
among others the text books [34, 93, 97, 132, 191]. For a brief and concise
introduction we recommend [144]. Standard textbooks in mathematics used
for the courses were: [22, 204, 249].

This book is derived from the manuscript of a course in stochastic chemical
kinetics for graduate students of chemistry and biology held in the years 1999,
2006, 2011, and 2013. Comments by the students of all four courses were
very helpful in the preparation of this text and are gratefully acknowledged.
Several colleagues gave important advice and critically read the manuscript,
among them Christian Höner zu Siederissen, Paul E. Phillipson, and Karl
Sigmund. Many thanks to all of them.

Wien, Peter Schuster

March 2013
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Chapter 1

Probability

Who considers too much will achieve little.
Wer gar zu viel bedenkt, wird wenig leisten.

Friedrich Schiller, Wilhelm Tell, III.

Abstract . Thinking in terms of probability originated historically from an-
alyzing the chances of success in gambling and its mathematical foundations
were laid down together with the development of statistics in the seventeenth
century. Since the beginning of the twentieth century statistics is an indis-
pensable tool for bridging the gap between molecular motions and macro-
scopic observations. The classical notion of probability is based on counting
and dealing with finite numbers of observations, the extrapolation to limit-
ing values for hypothetical infinite numbers of observations is the basis of the
frequentists’ interpretation, and more recently a subjective approach derived
from the early works of Bayes became useful in modeling and analyzing com-
plex biological systems. The Bayesian interpretation of probability accounts
explicitly for incomplete and improvable knowledge of the experimenter. In
the twentieth century set theory became the ultimate basis of mathemat-
ics and in this sense it became also the fundament of current probability
theory that is based on Kolmogorov’s axiomatization in 1933. The modern
approach allows for handling and comparing countable, countable infinite
and the most important class of uncountable sets, which are underlying con-
tinuous variables. Borel fields being uncountable subsets of sample spaces
allow for defining probabilities for certain uncountable sets like, for example,
the real numbers. The notion of random variables is central to the analy-
sis of probabilities and applications to problem solving. Random variables
are characterized conventionally in form of their distributions in discrete and
countable or continuous and uncountable probability spaces.

Classical probability theory, in essence, can handle all cases that are mod-
eled by discrete quantities. It is based on counting and accordingly runs into
problems when it is applied to uncountable sets. Uncountable sets, however,
occur with continuous variables and are indispensable therefore for modeling
processes in space as well as for handling large particle numbers, which are
described in terms of concentrations in chemical kinetics. Current probabil-
ity theory is based on set theory and can handle variables on discrete – and

1



2 1 Probability

countable – as well as continuous – and uncountable – sets. After a general
introduction we present historical probability theory by means of examples,
different notions of probability are compared, and then we provide a short
account of probabilities, which are axiomatically derived from set theoreti-
cal operations. Separate sections are dealing with countable and uncountable
sample spaces. Random variables are characterized in terms of probability
distributions and their properties will be introduced and analyzed insofar as
they will be required in the applications to stochastic processes.
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1.1 Precision limits and fluctuations

An scientist reproduces an experiment. What is he expecting to observe? If
he were a physicist of the early nineteenth century he would expect the same
results within the precision limits of the apparatus he is using for the mea-
surement. Uncertainty in observations was considered to be merely a con-
sequence of technical imperfection. Celestial mechanics comes close to this
ideal and many of us, for example, could witness the enormous accuracy of
astronomical predictions in the precise dating of the eclipse of the sun in
Europe on August 11, 1999. Terrestrial reality, however, tells that there are
limits to reproducibility that have nothing to do with lack of experimental
perfection. Uncontrollable variations in initial and environmental conditions
on one hand and large intrinsic diversity of the individuals in a population
on the other hand are daily problems in biology. Limitations of correct pre-
dictions are commonplace in complex systems: We witness them every day
by watching the failures of various forecasts from the weather to the stock
market. Another not less important source of randomness comes from irregu-
lar thermal motions of atoms and molecules that are commonly characterized
as thermal fluctuations. The importance of fluctuations in the description of
ensembles depends on the population size: They are – apart from exceptions
– of moderate importance in chemical reaction kinetics but highly relevant
for the evolution of populations in biology.

Conventional chemical kinetics is handling ensembles of molecules with
large numbers of particles, N ≈ 1020 and more. Under the majority of com-
mon conditions, for example near or at chemical equilibria and stable station-
ary states, random fluctuations in particle numbers are proportional to

√
N .

Dealing with substance amounts of about 10−4 moles – being tantamount
to N = 1020 particles – natural fluctuations involve typically

√
N = 1010

particles and thus are in the range of ±10−10N . Under these conditions the
detection of fluctuations would require a precision in the order of 1 : 1010,
which is (almost always) impossible to achieve.1 Accordingly, the chemist
uses concentrations rather than particle numbers, c = N/(NL × V ) wherein
NL = 6.23 × 1023 and V are Avogadro’s number2 and the volume in dm3,
respectively. Conventional chemical kinetics considers concentrations as con-
tinuous variables and applies deterministic methods, in essence differential

1 Most techniques of analytical chemistry meet serious difficulties when accuracies in
concentrations of 10−6 or higher are required.
2 The amount of a chemical compound A is commonly measured as the number of
molecules, NA, in the reaction volume V or in solution as concentrations cX being the
numbers of moles in one liter of solution, cA = (NA/NL)/V where NL = 6.023×1023

is Avogadro’s or Loschmidt’s number. As a matter of fact there is a difference between
the two numbers that is often ignored in the literature: Avogadro’s number, NL =
6.02214179×1023 mole−1 refers to one mole substance whereas Loschmidt’s constant
n0 = 2.6867774 × 1025 m−3 counts the number of particles in one liter gas under
normal conditions. The conversion factor between both constants is the molar volume
of an ideal gas that amounts to 22.414 dm3 ·mole−1.
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equations, for modeling and analysis of reactions. Thereby, it is implicitly
assumed that particle numbers are sufficiently large that the limit of infinite
particle numbers neglecting fluctuations is correct. This scenario is commonly
not fulfilled in biology where particle numbers are much smaller than in chem-
istry.

Nonlinearities in chemical kinetics may amplify fluctuations through au-
tocatalysis and then the random component becomes much more important
than the

√
N -law suggests. This is the case, for example, with oscillating

concentrations or deterministic chaos. Some processes in physics, chemistry,
and biology have no deterministic component at all, the most famous of it
is Brownian motion,Brownian motion which can be understood as a visual-
ized form of diffusion. In biology other forms of entirely random processes
are encountered where fluctuations are the only or the major driving force of
change. An important example is random drift of population in the space of
genotypes in absence of fitness differences or fixation of mutants in evolution
where each new molecular species starts out from a single variant.

In 1827 the British botanist Robert Brown detected and analyzed irregular
motions of particles in aqueous suspensions that turned out to be indepen-
dent of the nature of the suspended materials – pollen grains, fine particles
of glass or minerals [27]. Although Brown himself had already demonstrated
that the motion is not caused by some (mysterious) biological effect, its ori-
gin remained kind of a riddle until Albert Einstein [58], and independently
Marian von Smoluchowski [298], published satisfactory explanations in 1905
and 1906,3 which revealed two main points:

(i) The motion is caused by highly frequent collisions between the pollen
grain and steadily moving molecules in the liquid in which it is sus-
pended, and

(ii) the motion of the molecules in the liquid is so complicated and irregular
that its effect on the pollen grain can only be described probabilistically
in terms of frequent, statistically independent impacts.

In order to model Brownian motion Einstein considered the number of par-
ticles per volume as a function of space and time, f(x, t) = N(x, t)/V ,4 and
derived the equation

∂f

∂t
= D

∂2f

∂x2
with the solution f(x, t) =

̺√
4πD

exp
(
−x2/(4Dt)

)

√
t

,

where ̺ = N/V =
∫
f(x, t) dx is the total number of particles per unit vol-

ume and D is a parameter called the diffusion coefficient . Einstein showed

3 The first mathematical model of Brownian motion has been conceived already in
1880 by Thorvald Thiele [175, 276]. Later in 1900 a process using random fluctuations
of the Brownian motion type was used by Louis Bachelier [10] in order to describe
the stock exchange market at the bourse in Paris.
4 For the sake of simplicity we consider only motion in one spatial direction, x.
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that his equation for f(x, t) is identical with the already known differential
equation of diffusion [78], which had been derived fifty years earlier by the
German physiologist Adolf Fick. Einstein’s original treatment is based on
small discrete time steps ∆t = τ and thus contains a – well justifiable –
approximation that can be avoided by application of the current theory of
stochastic processes (section 3.2.3.2). Nevertheless Einstein’s publication [58]
represents the first analysis based on a probabilistic concept that is by all
means comparable to the current theories and Einstein’s paper is correctly
considered as the beginning of stochastic modeling. Later Einstein wrote four
more papers on diffusion with different derivations of the diffusion equation
[59]. It is worth mentioning that three years after the publication of Einstein’s
first paper Paul Langevin presented an alternative mathematical treatment
of random motion [173] that we shall discuss at length in the form of the
Langevin equation in section 3.4. Since the days of Brown’s discovery the
interest in Brownian motion has never ceased and publications on recent the-
oretical and experimental advances document this fact nicely, two interesting
examples are [178, 257].

The diffusion parameter D is linked to the mean square displacement that
the particle experiences in the x-direction during time t – or its square root
λx – as Einstein computed from the solution of the diffusion equation:

D =

〈
∆x2

〉

2t
and λx =

√
x̄2 =

√
2Dt .

Extension to three dimensional space is straightforward and results only in
a different numerical factor: D =

〈
∆x2

〉
/(6t). Both quantities, the diffusion

parameter D and the mean displacement λx are measurable and Einstein
concluded correctly that a comparison of both quantities should allow for an
experimental determination of Avogadro’s number [239].

Brownian motion was indeed the first completely random process that be-
came accessible to a description within the standards of classical physics.
Previously, thermal motion had been identified as the irregular driving force
causing collisions of molecules in gases by James Clerk Maxwell and Ludwig
Boltzmann but the physicists in the second half of the nineteenth century
were not interested in any details of molecular motion unless they were re-
quired in order to describe systems in the thermodynamic limit. The desired
measurable macroscopic functions were derived the by means of the global
averaging techniques of statistical mechanics. Thermal motion as an uncon-
trollable source of random natural fluctuations has been supplemented by
quantum mechanical uncertainty as another limitation of achievable preci-
sion in the first half of the twentieth century. Here we shall focus on the
mathematical handling of processes that are irregular and often sensitive to
small changes, and we shall not be concerned so much with the origin of these
irregularities.
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Computer assisted analysis of complex dynamical systems was initiated
in essence by Edward Lorenz [186] who detected through numerical integra-
tion of differential equations what is nowadays called deterministic chaos .
Complex dynamics in physics and chemistry has been known already much
earlier as the works of the French mathematician Henri Pioncaré and the
German chemist Wilhelm Ostwald demonstrate. New in the second half of
the twentieth century were not the ideas but the tools to study complex
dynamics. Quite unexpectedly, easy access to previously unknown computer
power and the development of highly efficient algorithms made numerical
computation to an indispensable source of scientific information that by now
became almost equivalent to theory and experiment. Computer simulations
have shown that a large class of dynamical systems modeled by nonlinear
differential equations show irregular – that means nonperiodic – variation
for certain ranges of parameter values. In these chaotic regimes solutions
curves were found to be extremely sensitive to small changes in the initial
and boundary conditions. Solution curves, which are almost identical at the
beginning deviate exponentially from each other and are completely different
after sufficiently long time. Thereby they give rise to a kind of deterministic
uncertainty. Limitations in the control of initial conditions are inevitable, be-
cause any achievable experimental precision is finite, and their consequences
are upper bounds for the time spans for which the dynamics of the system can
be predicted with sufficient accuracy. It is not accidental that Lorenz detected
chaotic dynamics first in the equations for atmospheric motions, which are
indeed so complex that forecast is confined to short and medium time spans.
Limited predictability of complex dynamics is of a highly important practi-
cal nature: Although the differential equations used to describe and analyze
chaos are still deterministic, initial conditions of a precision that can never
be achieved in reality would be required for correct longtime predictions.
Sensitivity to small changes makes a stochastic treatment indispensable.
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1.2 The history of thinking in terms of probability

The concept of probability originated from the desire to analyze gambling by
rigorous mathematical methods. An early study that has largely remained
unnoticed but contained already the basic ideas of probability was done in
the sixteenth century by the Italian mathematician Gerolamo Cardano and
the beginning of classical probability theory is commonly associated with the
story of French mathematician Blaise Pascal and the professional gambler,
the Chevalier de Méré, which took place in France 100 years after Cardano
and which is found in almost every introduction to probability theory.

In a letter of July 29, 1654, which was addressed to the French mathe-
matician Pierre de Fermat, Blaise Pascal, reports the careful observation of
the professional gambler Chevalier de Méré who recognized that obtaining at
least one six with one die in 4 throws is successful in more than 50% whereas
obtaining at least two times the “six” with two dice in 24 throws has less
than 50% chance to win. He considered this finding as a paradox because he
calculated näıvely and erroneously that the chances should be the same:

4 throws with one die yields 4× 1

6
=

2

3
,

24 throws with two dice yields 24× 1

36
=

2

3
.

Blaise Pascal became interested in the problem and calculated correctly the
probability as we do it now in classical probability theory by counting of
events:

probability = Prob =
number of favorable events

total number of events
. (1.1)

Probability according to equation (1.1) is always a positive quantity between
zero and one, 0 ≤ Prob ≤ 1. The sum of the probabilities that a given event
has either occurred or did not occur thus is always one. Sometimes, as in Pas-
cal’s example, it is easier to calculate the probability of the unfavorable case,
q, and to obtain the desired probability as p = 1− q. In the one die example
the probability not to throw a six is 5/6, in the two dice example we have
35/36 as the probability of failure. In case of independent events probabilities
are multiplied5 and we finally obtain for 4 and 24 trials, respectively:

q(1) =

(
5

6

)4

and p(1) = 1−
(
5

6

)4

= 0.5177 ,

q(2) =

(
35

36

)24

and p(2) = 1−
(
35

36

)24

= 0.4914 .

5 We shall come back to a precise definition of independent events later when we
introduce current probability theory in section 1.
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It is remarkable that the gambler could observe this rather small difference
in the probability of success – apparently, he must have tried the game very
often indeed!

The second example presented here is the birthday problem.6 It can be used
to demonstrate the common human weakness in estimating probabilities:

“Let your friends guess – without calculating – how many persons you

need in a group such that there is a fifty percent chance that at least

two of them celebrate their birthday on the same day. You will be

surprised by the oddness of some of the answers!”

With our knowledge on the gambling problem this probability is easy to
calculate. First we compute the negative event: all persons celebrate their
birthdays on different days in the year – 365 days, no leap-year – and find
for n people in the group,7

q =
365

365
· 364
365
· 363
365
· . . . · 365− (n− 1)

365
and p = 1− q .

The function p(n) is shown in figure 1.1. For the above mentioned 50% chance
we need only 27 persons, with 41 people we have already more than 90%
chance that two celebrate birthday one the same day; 57 yield more than
99% and 70 persons exceed 99,9%. An implicit assumption in this calculation
has been that births are uniformly distributed over the year or, in other
words, the probability that somebody has the birthday on some day does not
depend on the particular day of the year. In mathematical statistics such an
assumption is called a null hypothesis (see [85] and section 2.5.2).

Fig. 1.1 The birthday
problem. The curve
shows the probability
p(n) that two persons
in a group of n people
celebrate birthday on the
same day of the year.

6 The birthday problem has been invented in 1939 by Richard von Mises [297] and is
fascinating mathematicians ever since. It has been discussed and extended in many
papers (for example [2, 39, 130, 228] and found its way into textbooks on probability
[76, pp. 31-33].
7 The expressions is obtained by the argument that the first person can choose his
birthday freely. The second person must not choose the same day and so he has 364
possible choices. For the third remain 363 choices and the nth person, ultimately, has
365 − (n− 1) possibilities.
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Table 1.1 Advantage of the second player in Penney’s game. Two players
choose two triples of digits one after the other, player 2 after player 1. Coin flipping
is played until the two triples appear. The player whose triple came first has won.
An optimally gambling player 2 (column 2) has the advantage shown in column 3.
Code: 1= head and 0= tail. The optimal strategy for player 2 is encoded by grey and
boldface (see text).

Player’s choice Outcome

Player 1 Player 2 Odds in favor of player 2

111 011 7 to 1

110 011 3 to 1

101 110 2 to 1

100 110 2 to 1

011 001 2 to 1

010 001 2 to 1

001 100 3 to 1

000 100 7 to 1

The third example deals again with events that occur with counterintuitive
probabilities: the coin toss game Penney Ante invented by Walter Penney
[238]. Before a sufficiently long sequence of heads and tails is determined
through flipping coins, each of two players chooses a sequence of n consecutive
flips – commonly n = 3 is applied and this leaves the choice of the eight
triples shown in table 1.1. The second player has the advantage of knowing
the choice of the first player. Then the sequence of coins flips is recorded
until both of the chosen triples have appeared in the sequence. The player
whose sequence appeared first has won. The advantage of the second player is
commonly largely underestimated when guessed without explicit calculation.
A simple argument illustrates the disadvantage of player 1: Assume he had
chosen ’111’. If the second player chooses a triple starting with ’0’ the only
chances for player 1 to win are expressed by the sequences beginning ’111. . .
and they have a probability of p=1/8 leading to the odds 7 to 1 for player 2.
Eventually, we mention the optimal strategy for player 2: Take the first two
digits of the three-bit sequence that player 1 had chosen and precede it with
the opposite of the symbol in the middle of the triple (In table 1.1 the shifted
pair is shown in grey, the switched symbol in bold).

Laws in classical physics are considered as deterministic in the sense that
a single measurement is expected to yield a precise result, deviations from
which are interpreted as lack in precision of the used machinery. Random scat-
ter when it is observed is thought to be caused by variation in not sufficiently
well controlled experimental conditions. Apart from deterministic laws other
regularities are observed in nature, which become evident only when sample
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Fig. 1.2 Mendel’l laws of inheritance. The sketch illustrates Mendel’s laws of
inheritance: (i) the law of segregation and (ii) the law of independent assortment.
Every (diploid) organism carried two copies of each gene, which are separated during
the process of reproduction. Every offspring receives one randomly chosen copy of
the gene from each parent. Encircled are the genotypes formed from two alleles,
yellow or green, and above or below the genotypes are the phenotypes expressed as
the colors of seeds of the garden pea (pisum sativum). The upper part of the figure
shows the first generation (F1) of progeny of two homozygous parents – parents who
carry two identical alleles. All genotypes are heterozygous and carry one copy of each
allele. The yellow allele is dominant and hence the phenotype expresses yellow color.
Crossing two F1 individuals (lower part of the figure) leads to two homozygous and
two heterozygous offspring. Dominance causes the two heterozygous genotypes and
one homozygote to develop the dominant phenotype and accordingly the observable
ratio of the two phenotypes in the F2 generation is 3:1 on the average as observed by
Gregor Mendel in his statistics of fertilization experiments (see table 1.2).

sizes are made sufficiently large through repetition of experiments. It is ap-
propriate to call such regularities statistical laws . Statistics in biology of plant
inheritance has been pioneered by the Augustinian monk Gregor Mendel who
discovered regularities in the progeny of the garden pea in controlled fertiliza-
tion experiments [210] (figure 1.2). As a fourth and final example we consider
some of Mendel’s data in order to illustrate a statistical law. In table 1.2 the
results of two typical experiments distinguishing roundish or wrinkled seeds
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of yellow or green color are listed. The ratios observed with single experiments
plants large scatter. In the mean values for ten plants some averaging has oc-
curred but still the deviations from the ideal values are recognizable. Mendel
carefully investigated several hundred plants and then the statistical law of
inheritance demanding a ratio of 3:1 became evident [210].8 Ronald Fisher in
a somewhat polemic publication [84] reanalyzed Mendel’s experiments, ques-
tioned Mendel’s statistics, and accused him of intentionally manipulating his
data because the results are too close to the ideal ratio. Fisher’s publication
initiated a long lasting debate during which many scientists spoke up in favor
of Mendel [226, 227] but there were also critical voices saying that most likely
Mendel has unconsciously or consciously eliminated extreme outliers [53]. In
2008 a recent book declared the end of the Mendel-Fisher controversy [89].
In section 2.5.2 we shall discuss statistical laws and Mendel’s experiments in
the light of present day mathematical statistics by applying the χ2 test.

Probability theory in its classical form is more than three hundred years
old. Not accidentally the concept arose in thinking about gambling, which
was considered as a domain of chance in contrast to rigorous science. It took
indeed rather long time before the concept of probability entered scientific

Table 1.2 Statistics of Gregor Mendel’s experiments with the garden pea
(pisum sativum). The results of two typical experiments with ten plants are shown.
In total Mendel analyzed 7324 seeds from 253 hybrid plants in the second trial year,
5474 were round or roundish and 1850 angular wrinkled yielding a ratio 2.96:1. The
color was recorded for 8023 seeds from 258 plants out of which 6022 were yellow and
2001 were green with a ratio of 3.01:1.

Form of seed Color of seeds

plants round wrinkled ratio yellow green ratio

1 45 12 3.75 25 11 2.27

2 27 8 3.38 32 7 4.57

3 24 7 3.43 14 5 2.80

4 19 10 1.90 70 27 2.59

5 32 11 2.91 24 13 1.85

6 26 6 4.33 20 6 3.33

7 88 24 3.67 32 13 2.46

8 22 10 2.20 44 9 4.89

9 28 6 4.67 50 14 3.57

10 25 7 3.57 44 18 2.44

total 336 101 3.33 355 123 2.89

8 According to modern genetics this ratio as well as other inter ratios are idealized
values that are found only for completely independent genes [111], which lie either on
different chromosomes or sufficiently far apart on the same chromosome.
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thought in the nineteenth century. The main obstacle for the acceptance of
probabilities in physics was the strong belief in determinism that has not
been overcome before the advent of quantum theory. Probabilistic concepts
in physics of the nineteenth century were still based on deterministic thinking,
although the details of individual events were considered to be too numerous
to be accessible to calculation at the microscopic level. It is worth mentioning
that thinking in terms of probabilities entered biology earlier, already in
the second half of the nineteenth century through the reported works on
the genetics of inheritance by Gregor Mendel and the considerations about
pedigrees by Francis Galton (see section 5.2.1). The reason for this difference
appears to lie in the very nature of biology: Small sample sizes are typical,
most of the regularities are probabilistic and become observable only through
the application of probability theory. Ironically, Mendel’s investigations and
papers did not attract a broad scientific audience before their rediscovery

at the beginning of the twentieth century. The scientific community in the
second half of the nineteenth century was simply not yet prepared for the
acceptance of quantitative and moreover probabilistic concepts in biology.

Classical probability theory is dealing successfully with a number of con-
cepts like conditional probabilities, probability distributions, moments and
others, which shall be presented in the next section making use of set the-
oretic concepts that can provide much deeper insight into the structure of
probability theory. In addition, the more elaborate notion of probability de-
rived from set theory is absolutely necessary for extrapolation to infinitely
large and uncountable sample sizes. From now on we shall use only the set the-
oretic concept, because it can be introduced straightforwardly for countable
sets and discrete variables and, in addition, it can be extended to probability
measures for continuous variables where numbers of sample points are not
only infinite but also uncountable. In this way real numbers, x ∈ Rn, become
accessible to probability measures.
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1.3 Probability and interpretations

Before a introduction to the currently most popular theory of probability is
presented we make a digression into some major philosophical interpretations
of probability: (i) the classical interpretations that we adopted in chapter 1.2,
(ii) the frequency-based interpretation that will be in the background of the
rest of the book, and (iii) the Bayesian or subjective interpretation.

The classical interpretation of probability goes back to the concepts and
works of the Swiss mathematician Jakob Bernoulli and the French math-
ematician and physicist Pierre-Simon Laplace, who first presented a clear
definition of probability [174, pp. 6-7]:

“The theory of chance consists in reducing all the events of the same

kind to a certain number of cases equally possible, that is to say, to

such as we may be equally undecided about in regard their existence,

and in determining the number of cases favorable to the event whose

probability is sought. The ratio of this number to that of all the cases

possible is the measure of this probability, which is thus simply a frac-

tion whose numerator is the number of favorable cases and whose

denominator is the number of all cases possible.”

Clearly, this definition is tantamount to equation (1.1) and the explicitly
stated assumption of equal probabilities is now called principle of indiffer-

ence. This classical definition of probability has been questioned during the
nineteenth century among others by the two English logicians and philoso-
phers George Boole [23] and John Venn [291], who among others initiated a
paradigm shift from the classical view to the modern frequency interpreta-
tions of probabilities.

The modern interpretations of the concept of probabilities fall essentially
into two categories that can be characterized as physical probabilities and
evidential probabilities [115]. Physical probabilities are often called objective

or frequency-based probabilities and their proponents are often addressed as
frequentists. Influential proponents of the frequency-based probability theory
were, besides the pioneer John Venn, the Polish American mathematician
Jerzy Neyman, the English statistician Egon Pearson, the English statisti-
cian and theoretical biologist Ronald Fisher, the Austro-Hungarian American
mathematician and scientist Richard von Mises and the German American
philosopher of science Hans Reichenbach. The physical probabilities are de-
rived from some real process like radioactive decay, chemical reaction, turning
a roulette wheel, or rolling dice. In all such systems the notion of probability
makes sense only when it refers to some well defined experiment with a ran-
dom component. Frequentism comes in two versions: (i) finite frequentism and
(ii) hypothetical frequentism. Finite frequentism replaces the notion of “total
number of events” in equation (1.1) by “actually recorded number of events”

and is thus congenial to philosophers with empiricist scruples. Philosophers
have a number of problems with finite frequentism, we mention for example
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the small sample problems: One can never speak about the probability of a
single experiment and there are cases of unrepeated and unrepeatable exper-
iments. A coin that is tossed exactly once yields a relative frequency of heads
of zero or one, no matter what its bias really is. Another famous example is
the spontaneous radioactive decay of an atom where the probabilities of de-
caying follow a continuous exponential law but according to finite frequentism
it decays with probability one at its actual decay time. The evolution of the
universe or the origin of life can serve as cases of unrepeatable experiments,
but people like to speak about the probability that the development has been
such or such (Personally, I think it would do no harm to replace probability

by plausibility in such estimates concerned with unrepeatable single events).
Hypothetical frequentism complements the empiricism of finite frequen-

tism by the admission of infinite sequences of trials. Let N be the total
number of repetitions of an experiment and nA the number of trials when
the event A has been observed, then the relative frequency of recording the
event A is an approximation of the probability for the occurrence of A:

Prob (A) = P (A) ≈ nA
N

.

This equation is essentially the same as (1.1) but the claim of the hypothetical
frequentist interpretation is that there exists a true frequency or true probabil-
ity to which the relative frequency converges when we repeat the experiment
an infinite number of times9

P (A) = lim
N→∞

nA
N

=
|A|
|Ω| with A ∈ Ω. (1.2)

The probability of an event A relative to a sample space Ω is then defined
as the limiting frequency of A in Ω. As N goes to infinity |Ω| becomes in-
finitely large and depending on whether |A| is finite or infinite P (A) is either
zero or may adopt a nonzero limiting frequency. It is based on two a priori
assumptions that have the character of axioms:

(i) Convergence: For any event A exists a limiting relative frequency, the
probability P (A) that fulfils 0 ≤ P (A) ≤ 1.

(ii) Randomness: The limiting relative frequency of each event in a collective
Ω is the same in any typical infinite subsequence of Ω.

A typical sequence is sufficiently random10 in order to avoid results biased
by predetermined order. As a negative example of an acceptable sequence
we consider “head, head, head, head, ...” recorded by tossing a coin. If it was
obtained with a fair coin – not with a coin with two heads – |A| is 1 and

9 The absolute value symbol, ‘|·|’, means size of n cardinality of or number of elements
in a set (section 1.4).
10 Sequences are sufficiently random when they are obtained through recordings of
random events. Random sequences are approximated by the sequential outputs of
random number generators.
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P (A) = 1/|Ω| = 0 and we may say this particular events is of measure zero
and the sequence is not typical. The sequence“head, tail, head, tail, ...” is not
typical as well despite the fact that it yields the same result as a fair coin.
We should be aware that the extension to infinite series of experiments leaves
the realm of empiricism and caused philosophers to reject the claim that the
interpretation of probabilities by hypothetical frequentism is more objective

than others.
Nevertheless, frequentist probability theory is not in conflict with the

mathematical axiomatization of probability theory and it provides straight-
forward guidance in applications to real-world problem. The pragmatic view
that stands at the beginning of the dominant concept in current probability
theory has been phrased nicely by William Feller, the Croatian-American
mathematician and author of the classic introduction to probability theory
in two volumes [76, 77, Vol.I, pp. 4-5]:

“The success of the modern mathematical theory of probability is

bought at a price: the theory is limited to one particular aspect of

‘chance’. ... we are not concerned with modes of inductive reasoning

but with something that might be called physical or statistical proba-

bility.”

He also expresses clearly his attitude towards pedantic scruples of philosophic
purists:

“..., in analyzing the coin tossing game we are not concerned with the

accidental circumstances of an actual experiment, the object of our

theory is sequences or arrangements of symbols such as ‘head, head,

tail, head, ...’. There is no place in our system for speculations con-

cerning the probability that the sun will rise tomorrow. Before speak-

ing of it we should have to agree on an idealized model which would

presumably run along the lines ‘out of infinitely many worlds one is

selected at random ...’. Little imagination is required to construct such

a model, but it appears both uninteresting and meaningless.”

We shall adopt the frequentist interpretation throughout this monograph but
mention here briefly a few other interpretations of probability in order to show
that it is not the only reasonable probability theory.

The propensity interpretation of probability was proposed by the American
philosopher Charles Peirce in 1910 [237] and reinvented by Karl Popper [242,
pp. 65-70] (see also [243]) more than forty years later [115, 215]. Propensity
is a tendency to do or to achieve something, and in relation to probability
propensity means that it makes sense to talk about the probabilities of sin-
gle events. As an example we mention the probability – propensity – of a
radioactive atom to decay within the next one thousand years, and thereby
we make a conclusion from the behavior of an ensemble to a single member
of the ensemble. For a fair coin we might say that it has a probability of 1

2
to score “head” when tossed, and precisely expressed we should say that the
coin has the propensity to yield a sequence of outcomes, in which the limiting
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Fig. 1.3 A sketch of the Bayesian method. Prior information of probabilities is
confronted with empirical data and converted into a new distribution of probabilities
by means of Bayes’ theorem according to the formula shown above [52, 268].

frequency of scoring “heads” is 1
2 . The single case propensity is accompanied

by, but distinguished from, the log-run propensity [107]:

“A long-run propensity theory is one in which propensities are asso-

ciated with repeatable conditions, and are regarded as propensities to

produce in a long series of repetitions of these conditions frequencies,

which are approximately equal to the probabilities.

Long-run in these theories is still distinct from infinitely long run in order to
avoid basic philosophical problems. As it looks, the use of propensities rather
than frequencies constitutes a language that is somewhat more careful and
hence more acceptable in philosophy than the frequentist interpretation.

Finally, we sketch the most popular example of a theory-based on evi-

dential probabilities : Bayesian statistics, named after the eighteenth century
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English mathematician and Presbyterian minister Thomas Bayes. In contrast
to the frequentists’ view probabilities are subjective and exist only in the hu-
man mind. From a practitioner’s point of view one major advantage of the
Bayesian approach is the direct insight into the process of improving the
knowledge on the object of investigation. In order to understand Bayes’ the-
orem we need the notion of conditional probabilities (for a precise definition
see section 1.6.3): For a conditional probability the reference ensemble is not
the entire sample space Ω but some event, say B. Then, we have

P (A|B) =
P (A andB)

P (B)
=

P (AB)

P (B)
, (1.3)

where “A andB” indicates the joint probability of both events A and B.11

The conditional probability P (A|B) is obtained as the probability of the
simultaneous occurrence of events A and B divided by the probability of the
occurrence of B alone. If the event B is the entire sample space, B ≡ Ω we
obtain:

P (A|Ω) =
P (A andΩ)

P (Ω)
=

P (AΩ)

P (Ω)
=

P (A)

1
= P (A) ,

the conditional probability is equal to the unconditioned probability. Condi-
tional probabilities can be inverted straightforwardly in the sense that we ask
about the probability of B under the condition that event A has occurred:

P (B|A) =
P (A andB)

P (A)
=

P (AB)

P (A)
since P (AB) = P (BA) , (1.3’)

which implies P (A|B) 6= P (B|A) unless P (A) = P (B). In other words the
conditional probability can be readily inverted, and as expected P (A|B) and
P (B|A) are on equal footing in probability theory. Calculation of P (AB) from
both equations, (1.3) and (1.3’), and setting the expressions equal yields

P (A|B)P (B) = P (AB) = P (B|A)P (A) =⇒ (P (B|A) = P (A|B)
P (B)

P (A)
,

which properly interpreted represents Bayes’ theorem.
Bayes’theorem provides a straightforward interpretation of conditional

probabilities and their inversion in terms of models or hypothesis (H) and
data (E). The conditional probability P (E|H) corresponds to the conven-
tional procedure in science: Given a set of hypothesis cast into a model H
the task is to calculate the probabilities of the different outcomesE. In physics
and chemistry where we are dealing with well established theories and models
this is, in essence, the common situation. Biology, economics, social sciences

11 From the next section 1.4 on we shall use the set theoretic symbol intersection,
“∩”, instead of “and”; AB is an abbreviated notation for “A andB”.
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and other disciplines, however, are often confronted with situations where
no confirmed models exist and then we want to test and improve the prob-
ability of a model. We need to invert the conditional probability since we
are interested in testing the model in the light of the data available or, in
other words, the conditional probability P (H |E) becomes important: What
is the probability that a hypothesis H is justified given a set of measured
data (evidence E)? The Bayesian approach casts equations (1.3) and (1.3’)
into Bayes’ theorem,

P (H |E) = P (E|H)
P (H)

P (E)
=

P (E|H)

P (E)
· P (H) , (1.4)

and provides a hint on how to proceed – at least in principle (figure 1.3).
An prior probability in form of a hypothesis P (H) is converted into evidence
according to the likelihood principle P (E|H). The basis of the prior under-
stood as all a priori knowledge comes form many sources: theory, previous
experiments, gut feeling, etc. New empirical information is incorporated in
the inverse probability computation from data to model, P (H |E), yielding
thereby the improved posterior probability. The advantage of the Bayesian
approach is that a change of opinion in the light of new data is “part of the
game”. In general, parameters are input quantities of frequentist statistics
and if unknown assumed to be available through consecutive repetition of ex-
periments, whereas they are understood as random variables in the Bayesian
approach. The direct application of the Bayesian theorem in practice involves
quite elaborate computations that were not possible in real world examples
before the advent of electronic computers. An example of the Bayesian ap-
proach and the calculations involved thereby is presented in section 2.5.4.

Bayesian statistics has become popular in disciplines where model building
is a major issue. Examples from biology are among others bioinformatics,
molecular genetics, modeling of ecosystems, and forensics. Bayesian statistics
is described in a large number of monographs, for example, in references
[42, 95, 147, 176].
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1.4 Sets and sample spaces

Conventional probability theory is based on several axioms that are rooted
in set theory, which will be introduced and illustrated in this section. The
development of set theory in the eighteen seventieth was initiated by Georg
Cantor and Richard Dedekind and provided the possibility to build among
many other things the concept of probability on a firm basis that allows for
an extension to certain families of uncountable samples as they occur, for
example, with continuous variables. Present day probability theory thus can
be understood as a convenient extension of the classical concept by means of
set and measure theory. We begin by repeating a few indispensable notions
and operations of set theory.

Sets are collections of objects with two restrictions: (i) Each object belongs
to one set cannot be a member of two or more sets, and (ii) a member of a set
must not appear twice or more often. In other words, objects are assigned to
sets unambiguously. In the application to probability theory we shall denote
the elementary objects by the small Greek letter omega, ω – if necessary with
various sub- and superscripts – and call them sample points or individual

results. The collection of all objects ω under consideration, the sample space,
is denoted by Ω with ω ∈ Ω. Events, A, are subsets of sample points that
fulfil some condition12

A =
{
ω, ωk ∈ Ω : f(ω) = c

}
(1.5)

with ω = (ω1, ω2, . . .) being the set of individual results which fulfil the
condition f(ω) = c.

Next we repeat the basic logical operations with sets. Any partial collection
of points ωk ∈ Ω is a subset of Ω. We shall be dealing with fixed Ω and, for
simplicity, often call these subsets of Ω just sets. There are two extreme cases,
the entire sample space Ω and the empty set , ∅. The number of points in a set
S is called its size or cardinality written as |S|, and thus |S| is a nonnegative
integer or infinity. In particular, the size of the empty set is |∅| = 0. The
unambiguous assignment of points to sets can be expressed by13

ω ∈ S exclusive or ω /∈ S .

Consider two sets A and B. If every point of A belongs to B, then A is
contained in B. A is a subset of B and B is a superset of A:

12 The meaning of condition will become clearer later on. For the moment it is
sufficient to understand a condition as a restriction cast in a function f(ω), which
implies that not all subsets of sample points belong to A. Such a condition, for
example, is a score ’6’ in rolling two dice, which comprises the five sample points:
A = {’1 + 5’,’2 + 4’,’3 + 3’,’4 + 2’,’5 + 1’}.
13 In order to be unambiguously clear we shall write or for and/or and exclusive or
for or in the strict sense.
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A ⊂ B and B ⊃ A .

Two sets are identical if the contain exactly the same points and then we
write A = B. In other words, A = B iff 14 A ⊂ B and B ⊂ A.
Some basic operations with sets are illustrated in figure 1.4. We briefly repeat
them here:

Complement . The complement of the set A is denoted by Ac and consists of
all points not belonging to A:15

Ac = {ω|ω /∈ A} . (1.6)

There are three evident relations which can be verified easily: (Ac)c = A,
Ω c = ∅, and ∅ c = Ω.

Union. The union of the two sets A and B, A∪B, is the set of points, which
belong to at least one of the two sets:

A ∪B = {ω|ω ∈ A or ω ∈ B} . (1.7)

Intersection. The intersection of the two sets A and B, A ∩ B, is the set of
points, which belong to both sets:16

A ∩B = AB = {ω|ω ∈ A and ω ∈ B} . (1.8)

Unions and intersections can be executed in sequence and are also defined
for more than two sets, or even for a countably infinite number of sets:

⋃

n=1,...

An = A1 ∪A2 ∪ · · · = {ω|ω ∈ An for at least one value of n} ,

⋂

n=1,...

An = A1 ∩A2 ∩ · · · = {ω|ω ∈ An for all values of n} .

The proof of these relations is straightforward, because the commutative and
the associative laws are fulfilled by both operations, intersection and union:

A ∪B = B ∪ A , A ∩B = B ∩ A ;

(A ∪B) ∪ C = A ∪ (B ∪ C) , (A ∩B) ∩ C = A ∩ (B ∩ C) .

Difference. The set theoretic difference, A \ B, is the set of points, which
belong to A but not to B:

14 The word ’iff’ stands for if and only if.
15 Since we are considering only fixed sample sets Ω these points are uniquely defined.
16 For short A ∩B is often written simply as AB.
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Fig. 1.4 Some definitions and examples from set theory. Part a shows the
complement Ac of a set A in the sample space Ω. In part b we explain the two basic
operations union and intersection, A∪B and A∩B, respectively. Parts c and d show
the set-theoretic difference, A \ B and B \ A, and the symmetric difference, A△B.
In parts e and f we demonstrate that a vanishing intersection of three sets does not
imply pairwise disjoint sets. The illustrations are made by means of Venn diagrams
[112, 113, 289, 290].

A \B = A ∩Bc = {ω|ω ∈ A and ω /∈ B} . (1.9)

In case A ⊃ B we write A− B for A \ B and have A \ B = A − (A ∩ B) as
well as Ac = Ω −A.
Symmetric difference. The symmetric difference A∆B is the set of points
which belongs exactly to one of the two sets A and B. It is used in advanced
theory of sets and is symmetric as it fulfils the commutative law, A∆B =
B∆A:

A∆B = (A ∩Bc) ∪ (Ac ∩B) = (A \B) ∪ (B \A) . (1.10)

Disjoint sets . Disjoint sets A and B have no points in common and hence
their intersection, A ∩B, is empty. They fulfill the following relations:

A ∩B = ∅ , A ⊂ Bc and B ⊂ Ac . (1.11)
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Fig. 1.5 Sizes of sam-
ple sets and count-
ability. Finite, countably
infinite, and uncountable
sets are distinguished. We
show examples of every
class. A set is countably
infinite when its elements
can be assigned uniquely
to the natural numbers
(N>0 =1,2,3,. . .,n,. . .).

Several sets are disjoint only if they are pairwise disjoint. For three sets, A,
B and C, this requires A∩B = ∅, B ∩C = ∅, and C ∩A = ∅. When two
sets are disjoint the addition symbol is (sometimes) used for the union, A+B
for A ∪B. Clearly we have always the valid decomposition: Ω = A+Ac.

Sample spaces may contain finite or infinite numbers of sample points. As
shown in figure 1.5 it is important to distinguish further between different
classes of infinity:17 countable and uncountable numbers of points. The set of
rational numbers Q, for example, is a countably infinite since the numbers
can be labeled and assigned uniquely to the positive integers 1 < 2 < 3 <
· · · < n < · · · also called natural numbers N>0. The set of real numbers R,
cannot be ordered in such a way and hence it is uncountable (For old and
current notations of number systems see the appendix “notations”).

17 Georg Cantors attributed to countably infinite sets the cardinality ℵ0 and charac-
terized uncountable sets by /-*the sizes ℵ1, ℵ2, etc.
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1.5 Probability measure on countable sample spaces

For countable sets it is straightforward and almost trivial to measure the size
of the set by counting the numbers of sample points they contain. The ratio

P (A) =
|A|
|Ω| (1.12)

then gives the probability for the occurrence of event A. For another event,
for example B, holds P (B) = |B|/|Ω|. A calculation of the the sum of the
two probabilities, P (A) +P (B), requires some care, since we know that only
an inequality holds (see previous section 1.4, in particular figure 1.4):

|A| + |B| ≥ |A ∪ B| .

The excess of |A|+ |B| over the size of the union |A∪B| is precisely the size
of the intersection |A ∩B| and thus we find

|A| + |B| = |A ∪ B| + |A ∩ B|

or by division through the size of sample space Ω we obtain

P (A) + P (B) = P (A ∪B) + P (A ∩B) or

P (A ∪B) = P (A) + P (B) − P (A ∩B) .
(1.13)

Only in case the intersection is empty, A ∩ B = ∅, the two sets are disjoint
and their probabilities are additive, |A ∪B| = |A|+ |B|, and hence

P (A+B) = P (A) + P (B) iff A ∩B = ∅ . (1.14)

Fig. 1.6 The powerset.
The powerset Π(Ω) is a
set containing all subsets
of Ω including the empty
set ∅ and Ω itself. The
figure sketches the power-
set for a sample space of
three events A, B, and C.
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It is important to memorize this condition for later use, because it represents
an implicitly made assumption for computing probabilities.

Now are now in the position to define a probability measure by means of
basic axioms of probability theory and we present the three axioms as they
were first formulated by Andrey Kolmogorov [167]:

A probability measure on the sample space Ω is a function of subsets of
Ω, P : S → P (S), which is defined by the three axioms:

(i) For every set A ⊂ Ω, the value of the probability measure is a
nonnegative number, P (A) ≥ 0 for all A,

(ii) the probability measure of the entire sample set – as a subset – is
equal to one, P (Ω) = 1, and

(iii) for any two disjoint subsets A and B, the value of the probability
measure for the union, A ∪ B = A + B, is equal to the sum of its
values for A and B,

P (A∪B) = P (A+B) = P (A) + P (B) provided P (A∩B) = ∅ .

Condition (iii) implies that for any countable – eventually infinite – collection
of disjoint or non-overlapping sets, Ai (i = 1, 2, 3, . . .) with Ai ∩ Aj = ∅ for
all i 6= j, the relation called σ-additivity

P

(
⋃

i

Ai

)
=
∑

i

P (Ai) or P

( ∞∑

k=1

Ak

)
=

∞∑

k=1

P (Ak) (1.15)

holds.
In other words, the probabilities associated with disjoint sets are additive.

Clearly we have also P (Ac) = 1−P (A), P (A) = 1−P (Ac) ≤ 1, and P (∅) = 0.
For any two sets A ⊂ B we find P (A) ≤ P (B) and P (B−A) = P (B)−P (A),
and for any two arbitrary sets A and B we can write the union as a sum of
two disjoint sets

A ∪B = A + Ac ∩B and

P (A ∪B) = P (A) + P (Ac ∩B) .

Since B ⊂ Ac ∩B we obtain P (A ∪B) ≤ P (A) + P (B).
The set of all subsets of Ω is called the powerset Π(Ω) (figure 1.6). It

contains the empty set ∅, the entire sample space Ω and the subsets of Ω,
and this includes the results of all set theoretic operations that were listed in
the previous section 1.4. The relation between the sample point ω, an event
A, the sample space Ω and the powerset Π(Ω) is illustrated by means of
an example taken from as Penney’s game (section 1.2), the repeated coin
toss, which we shall analyze as Bernoulli process in section 3.2.1. Flipping
a coin has two outcomes: ’0’ for head and ’1’ tail and one particular coin
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toss experiment might give the sequence (0, 1, 1, 1, 0, . . . , 1, 0, 0). Thus the
sample points ω for flipping the coin n-times are binary n-tuples or strings,
ω = (ω1, ω2, . . . , ωn) with ωi ∈ Σ = {0, 1}.18 The sample space Ω then is the
space of all binary strings of length n commonly denoted by Σ n and it has
the cardinality |Σn| = 2n. The extension to the set of all strings of any finite
length is straightforward,

Σ
∗

=
⋃

i∈N

Σ
i
= {ε} ∪ Σ

1 ∪ Σ
2 ∪ Σ

3 . . . , (1.16)

and this set is called Kleene star after the American mathematician Stephen
Kleene. Herein Σ 0 = {ε} with ε denoting the unique string over Σ 0 called
the empty string, Σ 1 = {0, 1}, Σ 2 = {00, 01, 10, 11}, etc. The importance
of Kleene star is the closure property under concatenation of the sets Σ i19

Σ
m
Σ

n
= Σ

m+n
= {wv|w ∈Σ m

and v ∈Σ n} with m,n > 0 . (1.17)

Concatenation of strings is the operation

w = (0001) , v = (101) =⇒ wv = (0001101) ,

which can be extended to concatenation of sets in the sense of equation 1.17:

Σ 1Σ 2 = {0, 1}{00, 01, 10, 11} =

= {000, 001, 010, 011, 100, 101, 110, 111} = Σ
3

The set Kleene star Σ∗ is the smallest superset of Σ, which contains the
empty string ε and which is closed under the string concatenation operation.
Although all individual strings in Σ∗ have finite length, the set Σ∗ itself,
however, is countably infinite. We end this brief excursion into strings and
string operations by considering infinite numbers of repeats directly in the
sense of Σ n the space of strings of lengths n, ω = (ω1, ω2, . . .) = (ωi)i∈N

with ωi ∈ {0, 1} in the limit limn → ∞, as they are used in the theory
of computing. Then Ω = {0, 1}N is the sample space of all infinitely long
binary strings, whose countability as can be easily verified: Every binary
string represents the binary encoding Nk of a natural number including ’0’,
Nk ∈ N, and hence Ω is countable as the natural numbers are.

A subset of Ω will be called an event A when a probability measure derived
from axioms (i), (ii), and (iii) has been assigned. Often, one is not interested

18 There is a trivial but important distinction between strings and sets: In a string the
position of an element matters, whereas in a set it does not. The following three sets
are identical: {1, 2, 3} = {3, 1, 2} = {1, 2, 2, 3}. In order to avoid ambiguities strings
are written in (normal) parentheses and sets in curly brackets.
19 Closure under a given operation is an important property of a set that we shall
need later on. The natural numbers N, for example, are closed under addition and
the integers Z are closed under addition and substraction.
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in the full detail of a probabilistic result and events can be easily adapted to
lumping together sample points. We ask, for example, for the probability A
that n coin flips yield at least s-times tail or a score k ≥ s:

A =
{
ω = (ω1, ω2, . . . , ωn) ∈ Ω :

∑n

i=1
ωi = k ≥ s

}
,

where the sample space is Ω = {0, 1}n. The task is now to find a system
of events F that allows for a consistent assignment of a probability P (A)
to all possible events A. For countable sample spaces Ω the powerset Π(Ω)
represents such a systemF : We characterize P (A) as a probability measure on(
Ω,Π(Ω)

)
, and the further handling of probabilities following the procedure

outlined below is straightforward. In case of uncountable sample spaces Ω
the powerset Π(Ω) will turn out to be too large and a more sophisticated
procedure is required (section 1.6.3).

So far we have constructed, compared, and analyzed sets but have not yet
introduced weights or numbers for application to real world situations. In
order to construct a probability measure that can be adapted to calculations
on countable sample space, Ω = {ω1, ω2, . . . , ωn, . . .}, we have to assign a
weight ̺n to every sample point ωn that fulfils the conditions

∀ n : ̺n ≥ 0 and
∑

n

̺n = 1 . (1.18)

Then for P ({ωn}) = ̺n ∀ n the following two equations

P (A) =
∑

ω∈A
̺(ω) for A ∈ Π(Ω) and

̺(ω) = P ({ω}) for ω ∈ Ω
(1.19)

represent a bijective relation between the probability measure P on
(
Ω,Π(Ω)

)

and the sequences ̺ =
(
̺(ω)

)
ω∈Ω in [0,1] with

∑
ω∈Ω ̺(ω) = 1. Such a se-

quence is called a discrete probability density.
The function ̺(ωn) = ̺n has to be prescribed by some null hypothesis,

estimated or determined empirically, because it is the result of factors ly-
ing outside mathematics or probability theory. The uniform distribution is
commonly adopted as null hypothesis in gambling as well as for many other
purposes: The discrete uniform distribution, UΩ , assumes that all elementary
results ω ∈ Ω appear with equal probability and hence ̺(ω) = 1/|Ω|.20 What
is meant here by ‘elementary’ will become clear in the discussion of applica-

20 The assignment of equal probabilities 1
n

to n mutually exclusive and collectively
exhaustive events, which are indistinguishable except for their tags, is known as prin-
ciple of insufficient reason or principle of indifference as it was called by the British
economist John Maynard Keynes [159, chap.IV, pp.44-70]. In Bayesian probability
theory the a priori assignment of equal probabilities is characterized as the simplest
non-informative prior (see section 1.3).
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Fig. 1.7 Probabilities of throwing two dice. The probability of obtaining two to
twelve counts through throwing two perfect or fair dice are based on the equal prob-
ability assumption for obtaining the individual faces of a single die. The probability
P (N) raises linearly from two to seven and then decreases linearly between seven
and twelve (P (N) is a discretized tent map) and the additivity condition requires
∑

12
k=2 P (N = k) = 1. Understood as a probability distribution function of a random

variable Z the shown plot represents the probability mass function (pmf) fZ (x). It
is important to note that the pmf is not a step function but a collection of isolated
values at the points x = k with k ∈ {2, 3, . . . , 12} (see figure 1.11).

tions. Throwing more than one die at a time, for example, can be reduced to
throwing one die more often.

In science, particularly in physics, chemistry or biology, the correct assign-
ment of probabilities has to meet the conditions of the experimental setup. An
example from scientific gambling will make this point clear: The fact whether
a die is fair and shows all its six faces with equal probability, whether it is im-
perfect, or whether it has been manipulated and shows, for example, the ’six’
more frequently then the other faces is a matter of physics and not mathemat-
ics. Empirical information replaces the principle of indifference – for example,
a calibration curve of the faces is determined by doing and recording a few
thousand die rolling experiments – and assumptions of the null hypothesis of
a uniform distribution become obsolete.

Although the application of a probability measure in the discrete case is
rather straightforward, we illustrate by means of a simple example. With the
assumption of uniform distribution UΩ we can measure the size of sets by
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counting sample points as illustrated best by considering the throws of dice.
For one die the sample space is Ω = {1, 2, 3, 4, 5, 6} and for the fair die we
make the assumption

P ({k}) =
1

6
; k = 1, 2, 3, 4, 5, 6 .

that all six outcomes corresponding to different faces of the die are equally
likely. Based on the assumption of UΩ we obtain the probabilities for the
outcome of two simultaneously rolled fair dice (figure 1.7). There are 62 = 36
possible outcomes with scores in the range 2, 3, . . . , 12. The probability mass

function (pmf) or discrete probability density is a discretized tent function
in this case with the most likely outcome being a count of seven points be-
cause it has the largest multiplicity, {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}
(For a generalization to rolling n dice simultaneously see section 1.9.1 and
figure 1.20).

1.6 Discrete random variables and distributions

Conventional deterministic variables are not suitable for descriptions of pro-
cesses with limited reproducibility. In probability theory and statistics we
shall make use of random or stochastic variables , X ,Y,Z, . . . , which were
invented especially for dealing with random scatter and fluctuations. Even if
an experiment is repeated under precisely the same conditions the random
variable will commonly take on a different value. The probabilistic nature of
random variables is illustrated well by an expression, which is particularly
useful for the definition of probability distribution functions:21

Pk = Prob
(
Z = k

)
with k ∈ N . (1.20)

A deterministic variable, z(t), is defined by a function that returns a unique
value for a given argument z(t) = xt.

22 In case of the random variable,
Z(t), the single value of the conventional variable has to be replaced by a
series of probabilities Pk(t). This series could be visualized, for example, by
means of an L1 normalized probability vector with the probabilities Pk as
components: P =

(
P0, P1, . . .

)
with ‖P‖1 =

∑
k Pk = 1.23 In probability

theory the characterization of a random variable is made by a probability
distribution function rather than by a vector, because these functions can

21 Whenever possible we shall use“k, l,m, n” for discrete counts, k ∈ N, and“t, x, y, z”
for continuous variables, x ∈ R1 (see appendix ’Notation’).
22 We use here t as independent variable of the function but do not necessarily imply
that t is time.
23 The notation of vectors and matrices as used in this text is described in the
appendix ’Notation’.
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be applied with minor modifications to the discrete and the continuous case.
Two probability functions are particularly important and in general use (see
section 1.6.2): the probability mass function (pmf; see figures 1.7 and 1.11)

fZ(x) =

{
Prob (Z = k) = Pk ∀ x = k ∈ N ,

0 anywhere else .

or by the cumulative distribution function (cdf; see figure 1.10)

FZ(x) = Prob (Z ≤ k) =
∑

i≤k
Pi .

Two properties of the cumulative distribution function (cdf) follow directly
from the property of probabilities:

lim
k→−∞

FX (k) = 0 and lim
k→+∞

FX (k) = 1 .

The limit at low k-values is chosen in analogy to definitions used later
on: Taking −∞ instead of zero as lower limit makes no difference, because
fX (−|k|) = P−|k| = 0 (k ∈ N) or negative particle numbers have zero proba-
bility. Simple examples of probability functions are shown in figures 1.7 and
1.10.

The probability mass function (pmf) fZ(x) is not a function in the usual
sense, because it has the value zero almost everywhere except at the points
x = k ∈ N and in this aspect it is closely related to the Dirac delta function
(section 1.6.2). All measurable quantities, for example expectation values
E(Z) or variances var(Z) = σ2(Z), can be computed from either of the two
probability functions.

1.6.1 Random variables and continuity

For a precise definition of random variables on countable sample spaces a
probability triple (Ω,Π(Ω), P ) is required: Ω contains the sample points or
individual results, the powerset Π(Ω) provides the events A as subsets, and
P eventually represents a probability measure that has been defined in equa-
tion (1.19). Based on such a probability triple we can now define a random

variable as a numerically valued function Z of ω on the domain of the entire
sample space Ω,

ω ∈ Ω : ω → Z(ω) . (1.21)

Random variables, X (ω) and Y(ω), can be manipulated by operations to
yield other random variables, such as

X (ω) + Y(ω) , X (ω)− Y(ω) , X (ω)Y(ω) , X (ω)/Y(ω) [Y(ω) 6= 0] ,
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Fig. 1.8 Ordered partial sum of random variables. The sum Sn =
∑n

k=1 Zk

represents the cumulative outcome of a series of events described by a class of random
variables, Zk. The series can be extended to +∞ and such cases will be encountered,
for example, with probability distributions. An ordering criterion has still to be speci-
fied, it could be time t, for example, and then we are dealing with a stochastic process,
here a jump process, or a spatial coordinate x, y or z.

and, in particular, also any linear combination of random variables such as
αX (ω) + βY(ω) is a random variable too. Just as a function of a function is
still a function, a function of a random variable is a random variable,

ω ∈ Ω : ω → ϕ (X (ω),Y(ω)) = ϕ(X ,Y) .

Particularly important cases are the partial sums of n variables:

Sn(ω) = Z1(ω) + . . . + Zn(ω) =

n∑

k=1

Zk(ω) . (1.22)

Such a partial sum Sn could be, for example, the cumulative outcome of
n successive throws of a die.24 Consider, for example, an ordered series of
events where the current cumulative outcome is given by the sum Sn =∑n

k=1Zk as shown in figure 1.8. In principle, the series can be extended
to infinity covering thereby entire sample space and then the conservation
relation of probabilities, Sn =

∑∞
k=1 Zk = 1, has to be fulfilled. No ordering

criterium has been introduced so far. Most frequently and in particular for

24 The use of partial in this context expresses the fact that the sum need not cover
the entire sample space at least not for the moment. Series of rolling dice, for example,
could be continued in the future.
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Fig. 1.9 Continuity in probability theory and step processes. Three possible
choices of partial continuity at the steps of step functions are shown: (i) left-hand
continuity (a), (ii) no continuity (b), and (iii) right-hand continuity (c). The step
function in (a) is left-hand semi-differentiable, the step function in (c) is right-hand
semi-differentiable, and the step function in (b) is neither right-hand nor left-hand
semi-differentiable. Choice (ii) allows for making use of the inherent symmetry of the
Heaviside function. Choice (iii) is the standard assumption in probability theory and
stochastic processes. It is also known as càdlàg-property (section 3.2.1.3).

stochastic processes events will be ordered according the time of occurrence
(see chapter 3).

Figure 1.8 represents the plot of a discrete random variable, S(t), on a
continuous axis, time t, which has the from of a step function. In order to
avoid ambiguities a convention concerning continuity at the steps is needed. A
precise definition, however, is hidden in the equations (1.21) and (1.22). Three
definitions for the value of the function at the discontinuity are possible. In
the case of the Heaviside step function they are (figure 1.9):

H(x) =





0 , if x < 0 ,

0, 1
2 , 1 if x = 0 ,

1 , if x > 0 .

(1.23)

The value ’0’ at x = 0 implies left hand continuity for H(x) and in terms of a
probability distribution would correspond to a definition P (Z < x), the value
1
2 implies that H(x) is neither right-hand nor left-hand semi-differentiable
at x = 0 but this choice is useful in many applications that are based on
the inherent symmetry of the Heaviside function, for example the relation
H(x) =

(
1 + sgn(x)

)
/2 where sgn(x) is the sign or signum function:

sgn(x)





−1 if x < 0 ,

0 if x = 0 ,

1 if x > 0 .
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Fig. 1.10 The cumulative distribution function of rolling fair dice. The
cumulative probability distribution function (cdf) is a mapping from the sample space
Ω onto the unit interval [0, 1] of R. It corresponds to the ordered partial sum with
the ordering parameter being the score given by the stochastic variable. The example
shown deals with throwing fair dice: The distribution for one die (black) consists
of six steps of equal height at the scores 1, 2, . . . , 6. The second curve (red) is the
probability of throwing two dice yielding the scores 2, 3, . . . , 12. The weights for the
individual scores are 1/36,1/18,1/12,1/9,5/36,1/6,5/36,1/9,1/12,1/18,1/36. The two
limits of a cdf are limx→−∞ FZ (x) = 0 and limx→+∞ FZ(x) = 1.

The functions in probability theory make use of the third definition deter-
mined by P (Z ≤ x) or H(0) = 1 in case of the Heaviside function, and this
definition leads to right-hand continuity. In other words the step-functions in
probability theory are semi-differentiable to the right. Right-hand continuity
is an important definition in the conventional handling of stochastic processes,
for example in the case of semimartigales (section 3.2.1). Often, the property
of right-hand continuity with left limits is denoted as càdlàg, which is an
acronym from French for “continue à droite, limites à gauche”. Step func-
tions cannot be integrated by conventional Riemannian integration method,
but they are accessible by Stieltjes integration as will be outlined later on in
a section on generalizations of the Riemann integral (subsection 1.8.2).
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1.6.2 Mass function and cumulative distribution

Two functions of random variables, the probability mass function (pmf) and
the cumulative probability distribution (cdf) have been already mentioned
and were shown in figures 1.7 and 1.8, respectively. Both functions are equiv-
alent in the sense that essentially all observable properties can be calculated
from either one of them. Here, we discuss them again by means of the simple
example, rolling two dice (2D), and we present general expressions for them
and their interconversions.

As a simple and illustrative example of a probability distributions is the
mass function presenting the scores of rolling two dice (figure 1.7) as events.
The pmf for two dice is a tent function

f2D(k) =

{
1
s2 (k − 1) for k = 1, 2, . . . , s ,

1
s2 (2s+ 1− k) for k = s+ 1, s+ 2, . . . , 2s

.

Here k is the score and s the number of faces of the die, which is six in case
of the commonly used dice. The cumulative probability distribution function
(cdf) is an example of for an ordered sum of random variables. The scores
of rolling one die or two dice simultaneously are the events. The cumulative
probability distribution is given by the sum of scores (figure 1.10):

F2D(k) =
k∑

i=2

f2D(i) ; k = 2, 3, . . . , 2s .

A generalization to rolling n dice will be presented in chapter 2.5 in the
discussion of the central limit theorem.

Making use of our knowledge on probability space the probability mass
function (pmf) can be formulated as a mapping from sample space into the
real numbers and gives the probability that a discrete random variable Z
attains exactly some value x. We assume that Z is a discrete random variable
on the sample space Ω, Z : Ω → R, and then we define the probability mass
function as a mapping onto the unit interval, fZ : R→ [0, 1], by

fZ(x) = P (Z = x) = P
(
{s ∈ Ω : Z(s) = x}

)
. (1.24)

Sometimes it is useful to be able to treat a discrete probability distribu-
tion as if it were continuous. The function fZ(x) is defined therefore for all
real numbers, x ∈ R including those outside the sample set. Then we have:
fZ(x) = 0 ∀x /∈ Z(Ω). For rolling one die the pmf consists of six isolated
peaks, fZ(x) = 1/6 at x = 1, 2, . . . , 6 and has the value fZ(x) = 0 every-
where else (x 6= 1, 2, . . . , 6). Figure 1.11 shows the probability mass func-
tion of rolling dice, where the probability mass function corresponds to the
discretized tent map shown already in figure 1.7. A simple but straightfor-
ward representation of the probability mass function makes use of the Dirac
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Fig. 1.11 Probability mass function of fair dice. The probability mass func-
tion (pmf), fZ(x), is shown for rolling two dice simultaneously. The scores x are
plotted on the abscissa axis. The pmf is zero everywhere on the x-axis except at a set
of points, x = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, of measure zero where it adopts the val-
ues 1/36,1/18,1/12,1/9,5/36,1/6,5/36,1/9,1/12,1/18,1/36. The maximal probability
value is obtained for the score x = 7 (see also equation (1.24’) and figure 1.7).

delta-function.25 The nonzero score values are assumed to lie exactly at the
positions xk with k = 1, 2, . . . and pk = P (Z = xk):

fZ(x) =

∞∑

k=1

P (Z = xk) δ(x− xk) =

∞∑

k=1

pk δ(x− xk) . (1.24’)

In this form the probability density function is suitable for the calculation of
probabilities by integration.

The step function for the characterization of a discrete probability distri-
bution is the cumulative distribution function (cdf). In essence, it contains
the same information as the probability mass function. As a mapping from
sample space into the real numbers on the unit interval, (P (Z ≤ x;Ω) ⇒
(FZ(x); R : 0 ≤ FZ(x) ≤ 1) it is defined by

FZ(x) = P (Z ≤ x) with lim
x→−∞

FZ(x) = 0 and lim
x→+∞

FZ(x) = 1 . (1.25)

25 The delta-function is no proper function but a generalized function or distribution.
It was introduced by Paul Dirac in quantum mechanics. For more details see, for
example, [255, pp.585-590] and [251, pp.38-42].
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Two examples for throwing one die or two dice are shown in figure 1.10. The
distribution function is defined for the entire x-axis, x ∈ R, but cannot be
integrated by conventional Riemann integration. The cumulative distribution
function and the partial sums of random variables, however, are continuous
and differentiable on the right-hand side of the steps and therefore they are
Riemann-Stieltjes or Lebesgue integrable (see sections 1.8.2 and 1.8.3). Since
the integral of the Dirac delta-function is the Heaviside function we may write

FZ(x) =

∫ x

−∞
fZ(s) ds =

∑

k≤x
pk . (1.25’)

For more details concerning limitations of integrability see section 1.8.
Finally, we generalize sets, which are defined by the range of a random

variable on the closed interval [a, b],26

{a ≤ Z ≤ b} = {ω| a ≤ Z(ω) ≤ b} ,

and define their probabilities by P (a ≤ Z ≤ b). More generally, the set A of
sample points can be defined by the open interval ]a, b[, the half-open intervals
[a, b[ and ]a, b], the infinite intervals, ]−∞, b[ and ]a,+∞[, as well as the set
of real numbers, R =] −∞,+∞[. If A is reduced to the single point x, it is
called the singleton {x}:

P (Z = x) = P (Z ∈ {x}) .

For countable, finite or countably infinite, sample spaces Ω the exact range
of Z is just the set of the real numbers wi below:

WZ =
⋃

ω∈Ω
{Z(ω)} = {w1, w2, . . . , wn, . . .} .

Now we introduce probabilities

pn = P (Z = wn) , wn ∈ WZ ,

and apparently we have P (Z = x) = 0 if x /∈ WZ . An illustrative example
was the probability mass function fZ(x) defined by equation (1.24’).

Knowledge of all pn-values is tantamount to having full information on all
probabilities derivable for the random variable Z:

P (a ≤ Z ≤ b) =
∑

a≤wn≤b
pn or, in general, P (Z ∈ A) =

∑

wn∈A
pn . (1.26)

26 The notation we are applying here uses square brackets, ’[’·’]’, for closed inter-
vals, open square brackets, ’]’·’[’, for open intervals, ’]’·’]’ and ’[’·’[’ for left-hand or
right-hand half-open intervals, respectively. An alternative less common notation uses
parentheses instead of open square brackets, e.g., ’(’·’)’ instead of ’]’·’[’.
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An especially important case that has been discussed already in the previous
subsection 1.6.2 is obtained when A is the infinite interval ] − ∞, x]. The
function x → FZ (x), defined on R and in particular on the unit interval
[0, 1], 0 ≤ FZ(x) ≤ 1, is the cumulative distribution function of Z:

FZ(x) = P (Z ≤ x) =
∑

wn≤x
pn . (1.25”)

It fulfils several easy to verify properties:

FZ(a) − FZ(b) = P (Z ≤ b) − P (Z ≤ a) = P (a < Z ≤ b) ,
P (Z = x) = lim

ǫ→0

(
FZ(x+ ǫ) − FZ(x− ǫ)

)
, and

P (a < Z < b) = lim
ǫ→0

(
FZ(b− ǫ) − FZ(a+ ǫ)

)
.

An important special case is an integer valued positive random variable Z
corresponding to a countably infinite sample space which is the set of non-
negative integers: Ω = N0 = {0, 1, 2, . . . , n, . . .} with

pn = P (Z = n) , n ∈ N0 and FZ(x) =
∑

0≤n≤x
pn . (1.27)

Integer valued random variables will be used, for example, for modeling par-
ticle numbers or other discrete quantities in stochastic processes.

1.6.3 Conditional probabilities and independence

So far probabilities of eventsA were defined relative to the entire sample space
Ω, P (A) = |A|/|Ω| = ∑

ω∈A P (ω)
/ ∑

ω∈Ω P (ω). We are now interested in
the probability of event A relative to a subset of sample space Ω, for example
the set S. This means that we attempt to calculate the proportional weight
of the part of the subset A in S, which is expressed by the intersection A∩S
relative to the set S, and obtain

∑

ω∈A∩S
P (ω)

/ ∑

ω∈S
P (ω) .

In other words, we switch from Ω to S as the new universe and the set to
be weighted are the sample points belonging to A and to S. It is illustrative
to call the event S a hypothesis which restricts the sample space Ω for the
definition of conditional probabilities.

The conditional probability measures the probability of A relative to S:
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Fig. 1.12 Conditional probabilities. Conditional probabilities measure the inter-
section of the sets for two events, A ∩ S relative to the set S: P (A|S) = |AS|/|S|.
In essence this is the same kind of weighting that defines the probabilities in sample
space: P (A) = |A|/|Ω| (Part a shows A ⊂ Ω and b shows A ∩ S ⊂ S). The two
extremes are: A ∩ S = S and P (A|S) = 1 (c) and A ∩ S = 0 and P (A|S) = 0 (d).

P (A|S) =
P (A ∩ S)
P (S)

=
P (AS)

P (S)
(1.28)

provided P (S) 6= 0. The conditional probability P (A|S) is undefined for
hypothesis of zero probability, S = ∅. Apparently, the conditional probability
vanishes when the intersection is empty: P (A|S) = 0 if A ∩ S = AS = ∅,27
and P (AS) = 0. In case S is a true subset of A, AS = S we have P (A|S) = 1
(see figure 1.12).

The definition of the conditional probability implies that all general theo-
rems on probabilities hold by the token for conditional probabilities and, for
example, we derive from equation (1.13):

P (A ∪B|S) = P (A|S) + P (B|S) − P (AB|S) . (1.13’)

Additivity of conditional probability requires an empty intersection, AB = ∅.
Equation (1.28) is particularly useful when written in slightly different

form:
P (AS) = P (A|S) · P (S) , (1.28’)

27 From here on we shall use the short notation for the intersection, AS ≡ A ∩ S.
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which is known as the theorem of compound probabilities and which can be
easily generalized to more events. For three events we derive [76, chap.V]

P (ABC) = P (A|BC) · P (B|C) · P (C)

by applying (1.28’) twice – first by setting BC ≡ S and then by setting
BC ≡ AS, and for n arbitrary events Ai; i = 1, . . . , n we obtain

P (A1A2 . . . An) = P (A1|A2A3 . . . An) · P (A2|A3 . . . An) . . . P (An−1|An) · P (An)

provided P (A2A3 . . . An) > 0. If the intersection of event sets A2 . . . An does
not vanish, all conditional probabilities are well defined since

P (An) ≥ P (An−1An) ≥ . . . ≥ P (A2A3 . . . An) > 0 .

Next we derive an equation that we shall need in chapter 3 for modeling of
stochastic processes. We assume that the sample space Ω is partitioned into
n disjoint sets, Ω =

∑
n Sn, then we have for any set A

A = AS1 ∪ AS2 ∪ . . . ∪ Sn

and from equation (1.28’) we get

P (A) =
∑

n

P (A|Sn) · P (Sn) . (1.29)

From this relation it is straightforward to derive the conditional probability

P (Sj |A) =
P (Sj)P (A|Sj)∑
n P (Sn)P (A|Sn)

provided P (A) > 0.
Two or more random variables,28 for example X and Y, can be described

by a random vector ~V = (X ,Y), which is expressed by the joint probability

P (X = xi,Y = yj) = p(xi, yj) . (1.30)

The random vector ~V is fully determined by the joint probability mass func-

tion

f~V(x, y) = P (X = x,Y = y) = P (X = x ∨ Y = y) =

= P (Y = y | X = x) · P (X = x) =

= P (X = x | Y = y) · P (Y = y) .

(1.31)

28 For simplicity we restrict ourselves to the two variable case here. The extension to
any finite number of variables is straightforward.
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This density constitutes the probabilistic basis of the random vector ~V . It is
straightforward to define a cumulative probability distribution in analogy to
the single variable case

F~V(x, y) = P (X ≤ x,Y ≤ y) . (1.32)

In principle either of the two probability functions contain the complete in-
formation on both variables but depending on the specific situation either
the pmf or the cdf may be more efficient.

Often no detailed information is required on one particular random vari-
able. Then, by summation over one variable of the vector ~V we obtain the
probabilities for the corresponding marginal distribution,

P (X = xi) =
∑

yj

p(xi, yj) = p(xi, ∗) and

P (Y = yj) =
∑

xi

p(xi, yj) = p(∗, yj) ,
(1.33)

of X and Y, respectively.
Independence of events can be easily formulated in terms of conditional

probabilities. The conditional probability can also be interpreted that the in-
formation on whether or not an event S has occurred changes the probability
of A. Independence, however, implies that an influence of S on A does not
exist and hence P (A|S) = P (A) defines stochastic independence. Making use
of equation (1.28’) we define

P (AS) = P (A) · P (S) , (1.34)

and realize an important symmetry of stochastic independence: A is inde-
pendent of S implies S is independent of A, and we may account for this
symmetry by defining independence by stating that A and S are independent
if equation (1.34) holds. We remark that the definition (1.34) is acceptable
also for P (S) = 0 a case in which P (A|S) is undefined [76, p. 125].

The case of more than two events needs some care and we take three events
A, B, C as an example. So far we were dealing with pairwise independence
and accordingly we have

P (AB) = P (A) · P (B) , P (BC) = P (B) · P (C) , P (CA) = P (C) · P (A) . (1.35a)

Pairwise independence, however, does not necessarily imply that

P (ABC) = P (A) · P (B) · P (C) (1.35b)

holds. In addition, examples were constructed where the last equation is ful-
filled but nevertheless the sets are not pairwise independent [96]. Although
cases of pairwise independence but lacking mutual independence of three
events are not common they can be found in general: Case f in figure 1.4 al-
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Fig. 1.13 Testing for stochastic independence of three events. The study
case show is a example for independence of three events and fulfils equations (1.35a)
and (1.35b). It corresponds to example a in table 1.3.

Table 1.3 Testing for stochastic independence of three events. We show
three examples: Case a fulfils equations (1.35a) and (1.35b), and represents a case of
mutual independence, case b fulfils only equation (1.35a) and not equation (1.35b),
and is as example of pairwise independent but not mutually independent events, and
case c is an especially constructed example for fulfilment of equation (1.35b) by three
sets that are pairwise independent. Deviations from equations (1.35a) and (1.35b) are
shown in boldface numbers.

Probabilities P

Singles Pairs Tripel

A B C AB BC CA ABC

a 1
2

1
2

1
4

1
4

1
8

1
8

1
16

b 1
2

1
2

1
4

1
4

1
8

1
8

1
10

c 1
5

2
5

1
2

1
10

6
25

7
50

1
25

lows for straightforward construction of examples with pairwise independence
but P (ABC) = 0.

Eventually, we present on final example, which is attributed to Sergei Bern-
stein [76, p. 127]: The six permutations of the three letters a, b and c together
with the three triples (aaa), (bbb), (ccc) constitute the sample space and a



1.6 Discrete random variables 41

probability P = 1
9 is attributed to each sample point. Now we define three

events A1, A2 and A3 according to the appearance of the letter a at the first,
second or third place:

A1 = {aaa, abc, acb} , A2 = {aaa, bac, cab} , A3 = {aaa, bca, cba} .

Every event has a probability P (A1) = P (A2) = P (A3) =
1
3 and the three

events are pairwise independent because

P (A1A2) = P (A2A3) = P (A3A1) =
1

9
,

but they are not mutually independent because P (A1A2A3) =
1
9 instead of

1
27 as required by equation (1.35b). In this case it is easy to detect the cause of
the mutual dependence: The occurrence of two events implies the occurrence
of the third and therefore we have P (A1A2) = P (A2A3) = P (A3A1) =
P (A1A2A3).

Generalization to n events is straightforward [76, p. 128]: The events
A1 , A2 , . . . , An are mutually independent if the multiplication rules apply
for all combinations 1 ≤ i < j < k < . . . ≤ n and hence we have 2n − n− 1
conditions,

P (AiAj) = P (Ai) · P (Aj)
P (AiAjAk) = P (Ai) · P (Aj) · P (Ak)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P (A1A2 . . . An) = P (A1) · P (A2) · . . . · P (An) ,

(1.36)

which have to be satisfied.29

Independence of random variables will be a highly relevant problem in
the forthcoming chapters. Countably-valued random variables X1, . . . ,Xn are
defined to be independent if and only if for any combination x1, . . . , xn of real
numbers the joint probabilities can be factorized:

P (X1 = x1, . . . ,Xn = xn) = P (X1 = x1) · . . . · P (Xn = xn) . (1.37)

An extension of equation (1.37) replaces the single values xi by arbitrary sets
Si

P (X1 ∈ S1, . . . ,Xn ∈ Sn) = P (X1 ∈ S1) · . . . · P (Xn ∈ Sn) .
In order to proof this extension we sum over all points belonging to the sets
S1, . . . , Sn:

29 The number of conditions consists of
(n
2

)

equations in the first line,
(n
3

)

equations

in the second line, and so on, down to
(n
n

)

= 1 in the last line. The summation yields
∑n

i=2

(n
i

)

= (1 + 1)n −
(n
1

)

−
(n
0

)

= 2n − n− 1.
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∑

x1∈S1

· · ·
∑

xn∈Sn

P (X1 = x1, . . . ,Xn = xn) =

=
∑

x1∈S1

· · ·
∑

xn∈Sn

P (X1 ∈ S1) · . . . · P (Xn ∈ Sn) =

=

(
∑

x1∈S1

P (X1 ∈ S1)

)
· . . . ·

(
∑

xn∈Sn

P (Xn ∈ Sn)
)
,

which is equal to the right hand side of the equation to be proven. ⊓⊔
Since the factorization is fulfilled for arbitrary sets S1, . . . Sn it holds also

for all subsets of (X1 . . .Xn) and accordingly the events

{X1 ∈ S1}, . . . , {Xn ∈ Sn}

are also independent. It can also be verified that for arbitrary real-valued
functions ϕ1, . . . , ϕn on ]−∞,+∞[ the random variables ϕ1(X1), . . . , ϕn(Xn)
are independent too.

Independence can also be extended in straightforward manner to the joint
distribution function of the random vector ~V = (X1, . . . ,Xn)

F~V(x1, . . . , xn) = FX1(x1) · . . . · FXn(xn) ,

where the FXj ’s are the marginal distributions of the Xj ’s , 1 ≤ j ≤ n.
Thus, the marginal distributions determine the joint distribution in case of
independence of the random variables.
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1.7 Probability measure on uncountable sample spaces30

So far we were dealing with countable, finite or infinite, sample spaces. A new
situation arises when the sample space Ω is uncountable (see, e.g., figure 1.5)
and this is very common, for example, for continuous variables defined on
non-zero, open or closed segments of the real line, ]a, b[, ]a, b], [a, b[, or [a, b]
for a < b, respectively. The most straightforward way to illustrate a measure
is to assign length, area, volume, or generalized volume to a set. Sometimes
mass of a homogeneous object is easier to visualize than volume. In order
to illustrate the problem we may ask a very natural question: Does every
arbitrary proper subset of the real line, −∞ < x < +∞, have a length?
It seems trivial to assign length 1 to the interval [0, 1] and length b − a to
the interval [a, b] with a ≤ b. Now we assign mass to sets in the sense of
bars of uniform density. For example, we attribute a bar of length 1 that
has mass 1 to [0, 1], and accordingly, a bar of mass b − a to [a, b], two bars
corresponding to the set [0, 1]∪ [3, 5] together have mass 3, etc. The question
now is: What is the mass of the set of the rational numbers Q given the
mass of the interval [0, 1] is one? Since the rational numbers are dense in the
real numbers,31 any nonnegative value for the mass of the rational numbers
may appear acceptable. The real numbers, however, are uncountable and so
are the irrational numbers, R\Q. Assigning mass b − a to the interval [a, b]
leaves no weight for the rational numbers and indeed the rational numbers
Q have measure zero like any other set of countably many objects, more
precisely Lebesgue measure zero, λ(Q) = 0 as we shall see in the forthcoming
sections the Lebesgue measure indeed assigns precisely the values given above
to intervals on the real axis: λ([0, 1]) = 1 or λ([a, b]) = b − a. The real line
R allows for the definition of a Borel measure, which assigns also µ([a, b]) =
b − a for every interval [a, b]. It is defined on the σ-algebra of the Borel sets
B(R) and this is the smallest σ-algebra that contains the open intervals of
R. In practice, however, the Borel measure is not the most useful measure
defined on the σ-algebra of Borel sets, because the Lebesgue-measure on
Borel sets is a complete measure in contrast to the Borel measure. A complete
measure refers to a complete measure space in which every subset of every
null set is measurable with measure zero. Indeed, the Lebesgue measure λ is
an extension of the Borel measure µ in the sense that every Borel-measurable
set E is also a Lebesgue-measurable set, and the two measures coincide on
Borel sets: λ(E) = µ(E).

Before we develop a measure for uncountable sample spaces we recall the
three indispensable properties of probability measures µ : F → [0,∞[ with F
30 This section can be skipped by readers who are willing to except the fact that
all uncountable sample spaces needed in the forthcoming discussions are measurable
notwithstanding the existence of non-measurable sets.
31 A subset D of real numbers is said to be dense in R if every arbitrarily small
interval ]a, b[ with a < b contains at least one element of D. Accordingly, the set of
rational numbers Q as well as the set of irrational numbers R\Q are dense in R.
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being a measurable collection of events A: (i) nonnegativity, µ(A) ≥ 0 ∀ A ∈
F ,
(ii) normalization, P (Ω) = 1, and (iii) additivity, µ(A) + µ(B) = µ(A ∪ B)
provided P (A∩B) = ∅. Problems concerning measurability arise from the im-
possibility to assign a probability to every subset of Ω. The task is to develop
measures for uncountable sets that are derived from collections of subsets,
whose cardinality is ℵ0, infinite but countable. To do this in full generality
is highly demanding and it requires advanced mathematical techniques, in
particular sufficient knowledge of measure theory. For the probability con-
cept we are using here, however, the simplest bridge from countability to
uncountability is sufficient and we need only derive a measure for sets of a
certain family of sets called Borel sets , B ⊂ Ω. For this goal the introduction
of σ-additivity (1.15) and Lebesgue measure λ(A) is sufficient, and as said,
σ-additivity comes close to mass in the above given example. Still unanswered
remains the question whether unmeasurable sets do exist at all.

1.7.1 Existence of non-measurable sets

In the case of a countable sample space the powerset Π(Ω) is the set of
all subsets of the sample space Ω and contains the results of all set theoretic
operations of section 1.4. Although is seems straightforward to proceed in the
same way for uncountable sample spaces Ω, it turns out, however, that the
powerset Π(Ω) is too large, because it contains uncountably many subsets.
A general proof of this conjecture is difficult but Giuseppe Vitali [294, 295]
provided a proof by means of contradiction that mappings P : Π(Ω) → [0, 1]
exist, which fulfils all three indispensable properties for probabilities, do not
exists for the infinitely repeated coin flip, Ω = {0, 1}N [97, p. 9,10]:

(N) normalization: P (Ω) = 1 ,
(A) σ-additivity: for pairwise disjoint events A1, A2, . . . ⊂ Ω holds

P


⋃

i≥1

Ai


 =

∑

i≥1

P (Ai) , and

(I) invariance: For all A ⊂ Ω and k ≥ 1 holds P (T̂kA) = P (A), where T̂k
is an operator that inverts the outcome of the k-th toss,

Tk : ω = (ω1, . . . , ωk−1, ωk, ωk+1 . . .)→ (ω1, . . . , ωk−1, 1− ωk, ωk+1 . . .),

and TkA = {Tk(ω) : ω ∈ A} is the image of A under the operation Tk.

The first two conditions are the criteria for probability measures and the in-
variance condition (I) is specific for coin flipping and encapsulates the prop-
erties derived from the uniform distribution, UΩ .
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In order to proof the conjecture of incompatibility with all three condi-
tions we define an equivalence relation ’∼’ in Ω: ω ∼ ω′ iff ωk = ω′

k for all
sufficiently long sequences (n ≥ k). According to the axiom of choice32 guar-
antees the existence of a set A ⊂ Ω, which contains exactly one element of
each equivalence class.

We define S = {S ⊂ N : |S| < ∞} the set containing all finite subsets
of N. Since S is the union of a countable number of finite sets, {S ⊂ N :
maxS = m} with m ∈ N, S is countable too. For S = {k1, . . . , kn} ∈ S we
define TS =

∏
ki∈S Tki = Tk1 ◦ . . . ◦ Tkn the simultaneous flip of the digits in

S. Then we have:

(i) Ω =
⋃
S∈S TSA since for each sequence ω ∈ Ω there exists an ω′ ∈ A

with ω ∼ ω′, and accordingly an S ∈ S such that ω = TS ω
′ ∈ TS A,

(ii) the sets (TSA)S∈S are pairwise disjoint: If TSA ∪ TS′A 6= ∅ were true
for S, S′ ∈ S then there existed an ω, ω′ ∈ A with TS ω = TS′ ω′ and
accordingly ω ∼ TS ω = TS ω ∼ ω′. By definition of A we had ω = ω′

and hence S = S′.

Applying the properties (N), (A), and (I) of the probability P we find

1 = P (Ω) =
∑

S∈S
P (TSA) =

∑

S∈S
P (A) . (1.38)

Equation (1.38) cannot be fulfilled for infinitely large series of coin tosses,
since all values P (A) or P (TSA) are the same and infinite summation by
σ-additivity (A) is tantamount to an infinite sum of the same number, which
yields either 0 or∞ but never 1 as required to fulfil (N). It is straightforward
to show that the set of all binary strings with countably infinite length,
B = {0, 1}N, is bijective to the unit interval [0, 1]. A more or less explicit
bijection f : B ↔ [0, 1] can be obtained by defining an auxiliary function

g(x) :=

∞∑

k=1

xk
2k

.

which interprets a binary string x = (x1, x2, . . .) ∈ B as an infinite binary
fraction

x1
2

+
x2
4

+ . . . .

The function g(x) maps B only almost bijectively onto [0, 1], because the
dyadic rationals in ]0, 1[ have two preimages each, for example g(1, 0, 0, 0, . . .) =
g(0, 1, 1, 1, . . .) = 1

2 . In order to fix this problem we reorder the rationals:

(
qn
)
n≥1

=

(
1

2
,
1

4
,
3

4
,
1

8
,
3

8
,
5

8
,
7

8
,
1

16
, . . .

)
,

32 Axiom of choice: Suppose that Aθ : θ ∈ Θ is a decomposition of Ω into nonempty
sets. The axiom of choice exists at least one set C, which contains exactly one point
from each Aθ: C ∩ Aθ is a singleton for each θ in Θ (see [20, p. 572] and [50]).



46 1 Probability
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Fig. 1.14 Conceptual levels of sets in probability theory. The lowest level is
the sample space Ω, it contains the sample points or individual results ω as elements,
and events A are subsets of Ω: ω ∈ Ω and A ⊂ Ω. The next higher level is the
powerset Π(Ω). Events A are its elements and event systems F constitute its subsets:
A ∈ Π(Ω) and F ⊂ Π(Ω). The highest level finally is the power powerset Π

(

Π(Ω)
)

that houses event systems F as elements: F ∈ Π
(

Π(Ω)
)

(Drawn after [97, p 11]).

and find for the bijection

f(x) :=





q2n−1 if g(x) = qn , and xk = 1 for almost all k ,

q2n if g(x) = qn , and xk = 0 for almost all k ,

g(x) otherwise .

(1.39)

Hence Vitali’s theorem applies as well to the unit interval [0, 1], where we are
also dealing with an uncountable number of non-measurable sets. For other
more detailed proofs of Vitali’s theroem see, e.g., [20, p. 47].

Accordingly, the proof of Vitali’s theorem demonstrates the existence of
non-measurable subsets of the real numbers called Vitali sets – precisely
subsets of the real numbers that are not Lebesgue measurable (see next sub-
section 1.7.2). The problem to be solved is a reduction of the powerset to an
event system F such that the subsets causing the lack of countability are left
aside (figure 1.14).

1.7.2 Borel σ-algebra and Lebesgue measure

Before we define minimal requirements for an event system F , we consider
the three levels of sets in set theory that are relevant for our construction
(figure 1.14). The objects on the lowest level are the sample points corre-
sponding to individual results, ω ∈ Ω. The next higher level is the powerset
Π(Ω) housing the events A ∈ Π(Ω). The elements of the powerset are sub-
sets of the sample space, A ⊂ Ω. To illustrate the role of event systems F we
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need a higher level, the powerset of the powerset, Π
(
Π(Ω)

)
: Event systems

F are elements of the power powerset, F ∈ Π
(
Π(Ω)

)
and subsets of the

powerset, F ⊂ Π(Ω).33

The minimal requirements for an event system F are summarized in the
following definition of a σ-algebra on Ω with Ω 6= ∅ and F ⊂ Π(Ω):

(1) Ω ∈ F ,
(2) A ∈ F =⇒ Ac := Ω\A ∈ F , and
(3) A1, A2, . . . ∈ F =⇒ ⋃

i≥1Ai ∈ F .

Condition (2), demanding the existence of a complement Ac for every subset
A ∈ F , defines the logical negation as expressed by the difference between the
entire sample space and the event A, and condition (3) represents the logical
or operation. The pair (Ω,F) is called an event space or a measurable space.
From the three properties (1) to (3) follow other properties: The intersection,
for example, is the complement of the union of the complements A ∩ B =
(Ac ∪ Bc)c ∈ F , and the argument is easily extended to the intersection of
countable many subsets of F that belongs to F as well. Thus, a σ-algebra is
closed under the operations ’c’, ’∪’ and ’∩’.34 Trivial examples of σ-algebras
are {∅, Ω}, {∅, A,Ac, Ω} or the family of all subsets. The Borel σ-algebra on
Ω is the smallest σ-algebra, which contains all open sets or equivalently, all
closed sets.

A construction principle for σ-algebras starts out from some event system
G ⊂ Π(Ω) (for Ω 6= ∅) that is sufficiently small and otherwise arbitrary. Then,
there exists exactly one smallest σ-algebra F = σ(G) in Ω with F ⊃ G, and
we call F the σ-algebra induced by G. In other words, G is the generator of
F . Here are three important examples:

(i) the powerset with Ω being countable where G =
{
{ω} : ω ∈ Ω

}
is the

system of the subsets of Ω containing a single element, the σ-algebra
σ(G) = Π(Ω), each A ∈ Π(Ω) is countable, and A =

⋃
ω∈A{ω} ∈ σ(G)

(countable sample spaces as discussed in section 1.5),
(ii) the Borel σ-algebra B containing all open or all closed sets in one

dimension (the uncountable sample space of real numbers Ω = R, see
below), and

(iii) the product σ-algebra for sample spaces Ω that are Cartesian prod-
ucts of sets Ek, Ω =

∏
k∈I Ek where I is a set of indices with I 6= ∅.

We assume Bk is a Borel σ-algebra on Ek with Xk : Ω → Ek being the
projection onto the k-th coordinate and the generator

G = {X−1
k Ak : k ∈ I, Ak ∈ Bk}

is the system of all sets in Ω, which are determined by an event on a sin-
gle coordinate. Then,

⊗
k∈I Bk := σ(G) is called the product σ-algebra

33 Recalling the situation in the case of countability we were choosing the entire
power set Π(Ω) as reference instead of a smaller event system F .
34 A family of sets is called closed under an operation if the operation can be applied
a countable number of times without producing a set that lies outside the family.
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of the sets Bk on Ω. In the important case of equivalent Cartesian co-
ordinates, Ek = E and Bk = B for all k ∈ I, the short-hand notion
B
⊗I is common. The Borel σ-algebra on Rn is represented by the n-

dimensional product σ-algebra of the Borel σ-algebra B = B1 on R (for
n = 1 one commonly writes B instead of B1), or Bn = B

⊗

n (Cartesian
product sample spaces, Ω = Rn).

All three examples are required for the understanding of probability mea-
sures: (i) The powerset provides the frame for discrete sample spaces, (ii) the
Borel σ-algebra to be discussed below sets the stage for one-dimensional con-
tinuous sample spaces, and (iii) the product σ-algebra represents the natural
extension from one dimension to the n-dimensional Cartesian space.

For the construction of the Borel σ-algebra35 we define a generator rep-
resenting the set of all compact cuboids in n-dimensional Cartesian space,
Ω = Rn, which have rational corners,

G =

{
n∏

k=1

[ak, bk] : ak < bk; ak, bk ∈ Q

}
(1.40)

where Q is the set of all rational numbers. The σ-algebra induced by this
generator is denoted as the Borel σ-algebra, Bn := σ(G) on Rn and each
A ∈ Bn is a Borel set.

Five properties of the Borel σ-algebra are useful for application and for
imagination of its enormous size.

(i) Each open set ’]..[’ A ⊂ Rn is Borelian. Every ω ∈ A has a neighborhood
Q ∈ G with Q ⊂ A and therefore we have A =

⋃
Q∈G, Q⊂AQ represent-

ing a union of countably many sets in Bn, which follows from condition
(3) of σ-algebras.

(ii) Each closed set ’[..]’ A ⊂ Rn is Borelian since Ac is open and Borelian
according to item (i).

(iii) The σ-algebra Bn cannot be described in a constructive way, because is
consists of much more than the union of cuboids and their complements.
In order to create Bn the operation of adding complements and count-
able unions has to be repeated as often as there are countable ordinal
numbers (and this leads to uncountable many times [19, pp.24, 29]). It
is sufficient to memorize for practical purposes that Bn covers almost
all sets in Rn – but not all of them.

(iv) The Borel σ-algebra B on R is generated not only by the system of
compact sets (1.40) but also by the system of closed left-hand open
infinite intervals:

G̃ = {]−∞, c]; c ∈ R} . (1.40’)

Condition (2) requires G̃ ⊂ B and – because of minimality of σ(G̃) –
σ(G̃) ⊂ B too. Alternatively, σ(G̃) contains all left-open intervals since

35 Sometimes a Borel σ-algebra is also called a Borel field.
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]a, b] =]−∞, b] \ ]−∞, a] and also all compact or closed intervals since
[a, b] =

⋂
n≥1 ]a − 1

n , b] and accordingly also the σ-algebra B generated
from these intervals (1.40). In full analogy B is generated from all open
left-unbounded, from all closed and open right-unbounded intervals.

(v) The event system BnΩ = {A∩Ω : A ∈ Bn} on Ω ⊂ Rn, Ω 6= ∅ represents
a σ-algebra on ω, which is denoted as the Borel σ-algebra on Ω.

All intervals discussed in items (i) to (iv) are Lebesgue measurable while
other sets are not.

The Lebesgue measure is the conventional mean of assigning lengths, areas,
and volumes to subsets of three-dimensional Euclidean space and in formal
Cartesian spaces to objects with higher dimensional volumes. Sets to which
generalized volumes36 can be assigned are called Lebesgue measurable and
the measure or the volume of such a set A is denoted by λ(A). The Lebesgue
measure on Rn has the following properties:

(1) If A is a Lebesgue measurable set, then λ(A) ≥ 0.
(2) If A is a Cartesian product of intervals, I1 ⊗ I2 ⊗ . . . ⊗ In, then A is

Lebesgue measurable and λ(A) = |I1| · |I2| · . . . · |In|.
(3) If A is Lebesgue measurable, its complement Ac is so too.
(4) If A is a disjoint union of countably many disjoint Lebesgue measurable

sets, A =
⋃
k Ak, then A is Lebesgue measurable and λ(A) =

∑
k λ(Ak).

(5) If A and B are Lebesgue measurable and A ⊂ B, then λ(A) ≤ λ(B)
holds.

(6) Countable unions and countable intersections of Lebesgue measurable
sets are Lebesgue measurable.37

(7) If A is an open or closed subset or Borel set of Rn, then A is Lebesgue
measurable.

(8) The Lebesgue measure is strictly positive on non-empty open sets, and
so its support is the entire Rn.

(9) If A is a Lebesgue measurable set with λ(A) = 0, called a null set, then
every subset of A is also a null set, and every subset of A is measurable.

(10) If A is Lebesgue measurable and r is an element of Rn, then the transla-
tion of A by r that is defined by A+ r = {a+ r : a ∈ A} is also Lebesgue
measurable and has the same measure as A.

(11) If A is Lebesgue measurable and δ > 0, then the dilation of A by δ
defined by δA = {δr : r ∈ A} is also Lebesgue measurable and has
measure δnλ(A).

36 We generalize volume here to arbitrary dimension n: The generalized volume for
n = 1 is a length, for n = 2 an area, for n = 3 a (conventional) volume and for
arbitrary dimension n a cuboid in n-dimensional space.
37 This is not a consequence of items (3) and (4): A family of sets, which is closed
under complements and countable disjoint unions, need not be closed under countable
non-disjoint unions. Consider, for example, the set

{

∅, {1, 2}, {1, 3}, {2, 4}, {3, 4}, {1, 2, 3, 4}
}

.
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(12) In generalization of items (10) and (11), if L is a linear transformation
and A is a measurable subset of Rn, then T (A) is also measurable and
has the measure | det(T )|λ(A).

All twelve items listed above can be succinctly summarized in one lemma:

The Lebesgue measurable sets form a σ-algebra on Rn containing all
products of intervals, and λ is the unique complete translation-invariant
measure on that σ-algebra with

λ
(
[0, 1]⊗ [0, 1]⊗ . . .⊗ [0, 1]

)
= 1.

We conclude this section on Borel σ-algebra and Lebesgue measure by men-
tioning a few characteristic and illustrative examples:

• Any closed interval [a, b] of real numbers is Lebesgue measurable, and its
Lebesgue measure is the length b − a. The open interval ]a, b[ has the
same measure, since the difference between the two sets consists of the
two endpoint a and b only and has measure zero.

• Any Cartesian product of intervals [a, b] and [c, d] is Lebesgue measurable
and its Lebesgue measure is (b− a) · (d− c) the area of the corresponding
rectangle.

• The Lebesgue measure of the set of rational numbers in an interval of the
line is zero, although this set is dense in the interval.

• The Cantor set38 is an example of an uncountable set that has Lebesgue
measure zero.

• Vitali sets are examples of sets that are not measurable with respect to
the Lebesgue measure.

In the forthcoming sections we make use of the fact that the continuous
sets on the real axes become countable and Lebesgue measurable if rational
numbers are chosen as beginnings and end points of intervals. Hence, we can
work with real numbers with almost no restriction for practical purposes.

38 The Cantor set is generated from the interval [0, 1] through consecutively taking
out the open middle third: [0, 1]→ [0, 1

3
]∪ [ 2

3
, 1]→ [0, 1

9
]∪ [ 2

9
, 1
3
]∪ [ 2

3
, 7
9
]∪ [ 8

9
, 1]→ . . ..

An explicit formula for the set is: C = [0, 1]\⋃∞
m=1

⋃(3m−1−1)
k=0

]

3k+1
3m , 3k+2

3m

[

.
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1.8 Limits and integrals

Before we can discuss now continuous random variables and their distribu-
tions, we need to mention a few technicalities concerning the definition of
limits and the methods of integration. Limits of sequences are required for
problems convergence of and for approximations to random variables. Taking
limits of stochastic variables often needs some care and problems might arise
because there is ambiguity in the definition of limits and therefore precise
definitions are required. We introduced already functions like the probabil-
ity mass function (pmf) and the cumulative probability distribution function
(cdf) of discrete random variables that contain peaks and steps, which cannot
be subjected to conventional Riemannian integration.

1.8.1 Limits of series of random variables

A sequence of random variables, Xn, is defined on a probability space Ω and
it is assumed to have the limit

X = lim
n→∞

Xn . (1.41)

The probability space Ω, we assume now, has elements ω which have a prob-
ability density p (ω). Four different definitions of the limit are common in
probability theory [93, pp.40,41].

Almost certain limit : The series Xn converges almost certainly to X if for
all ω except a set of probability zero

X (ω) = lim
n→∞

Xn(ω) . (1.42)

is fulfilled and each realization of Xn converges to X .
Limit in the mean: The limit in the mean or the mean square limit of a

series requires that the mean square deviation of Xn(ω) from X (ω) vanishes
in the limit and the condition is

lim
n→∞

∫

Ω

dω p (ω)
(
Xn(ω)−X (ω)

)2
≡ lim

n→∞

〈
(Xn −X )2

〉
= 0 . (1.43)

The mean square limit is the standard limit in Hilbert space theory and it is
commonly used in quantum mechanics.

Stochastic limit : The limit in probability also called the stochastic limit
fulfils the condition: X is the stochastic limit if for any ε > 0 the relation

lim
n→∞

P (|Xn − X| > ε) = 0 . (1.44)
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Limit in distribution: Probability theory uses also a weaker form of conver-
gence than the previous three limits, the limit in distribution, which requires
that for any continuous and bounded function f(x) the relation

lim
n→∞

〈f(Xn)〉
d−→ 〈f(X )〉 (1.45)

holds, where the symbol “
d−→” stand for convergence in distribution. This

limit, for example, is particularly useful for characteristic functions (sec-

tion 2.2.3), φ(s) =
∫ +∞
−∞ exp(ı

.
ıxs)f(x) dx: If two characteristic functions ap-

proach each other, the probability density of Xn converges to that of X .
Finally we mention stringent conditions on convergence of functions that

will be also important for probability distributions. We distinguish pointwise

convergence and uniform convergence. for functions. A series of functions
f0(x), f1(x), f2(x), . . . is defined on some interval I ∈ R. The series converges
pointwise to the function f(x) if the limit

lim
n→∞

fn(x) = f(x) ∀ x ∈ I , (1.46)

is fulfilled for every point x. It is easily verified that a series of functions can
be written as a sum of functions whose convergence is to be tested:

f(x) = lim
n→∞

fn(x) = lim
n→∞

n∑

i=1

gi(x) ,

gi(x) = ϕi−1(x) − ϕi(x) and hence fn(x) = ϕ0(x) − ϕn(x) ,

(1.47)

because
∑n

i=1 gi(x) expressed in the functions ϕi is a telescopic sum. An
example of a series of curves with ϕn(x) = (1 + nx2)−1 and accordingly
fn(x) = nx2

/
(1+nx2) showing pointwise convergence is shown in figure 1.15.

It is easily verified that the limit takes on the form:

f(x) = lim
n→∞

nx2

1 + nx2
=

{
1 for x 6= 0

0 for x = 0
.

All functions fn(x) are continuous on the interval ] − ∞,∞ [ but the limit
f(x) is discontinuous at x = 0. An interesting historical detail is mentioned
here: In 1821 the famous mathematician Augustin Louis Cauchy gave the
wrong answer to the question whether or not infinite sums of continuous
functions are necessarily continuous and his obvious error had been corrected
only thirty years later. It is easy to visualize that pointwise convergence is
compatible with discontinuities in the convergence limit: At two neighboring
points the convergent series may have very different limits. There are many
examples of series of functions, which have a discontinuous infinite limit, two
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further cases that we shall need later on are fn(x) = xn with I = [0, 1] ∈ R

and fn(x) = cos(πx)2n on I = ]−∞,∞ [∈ R.
Uniform convergence is the stronger condition, which guarantees among

other things that the limit of a series of continuous functions is continuous.
It can be defined in terms of equation (1.47): The sum fn(x)

∑n
i=1 gi(x) with

limn→∞ fn(x) = f(x) and x ∈ I is uniformly convergent in the interval x ∈ I
for every given positive error bound ǫ if there exists a value ν ∈ N such that
for any ν ≥ n the relation |f(x) − fν(x)| < ǫ is fulfilled for all x ∈ I. In
compact form the convergence condition may be expressed by

lim
n→∞

sup{|fn(x) − f(x)|} = 0 ∀ x ∈ I . (1.48)

A simple but illustrative example is given by the power series on the unit
interval, f(x) = limn→∞ xn with x ∈ [0, 1] which converges pointwise to the
discontinuous function f(x) = 1 forx = 1and 0 otherwise. A slight modifica-
tion to f(x) = limn→∞ xn/n leads to a uniformly converging series, because
f(x) = 0 is now valid for the entire domain [0, 1] (including the point x = 1).

1.8.2 Stieltjes integration

Here we provide a short repetition of some generalizations of the conventional
Riemann integral, which are important in probability theory. The sketch pre-
sented in figure 1.16 compares the Riemann and the Lebesgue approach to
integration. Stieltjes integration is a generalization of Riemann or Lebesgue
integration, which allows for the calculation of integrals over step functions as
they occur, for example, in the context of properties derived from cumulative
probability distributions. The Stieltjes integral is commonly written in the
form ∫ b

a

g(x) dh(x) . (1.49)

Herein g(x) is the integrand, h(x) is the integrator, and the conventional Rie-
mann integral is retained for h(x) = x. The integrator can be visualized best
as a weighting function for the integrand. In case g(x) and h(x) are contin-
uous and continuously differentiable the Stieltjes integral can be resolved by
partial integration:
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Fig. 1.15 Pointwise convergence. The upper part shows the convergence of the
series of functions fn(x) = nx2/(1 + nx2) to the limit limn→∞ fn(x) = f(x) on the
real axis I = ]−∞,∞ [. The lower plot illustrates the convergence as a function of n
at the point x = 1. Color code of the upper plot: n=1, black; n=2, violet; n=4, blue;
n=8, chartreuse; n=16, yellow; n=32, orange; and n=128, red.

∫ b

a

g(x) dh(x) =

∫ b

a

g(x)
dh(x)

dx
dx =

=
(
g(x)h(x)

) ∣∣∣
b

x=a
−
∫ b

a

dg(x)

dx
h(x) dx =

= g(b)h(b)− g(a)h(a) −
∫ b

a

dg(x)

dx
h(x) dx .
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Fig. 1.16 Comparison of Riemann and Lebesgue integrals. In the conven-
tional Riemannian-Darboux integration† the integrand is embedded between an up-
per sum (light blue) and a lower sum (dark blue) of rectangles. The integral exists iff
the upper sum and the lower sum converge to the integrand in the limit ∆d→ 0. The
Lebesgue integral can be visualized as an approach to calculating the area enclosed
by the x-axis and the integrand through partitioning it into horizontal stripes (red)

and considering the limit ∆d → 0. The definite integral
∫ b
a
f(x) dx is confining the

integrand to a closed interval: [a, b] or a ≤ x ≤ b.

† The concept of representing the integral by the convergence of two sums is due to
the French mathematician Gaston Darboux. A function is Darboux integrable iff it
is Riemann integrable, and the values of the Riemann and the Darboux integral are
equal in case they exist.

The integrator h(x), however, may also be a step function F (x). For g(x)
being continuous and F (x) making jumps at the points x1, . . . , xn ∈ ]a, b [
with the heights ∆F1, . . . , ∆Fn ∈ R, and

∑n
i=1∆Fn ≤ 1, respectively, the

Stieltjes integral is of the form

∫ b

a

g(x) dF (x) =
n∑

i=1

g(xi)∆Fi , (1.50)

where the limitation of
∑
i∆Fi refers to the normalization of probabilities.

With g(x) = 1, b = x and in the limit lima→−∞ the integral becomes identical
with the (discrete) cumulative probability distribution function (cdf).
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Riemann-Stieltjes integration is used in probability theory for the com-
putation of functions of random variables, for example, for the computation
of moments of probability densities (section 2.1). If F (x) is the cumulative
probability distribution of a random variable X for the discrete case, the
expected value (see section 2.1) for any function g(X ) is obtained from

E
(
g(X )

)
=

∫ +∞

−∞
g(x) dF (x) =

∑

i

g(xi)∆Fi .

If the random variable X has a probability density f(x) = dF (x)/dx with
respect to the Lebesgue measure, continuous integration can be used

E
(
g(X )

)
=

∫ +∞

−∞
g(x) f(x) dx .

Important special cases are the moments: E(Xn) =
∫ +∞
−∞ xn dF (x).

1.8.3 Lebesgue integration

Lebesgue integration differs from the conventional integration in two aspects:
The basis are set theory and measure theory and the integrand is partitioned
in horizontal segments whereas Riemannian integration makes use of vertical
slices. An important difference for nonnegative functions – like probability
functions – between the two integration methods can be visualized in three
dimensional space: The volume below a surface given by the function f(x, y)
is measured by summation of the volumes of cuboids with squares of edge
length ∆d, whereas the Lebesgue integral is summing the volumes of layers
with thickness ∆d between constant level sets. Every continuous bounded
function on a compact finite interval, f ∈ C[a, b], is Riemann integrable
and also Lebesgue integrable, and the Riemann and the Lebesgue integrals
coincide. The Lebesgue integral is a generalization of the Riemann integral in
the sense that certain functions may be Lebesgue integrable in cases where
the Riemann integral does not exist. The opposite situations might occur
with improper Riemann integrals:39 Partial sums with alternate signs may
converge for the improper Riemann integral whereas Lebesgue integration
leads to divergence as shown in case of the alternate harmonic series. The

39 An improper integral is the limit of a definite integral in a series in which the
endpoint of the interval of integration approaches either a finite number b at which
the integrand diverges or ±∞:

∫ b

a

f(x) dx = lim
ε→+0

∫ b−ε

a

f(x) dx or lim
b→∞

∫ b

a

f(x) dx and lim
a→−∞

∫ b

a

f(x) dx .
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Lebesgue integral can be generalized by the Stieltjes integration technique
very much in the same way as the Riemann integral does.

Lebesgue theory of integration assumes the existence of a probability space
defined by the triple (Ω,F , µ), which represents the sample space Ω, a σ-
algebra F of subsets A ∈ Ω, and a probability measure µ ≥ 0 satisfying
µ(Ω) = 1, respectively. The construction of the Lebesgue integral is similar
to the construction of the Riemann integral: The shrinking rectangles (or
cuboids in higher dimensions) of Riemannian integration is replaced by hori-
zontal stripes of shrinking height that can be represented by simple functions.
Lebesgue integrals on A over nonnegative functions,

∫

Ω

f dµ with f : (Ω,F , µ)→ (R≥0,B, λ) , (1.51)

are defined for measurable functions f , which fulfill

f−1
(
[a, b]

)
∈ Ω for all a < b . (1.52)

This condition is equivalent to the requirement that the pre-image of any
Borel subset [a, b] of R is an element of the event system B. The set of mea-
surable functions is closed under algebraic operation and also closed under
certain pointwise sequential limits like

supk∈N fk , lim infk∈N fk or lim supk∈N fk ,

which are measurable if the sequence of functions (fk)k∈N contains only mea-
surable functions.

The construction of an integral
∫
Ω
f dµ =

∫
Ω
f(x)µ(dx) is done in steps

and we begin with the introduction of an indicator function:

1A(x) =

{
1 iff x ∈ A
0 otherwise

, (1.53)

which provides a possibility to define the integral over A ∈ Bn by

∫

A

f(x) dx :=

∫
1A(x) f(x) dx .

The indicator function 1A assigns a volume to Lebesgue measurable sets A
by setting f ≡ 1 ∫

1A dµ = µ(A) ,

which is the Lebesgue measure µ(A) = λ(A) for a mapping λ : B → R.
Next we define simple functions, which are understood as finite linear

combinations of indicator functions g =
∑

j αj 1Aj and they are measurable
if the coefficients αj are real numbers and the sets Aj are measurable subsets
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Fig. 1.17 Lebesgue integration of general functions. Lebesgue integration of
general functions, i.e. functions with positive and negative stretches, is performed
in steps: (i) The integral I =

∫

b
a
fdµ is split into two parts, I+ =

∫

b
a
f+ dµ (blue)

and I− =
∫ b
a
f− dµ (yellow) function, (ii) the positive part f+(x) := max{0, f(x)} is

Lebesgue integrated like a nonnegative function yielding I+ =
∫

b
a
f+ dµ and the neg-

ative part f−(x) := max{0,−f(x)} is first mirrored at the x-axis and then Lebesgue

integrated like a nonnegative function yielding I− =
∫ b
a
f− dµ, and (iii) the value of

the integral is obtained as I = I+ − I−.

of Ω. For nonnegative coefficients αj the linearity property of the integral
leads to a measure for nonnegative simple functions:

∫ 
∑

j

αj 1Aj


 dµ =

∑

j

αj

∫
1Aj dµ =

∑

j

αj µ(Aj) .

Often a simple function can be written in several ways as a linear combination
of indicator functions but the value of the integral will necessarily be the same.
Sometimes care is needed for the construction of a real-valued simple function
g =

∑
j αj1Aj in order to avoid undefined expressions of the kind ∞−∞.

Choosing αi = 0 implies that αi µ(Ai) = 0 because 0 · ∞ = 0 by convention
in measure theory.

An arbitrary nonnegative function g : (Ω,F , µ) → (R≥0,B, λ) is measur-
able iff there exists a sequence of simple functions (gk)k∈N that converges
pointwise40 and growing monotonously to g: g = limk→∞ gk. The Lebesgue

40 Pointwise convergence of a sequence of functions {fn}, limn→∞ fn = f pointwise
is fulfilled iff limn→∞ fn(x) = f(x) for every x in the domain (see figure 1.15 and
section 1.8.1).
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integral of a nonnegative and measurable function g is defined by

∫

Ω

g dµ = lim
k→∞

∫

Ω

gk dµ (1.54)

with gk being simple functions that converge pointwise and monotonously
towards g. The limit is independent of the particular choice of the functions
gk. Such a sequence of simple functions is easily visualized, for example, by the
bands below the function g(x) in figure 1.16: The band widths ∆d decrease
and converge to zero as the index increases, k →∞.

The extension to general functions with positive and negative value do-
mains is straightforward. As shown in figure 1.17 the function to be inte-
grated, f(x) : [a, b]→ R, is split into two regions that many consist of disjoint
domains:

f+(x) := max{0, f(x)}
f−(x) := max{0,−f(x)} ,

which are considered separately. The function is Lebesgue integrable on the
entire domain [a, b] iff both f+(x) and f−(x) are Lebesgue integrable and
then we have

∫ b

a

f(x) dx =

∫ b

a

f+(x) dx −
∫ b

a

f−(x) dx , (1.55)

and this yields precisely the same result as obtained for the Riemann integral.
Lebesgue integration readily yields the value for the integral of the absolute
value of the function

∫ b

a

|f(x)| dx =

∫ b

a

f+(x) dx +

∫ b

a

f−(x) dx . (1.56)

Whenever the Riemann integral exists it is identical with the Lebesgue inte-
gral and for practical purposes the calculation by the conventional technique
of Riemannian integration is to be preferred since much more experience is
available.

Finally, we consider cases where Riemann and Lebesgue integration yield
different results. For Ω = R and the Lebesgue measure λ holds that functions,
which are Riemann integrable on a compact and finite interval [a, b], are
Lebesgue integrable too and the values of both integrals are the same, but
the inverse is not true: Not every Lebesgue integrable function is Riemann
integrable. As an example we consider the Dirichlet step function, D(x),
which is the characteristic function of the rational numbers and assumes the
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value 1 for rational x and the value 0 for irrational x:41

D(x) =

{
1 , if x ∈ Q ,

0 , otherwise ,
or D(x) = lim

k→∞

(
lim
n→∞

cos2n(k!π x)
)
.

D(x) has no Riemann but a Lebesgue integral. The proof is straightforward:

D(x) is lacking Riemann integrability for every arbitrarily small interval:
Each partitioning S of the integration domain [a, b] into intervals [xk−1, xk]
leads to parts that contain necessarily at least one rational and one irrational
number. Hence the lower Darboux sum,

Σlow(S) =

n∑

k=1

(xk − xk−1) · inf
xk−1<x<xk

D(x) = 0 ,

vanishes because the infimum is always zero, and the upper Darboux sum,

Σhigh(S) =
n∑

k=1

(xk − xk−1) · sup
xk−1<x<xk

D(x) = b− a ,

is the length of the integration interval, b− a =
∑

k(xk − xk−1), because the
supremum is always one and the summation runs over all partial intervals.
Since Riemann integrability requires

supS Σlow(S) =

∫ b

a

f(x)dx = infS Σhigh(S)

D(x) cannot be Riemann integrated.
D(x), on the other hand, has a Lebesgue integral for every interval: D(x) is a
nonnegative simple function and therefore we can write the Lebesgue integral
over an interval S through sorting into irrational and rational numbers:

∫

S

D dλ = 0 · λ(S ∩ R\Q) + 1 · λ(S ∩Q) ,

with λ being the Lebesgue measure. The evaluation of the integral is straight-
forward. The first term vanishes since multiplication by zero yields zero no
matter how large λ(S∩R\Q) is – we recall that 0 ·∞ is zero by the convention
of measure theory – and the second term is also zero as λ(S∩Q) is zero since
the set of rational numbers, Q, is countable. Hence we have

∫
S
D dλ = 0. ⊓⊔

Another difference between Riemann and Lebesgue integration, however, can
occur when the integration is extended to infinity in the improper Riemann
integral. Then, the positive and negative contributions may cancel locally

41 It is worth noticing that the highly irregular, nowhere continuous Dirichlet function
D(x) can be formulated as the (double) pointwise convergence limit of a trigonometric
function.
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Fig. 1.18 The alternating harmonic series. The alternating harmonic step func-
tion, h(x) = nk = (−1)k+1/k with (k − 1) ≤ x < k and nk ∈ N, has an improper
Riemann integral since

∑∞
k=1 nk = ln 2. It is not Lebesgue integrable because the

series
∑∞

k=1 |nk| diverges.

in the Riemann summation, whereas divergence may occur in both f+(x)
and in f(x) since all positive parts and all negative parts are added first
in the Lebesgue integral. An example is the improper Riemann integral,∫∞
0 cosxdx, which has a limit inferior, lim infn→∞ xn = −1, and a limit
superior, lim supn→∞ xn = +1, whereas the corresponding Lebesgue integral
does not exist.

A typical example of a function that has an improper Riemann integral
but is not Lebesgue integrable is the step function with alternatingly positive
and negative stretches of size 1

n , (1,− 1
2 ,

1
3 ,− 1

4 , . . .) (see figure 1.18):

The function h(x) = (−1)k+1/k with (k− 1) ≤ x < k and k ∈ N on Riemann
integration yields a series of contributions of alternating sign that has a finite
infinite sum ∫ ∞

0

h(x) dx = 1− 1

2
+

1

3
− . . . = ln 2 ,

whereas Lebesgue integrability of h requires
∫
R≥0
|h| dλ < ∞ and this is not

fulfilled since both f+ and f− diverge as the harmonic series,
∑∞
k=1 k

−1, does.
The proof is straightforward if one uses Leonhard Euler’s result that the series
of reciprocal prime number diverges:
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∑

p prime

1

p
=

1

2
+

1

3
+

1

5
+

1

7
+

1

11
+

1

13
+ . . . = ∞ ,

∑

o odd

1

o
= 1 +

1

3
+

1

5
+

1

7
+

1

9
+

1

11
+

1

13
+ . . . >

∑

p prime

1

p
,

1 +
∑

e even

1

e
= 1 +

1

2
+

1

4
+

1

6
+

1

8
+

1

10
+

1

12
+ . . . >

∑

o odd

1

o
.

Since ∞− 1 =∞ both partial sums
∑
o odd

1
o and

∑
e even

1
e and diverge. ⊓⊔

The first case discussed here – no Riemann integral but Lebesgue integrability
– is the more important issue since it provides a proof that the set of rational
numbers, Q is of Lebesgue measure zero.

Finally, we introduce the Lebesgue-Stieltjes integral in a way that allows
for summarizing the most important results of this section. For each right-
hand continuous and monotonously increasing function F : R → R exists a
uniquely determined Lebesgue-Stieltjes measure λF that fulfils

λF
(
(a, b]

)
= F (b) − F (a) for all (a, b] ⊂ R

Such functions F : R → R – being righthand continuous and monotonously
increasing – are therefore called measure generating. The Lebesgue integral
of a λF integrable function f is called Lebesgue-Stieltjes integral

∫

A

f dλF with A ∈ B (1.57)

being Borel measurable. Let F be the identity function on R,42

F = id : R→ R, id(x) = x ,

then the corresponding Lebesgue-Stieltjes measure is the Lebesgue measure
itself: λF = λid = λ. For proper Riemann integrable functions f we have
stated that the Lebesgue integral is identical with the Riemann integral:

∫

[a,b]

f dλ =

∫ b

a

f(x) dx .

The interval [a, b] = a ≤ x ≤ b is partitioned into a sequence

σn = (a = x
(n)
0 , x

(n)
1 , . . . , x(n)r = b)

42 The identity function id(x) := x maps a domain, for example [a, b], point by point
onto itself.
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where the superscript ’(n)’ indicates a Riemann sum with |σn| → 0 and
the Riemann integral on the righthand side is replaced by the limit of the
Riemann summation:

∫

[a,b]

f dλ = lim
n→∞

r∑

k=1

f(x
(n)
k−1)

(
x
(n)
k − x(n)k−1

)
=

= lim
n→∞

r∑

k=1

f(x
(n)
k−1)

(
id(x

(n)
k )− id(x

(n)
k−1)

)
.

The Lebesgue measure λ has been introduced above as the special case F = id
and therefore the Stieltjes-Lebesgue integral is obtained by replacing λ by λF
and ’id’ by F

∫

[a,b]

f dλF = lim
n→∞

r∑

k=1

f(x
(n)
k−1)

(
F (x

(n)
k )− F (x(n)k−1)

)
.

The details of the derivation are found in [31, 208].
In summary, we define a Stieltjes-Lebesgue integral or F -integral by

F, g : R→ R, where the two functions F and f are partitioned on the interval
[a, b] by the sequence σ = (a = x0, x1, . . . , xr = b):

∑

σ

f dF :=

r∑

k=1

f(xk−1)
(
F (xk)− F (xk−1)

)
.

The function f is F-integrable on [a,b] if

b∫

a

f dF = lim
|σ|→0

∑

σ

f dF (1.58)

exists in R and then
∫ b
a f dF is called the Stieltjes-Lebesgue integral or F -

integral of f . In the theory of stochastic processes the Stieltjes-Lebesgue
integral is required for the formulation of the Itō integral, which is used
in Itō calculus applied to the integration of stochastic differential equations
(SDEs; section 3.4) [140, 141].
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1.9 Continuous random variables and distributions

Random variables on uncountable sets are completely characterized by a prob-
ability triple (Ω,F , P ). The triple is essentially the same as in the case of
discrete variables (section 1.6.1) except that the power set Π(Ω) has been
replaced by the event system F ⊂ Π(Ω). We recall that the powerset Π(Ω)
is too large for defining probabilities since it contains uncountably many sub-
sets or events A (figure 1.14). The sets in F are the Borel σ-algebras, they
are measurable, and they alone have probabilities. Accordingly, we are now
in the position to handle also probabilities on uncountable sets:

{ω|X (ω) ≤ x} ∈ F and P (X ≤ x) =
|{X (ω) ≤ x}|

|Ω| (1.59a)

{a < X ≤ b} = {X ≤ b} − {X ≤ a} ∈ F with a < b (1.59b)

P (a < X ≤ b) =
|{a < X ≤ b}|

|Ω| = FX (b) − FX (a) . (1.59c)

Equation (1.59a) contains the definition of a real-valued function X that
is called a random variable iff it fulfils P (X ≤ x) for any real number x,
equation (1.59b) is valid since F is closed under difference, and finally equa-
tion (1.59c) provides the basis for defining and handling probabilities on
uncountable sets. The three equations (1.59) together constitute the basis of
the probability concept on uncountable sample spaces that will be applied
throughout this book.

1.9.1 Densities and distributions

Random variables on uncountable sets Ω are commonly characterized by
probability density functions (pdf). The probability density function – or den-
sity for short – is the continuous analogue to the probability mass function
(pmf). A density is a function f on R = ]−∞,+∞[ , u→ f(u), which satisfies
the two conditions:43

(i) ∀u : f(u) ≥ 0 , and

(ii)

∫ +∞

−∞
f(u) du = 1 .

(1.60)

43 From here on we shall omit the random variable as subscript and simply write
f(x) or F (x) unless a nontrivial specification is required.
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Now we can define a class of random variables44 on general sample spaces: X
is a function on Ω : ω → X (ω) whose probabilities are prescribed by means
of a density function f(u). For any interval [a, b] the probability is given by

P (a ≤ X ≤ b) =

∫ b

a

f(u) du . (1.61)

If A is the union of not necessarily disjoint intervals – some of which may be
even infinite – the probability can be derived in general from the density

P (X ∈ A) =

∫

A

f(u) du ,

in particular, A can be split in disjoint intervals, A =
⋃k
j=1[aj , bj] and then

the integral can be rewritten as

∫

A

f(u) du =

k∑

j=1

∫ bj

aj

f(u) du .

For the interval A = ]−∞, x] we define the cumulative probability distribution

function (cdf) F (x) of the continuous random variable X

F (x) = P (X ≤ x) =

∫ x

−∞
f(u) du .

If f is continuous then it is the derivative of F as follows from the fundamental
theorem of calculus

F ′(x) =
dF (x)

dx
= f(x).

If the density f is not continuous everywhere, the relation is still true for
every x at which f is continuous.

If the random variable X has a density, then we find by setting a = b = x

P (X = x) =

∫ x

x

f(u) du = 0

reflecting the trivial geometric result that every line segment has zero area.
It seems somewhat paradoxical that X (ω) must be some number for every
ω whereas any given number has probability zero. The paradox is resolved
by looking at countable and uncountable sets in more depth as we did in
sections 1.5 and 1.6.3.

As an illustrative example for continuous probability functions we present
here the normal distribution, which is of primary importance in probability
theory for two reasons: (i) It is mathematically simple and well behaved, and

44 Random variables having a density are often called continuous in order to distin-
guish them from discrete random variables defined on countable sample spaces.
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Fig. 1.19 Normal density and distribution. In the plots the normal distribution,

N (µ, σ), is shown in from of the probability density f(x) = exp
(

−(x− µ)2/(2σ2)
)

/

(
√
2π σ) and the probability distribution F (x) =

(

1+erf
(

(x−µ)/
√
2σ2

) /

2
)

where

’erf’ represents the error function. Choice of parameters: µ = 6 and σ = 0.5 (black),
0.65 (red), 1 (green), 2 (blue) and 4 (yellow).
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(ii) all distributions converge to the normal distribution in the limit of large
sample numbers as expressed by the central limit theorem (subsection 2.3.6).
The density of the normal distribution is a Gaussian function named after
the German mathematician Carl Friedrich Gauß and is also called symmetric
bell curve.

N (x;µ, σ2) : f(x) =
1√
2πσ2

exp

(
− (x− µ)2

2 σ2

)
, (1.62)

F (x) =
1

2

(
1 + erf

( x− µ√
2σ2

))
. (1.63)

Herein ’erf’ is the error function.45 This function and its complement, ’erfc’,
are defined by

erf(x) =
2√
π

∫ x

0

e−z
2

dz and erfc(x) =
2√
π

∫ ∞

x

e−z
2

dz

The two parameters of the normal distribution, µ and σ, are the expectation
value and the mean deviation of a normally distributed random variable.

Although the central limit theorem will be discussed separately in sec-
tion 2.3.6, we present here an example for the convergence of a probability
distribution towards the normal distribution we are already familiar with: the
rolling dice problem extended to n dice. A collection of n dice is thrown si-
multaneously and the total score of all dice together is recorded (figure 1.20).
The probability of a total score of k points obtained through rolling n dice
with s faces can be calculated by means of combinatorics:

fs,n(k) =
1

sn

⌊ k−n
s ⌋∑

i=0

(−1)i
(
n

i

)(
k − s i− 1

n− 1

)
(1.64)

The results for small values of n and ordinary dice (s = 6) are illustrated
in Fig. 1.20. The convergence to a continuous probability density is nicely
illustrated. For n = 7 the deviation from a the Gaussian curve of the normal
distribution is hardly recognizable.

Sometimes it is useful to discretize a density function in order to yield
a set of elementary probabilities. The x-axis is divided up into m pieces
(figure 1.21), not necessarily equal and not necessarily small, and we denote
the piece of the integral on the interval ∆k = xk+1 − xk, i.e. between the
values u(xk) and u(xk+1) of the variable u, by

45 We remark that erf(x) and erfc(x) are not normalized in the same way as the
normal density: erf(x) + erfc(x) = 2√

π

∫∞
0

exp(−t2) dt = 1, but
∫∞
0

f(x)dx =
1
2

∫+∞
−∞ f(x)dx = 1

2
.
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Fig. 1.20 Convergence of the probability mass function for rolling n dice
to the normal density. The series of probability mass functions for rolling n dice,
fnD(k), begins with a pulse function f1D(k) = 1/6 for i = 1, . . . , 6 (n = 1), next
comes a tent function (n = 2), and then follows a gradual approach towards the
normal distribution, (n = 3, 4, . . .). For n = 7 we show the fitted normal distribution
(broken black curve) coinciding almost perfectly with f7D(k). Choice of parameters:
s = 6 and n = 1 (black), 2 (red), 3 (green), 4 (blue), 5 (yellow), 6 (magenta), and 7
(chartreuse).

pk =

∫ xk+1

xk

f(u) du , 0 ≤ k ≤ m− 1 , (1.65)

where the pk-values fulfil.

∀ k : pk ≥ 0 and

m−1∑

k=0

pk = 1 .

If we choose x0 = −∞ and xm = +∞ we are dealing with a partition that is
not finite but countable, provided we label the intervals suitably, for example
. . . , p−2, p−1, p0, p1, p2, . . .. Now we consider a random variable Y such that

P (Y = xk) = pk , (1.65’)

where we may replace xk by any value of x in the subinterval [xk, xk+1]. The
random variable Y can be interpreted as the discrete analogue of the random
variable X .

Making the intervals ∆k smaller increases the accuracy of the approxi-
mation through discretization and this procedure has a lot in common with
Riemann integration.
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

u

f
(u

)

Fig. 1.21 Discretization of a probability density. A segment [x0, xm] on
the u-axis is divided up into m not necessarily equal intervals and elementary
probabilities are obtained by integration. The curve shown here is the density of the
lognormal distribution lnN (ν, σ2):

f(u) = 1

u
√

2π σ2
e−(lnu−ν)2/(2σ2). The

red step function represents the discretized density. The hatched area is the proba-
bility p6 =

∫ x7

x6
f(u) du with the parameters ν = ln 2 and σ =

√
ln 2.

1.9.2 Continuous variables and independence

In the joint distribution function of the random vector ~V = (X1, . . . ,Xn)
independence is tantamount to factorizability:

F (x1, . . . , xn) = F1(x1) · . . . · Fn(xn) ,

where the Fj ’s are the marginal distributions of the random variables, the
Xj ’s (1 ≤ j ≤ n). As in the discrete case the marginal distributions are
sufficient to calculate joint distributions of independent random variables.

For the continuous case we can formulate the definition of independence
for sets S1, . . . , Sn forming a Borel family. In particular, when there is a joint
density function f(u1, . . . , un), we have
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P (X1 ∈ S1, . . . ,Xn ∈ Sn) =

∫

S1

· · ·
∫

Sn

f(u1, . . . , un) du1 . . . dun =

=

∫

S1

· · ·
∫

Sn

f1(u1) . . . fn(un) du1 . . . dun =

=

(∫

S1

f1(u1) du1

)
· . . . ·

(∫

Sn

fn(un) dun

)
,

where f1, . . . , fn are the marginal densities, for example

f1(u1) =

∫

S2

· · ·
∫

Sn

f(u1, . . . , un) du2 . . . dun , (1.66)

and eventually we find for the density case:

f(u1, . . . , un) = f1(u1) . . . fn(un) . (1.67)

As we have seen here, stochastic independence is the basis for factorization
of joint probabilities, distributions, densities, and other functions.

1.9.3 Probabilities of discrete and continuous variables

A comparison of the formalisms of probability theory on countable and un-
countable sample spaces closes this chapter. For this goal we repeat and
compare in table 1.4 the basic features of discrete and continuous proba-
bility distributions as they have been discussed in section 1.6.2 and 1.9.1,
respectively.

Discrete probability distribution are defined on countable sample spaces
and their random variables are discrete sets of events ω ∈ Ω, for example
sample points on an closed interval [a, b]:

{a ≤ X ≤ b} = {ω|a ≤ X ≤ b} .

If the sample space Ω is finite or countable infinite the exact range of X is a
set of real numbers wi

WX = {w1, w2, . . . , wn, . . .} with wk ∈ Ω ∀ k .

Introducing probabilities for individual events, pn = P (X = wn); wn ∈ WX
and P (X = x) = 0 if x /∈WX , yields

P (X ∈ A) =
∑

wn∈A
pn with A ∈ Ω

or, in particular,
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Table 1.4 Comparison of the formalism of probability theory on countable and un-
countable sample spaces.

Expression Countable case Uncountable case

Domain R1 wn, n = 1, 2, . . . −∞ < u < +∞
Probability P (X ∈ A); A ∈ Ω pn dF (u) = f(u) du

Interval P (x ≤ X ≤ b)
∑

a≤wn≤b pn
b
∫

a

f(u) du

PDF f(x) = P (X = x)

{

pn if x ∈WX

0 if x /∈WX
f(u) du

CDF F (x) = P (X ≤ x)
∑

wn≤x pn
x
∫

−∞
f(u) du

Expectation E(X )
∑

n pn wn

∞
∫

−∞
u f(u) du

with
∑

n pn |wn| <∞
∞
∫

−∞
|u| f(u) du <∞

P (a ≤ X ≤ b) =
∑

a≤wn≤b
pn . (1.26)

Two probability functions are in common use, the probability mass function
(pmf)

fX (x) = P (X = x)

{
pn if x = wn ∈ WX ,

0 if x 6=WX ,

and the cumulative distribution function (cdf)

FX (x) = Prob (X ≤ x) =
∑

wn≤x
pn ,

with two properties following form the property of probabilities:

lim
x→−∞

FX (x) = 0 and lim
x→+∞

FX (x) = 1 .

Continuous probability distributions are defined on uncountable, Borel
measurable sample spaces and their random variables X have densities. A
probability density function (pdf) is a mapping

f : R1 =⇒ R1
≥0 ,

which satisfies the two conditions:
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(i) f(u) ≥ 0 ∀ u ∈ R1 , and

(ii)

∫ +∞

−∞
f(u) du = 1 .

(1.68)

Random variables X are functions on Ω: ω =⇒ X (ω) whose probabilities are
derived from density functions f(u):

P (a ≤ X ≤ b) =

∫ b

a

f(u) du . (1.61)

As in the discrete case the probability functions come in two forms: (i) the
probability density function (pdf) defined above,

dF (u) = f(u) du ,

and (ii) the cumulative distribution function (cdf)

F (x) = P (X ≤ x) =

∫ x

−∞
f(u) du with

dF (x)

dx
= f(x)

provided the function f(x) is continuous.
Conventional thinking in terms of probabilities has been extended in two

important ways in the last two sections: (i) Handling of uncountable sets al-
lowed for definition of and calculation with probabilities when comparison by
counting is not possible and (ii) Lebesgue-Stieltjes integration provided an
extension of calculus to the step functions encountered with discrete proba-
bilities.



Chapter 2

Distributions, moments, and statistics

Make things as simple as possible but not simpler.
Albert Einstein 1950.

Abstract . The moments of probability distributions represent the link be-
tween theory and observations since they are readily accessible to measure-
ment. Generating functions looking rather abstract became important as
highly versatile concepts and tools for solving specific problems. The prob-
ability distributions, which are most important in application are reviewed.
Then the central limit theorem being the basis of the law of large numbers
is presented and the chapter is closed by discussing real world samples that
cover only a (small) part of sample space.

In this chapter we make an attempt to bring probability theory closer
to applications. Probability distributions and densities are used to calculate
measurable quantities like expectation values, variances, and higher moments.
The moments provide partial information on the probability distributions
since the full information would require a series expansion up to infinite
order.

2.1 Expectation values and higher moments

Random variables are accessible to analysis via their probability distributions.
In addition, straightforward information can be derived also from ensembles
defined on the entire sample spaceΩ. Complete coverage, of course, is an ideal
reference that can never be achieved in real situations. Samples collected in
observations or experiments are commonly much smaller than an exhaustive
collection. We begin here with a discussion of the theoretical reference and
introduce mathematical statistics afterwards. Most important are the first
two moments having a straightforward interpretation: The expectation value
E(X ) is the mean or average value of a distribution and the variance var(X )
or σ2(X ) measures the width of distributions.

73
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2.1.1 First and second moments

The most important example of an ensemble property is the expectation value

or mean value, E(X ) or 〈X 〉. We begin with a countable sample space Ω:

E(X ) =
∑

ω∈Ω
X (ω)P (ω) =

∑

n

vn pn . (2.1)

In the special case of a random variable X on N we have vn = n and find

E(X ) =

∞∑

n=0

n pn .

The expectation value (2.1) exists when the series converges in absolute val-
ues,

∑
ω∈Ω |X (ω)|P (ω) <∞. Whenever the random variable X is bounded,

which means that there exists a number m such that |X (ω)| ≤ m for all
ω ∈ Ω, then it is summable and in fact

E(|X |) =
∑

ω

|X (ω)|P (ω) ≤ m
∑

ω

P (ω) = m .

It is straightforward to show that the sum of two random variables, X + Y
is summable iff X and Y are summable:

E(X + Y) = E(X ) + E(Y) .

The relation can be extended to an arbitrary countable number of random
variables:

E

(
n∑

k=1

Xk
)

=

n∑

k=1

E(Xk) .

In addition, the expectation values fulfill the following relations E(a) = a,
E(aX ) = a · E(X ) which can be combined in

E

(
n∑

k=1

ak Xk
)

=
n∑

k=1

ak · E(Xk) . (2.2)

Accordingly, E(·) is a linear operator .
For a random variable X on an arbitrary sample space Ω the expectation

value may be written as an abstract integral on Ω or as an integral over R

provided the density f(u) exists:

E(X ) =

∫

Ω

X (ω) dω =

∫ +∞

−∞
u f(u) du . (2.3)
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It is worth to reconsider the discretization of a continuous density (figure 1.21)
in this context: The discrete expression for the expectation value is based
upon pn = P (Y = xn) as outlined in equations (1.65) and (1.65’),

E(Y) =
∑

n

xn pn ≈ E(X ) =

∫ +∞

−∞
uF (u) du ,

and approximates the exact value similarly as the Darboux sum does in case
of a Riemann integral.

For two or more variables, for example ~V = (X ,Y) described by a joint
density f(u, v), we have

E(X ) =

∫ +∞

−∞
u f(u, ∗) du and E(Y) =

∫ +∞

−∞
v f(∗, v) dv ,

where f(u, ∗) =
∫ +∞
−∞ f(u, v) dv and f(∗, v) =

∫ +∞
−∞ f(u, v) du are the marginal

densities.
The expectation value of the sum of the variables, X +Y, can be evaluated

by iterated integration:

E(X + Y) =

∫ +∞

−∞

∫ +∞

−∞
(u+ v) f(u, v) du dv =

=

∫ +∞

−∞
u du

(∫ +∞

−∞
f(u, v) dv

)
+

∫ +∞

−∞
v dv

(∫ +∞

−∞
f(u, v) du

)
=

=

∫ +∞

−∞
u f(u, ∗) du +

∫ +∞

−∞
v f(∗, v) dv =

= E(X ) + E(Y) ,

which establishes the previously derived expression.
The multiplication theorem of probability theory requires that the two

variables X and Y are independent and summable and this implies for the
discrete and the continuous case,1

E(X · Y) = E(X ) ·E(Y) and (2.4a)

E(X · Y) =

∫ +∞

−∞

∫ +∞

−∞
u v f(u, v) du dv =

=

∫ +∞

−∞
u f(u, ∗) du

∫ +∞

−∞
v f(∗, v) dv =

= E(X ) ·E(Y) , (2.4b)

1 A proof is found in [34, pp.164-166].
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respectively. The multiplication theorem is easily extended to any finite num-
ber of independent and summable random variables:

E(X1, . . . ,Xn) = E(X1) · . . . ·E(Xn) . (2.4c)

Let us now consider the expectation values of special functions of random
variables, in particular their powers Xn, which give rise to the raw moments

of the probability distribution, µ̂r. For a random variable X we distinguish
the r-th moments E(X r) and the so-called centered moments2 µr = E(X̃ r)
referring to the random variable

X̃ = X − E(X ) .

Clearly, the first raw moment is the expectation value and the first centered
moment vanishes, E(X̃ ) = µ1 = 0. Often the expectation value is denoted
by µ = µ̂1 = E(X ) = 〈X 〉, notations that we shall use too for the sake of
convenience but it is important not to confuse µ and µ1.

In general, a moment is defined about some point a by means of the random
variable

X (a) = X − a .

For a = 0 we obtain the raw moments

µ̂r = αr = E(X r) (2.5)

whereas a = E(X ) yields the centered moments.
The general expressions for the raw r-th moments and centered moments

as derived from the density f(u) are

E(X r) = µ̂r(X ) =

∫ +∞

−∞
ur f(u) du and (2.6a)

E(X̃ r) = µr(X ) =

∫ +∞

−∞
(u− µ)r f(u) du . (2.6b)

The second centered moment is called the variance, var(X ) or σ2(X ), and
its positive square root is the standard deviation σ(X ). The variance is always
a non-negative quantity as can be easily shown. Further we can derive:

2 Since the moments centered around the expectation value will be used more fre-
quently than the raw moments, we denote them by µ and the raw moments by µ̂.
The r-th moment of a distribution is also called the moment of order r.
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σ2(X ) = E(X̃ 2) = E

((
X − E(X )

)2)
=

= E
(
X 2 − 2X E(X ) + E(X )2

)
=

= E(X 2) − 2E(X )E(X ) + E(X )2 =

= E(X 2) − E(X )2 .

(2.7)

If E(X 2) is finite, than E(|X |) is finite too and fulfils the inequality

E(|X |)2 ≤ E(X 2) ,

and since E(X ) ≤ E(|X |) the variance is necessarily a non-negative quantity,
σ2(X ) ≥ 0.

If X and Y are independent and have finite variances, then we obtain

σ2(X + Y) = σ2(X ) + σ2(Y) ,

as follows readily by simple calculation:

E
(
(X̃ + Ỹ)2

)
= E

(
X̃ 2 + 2 X̃ Ỹ + Ỹ2

)
=

= E
(
X̃ 2
)
+ 2E(X̃ )E(Ỹ) + E

(
Ỹ2
)

= E
(
X̃ 2
)
+ E

(
Ỹ2
)
.

Here we use the fact of vanishing first centered moments: E(X̃ ) = E(Ỹ) = 0.
For two general – non necessarily independent – random variables X and

Y, the Cauchy-Schwarz inequality holds for the mixed expectation value:

E(XY)2 ≤ E(X 2)E(Y2) . (2.8)

If both random variables have finite variances, the covariance is defined by

cov(X ,Y) = σ2(X ,Y) = E
((
X − E(X )

)(
Y − E(Y)

))
=

= E
(
XY − X E(Y) − E(X )Y + E(X )E(Y)

)
=

= E(XY) − E(X )E(Y) .

(2.9)

The covariance cov(X ,Y) and the coefficient of correlation ρ(X ,Y),

cov(X ,Y) = E(XY) − E(X )E(Y) and ρ(X ,Y) =
cov(X ,Y)
σ(X )σ(Y) , (2.9’)

are a measure of correlation between the two variables. As a consequence of
the Cauchy-Schwarz inequality we have −1 ≤ ρ(X ,Y) ≤ 1. If covariance and
correlation coefficient are equal to zero, the two random variables X and Y
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are uncorrelated. Independence implies lack of correlation but the latter is in
general the weaker property (section 2.3.4).

In addition to the expectation value two more quantities are used to char-
acterize the center of probability distributions (figure 2.1): (i) The median µ̄
is the value at which the number of points of a distribution at lower values of
matches exactly the number of points at higher values as expressed in terms
of two inequalities,

P (X ≤ µ̄) ≥ 1

2
and P (X ≥ µ̄) ≥ 1

2
or

∫ µ̄

−∞
dF (x) ≥ 1

2
and

∫ +∞

µ̄

dF (x) ≥ 1

2
,

(2.10)

where Lebesgue-Stieltjes integration is applied or in case of an absolutely
continuous distribution the condition simplifies to

P (X ≤ µ̄) = P (X ≥ µ̄) =

∫ µ̄

−∞
f(x) dx =

1

2
, (2.10’)

and (ii) themode µ̃ of a distribution is the most frequent value – the value that
is most likely to obtain through sampling – and it is obtained as the maximum
of the probability mass function for discrete distribution or as the maximum
of the probability density in the continuous case. An illustrative example for
the discrete case is the probability mass function of the scores for throwing to
dice (The mode in figure 1.11 is µ̃ = 7). A probability distribution may have
more than one mode. Bimodal distributions occur occasionally and then the
two modes provide much more information on the expected outcomes than
mean or median (see also subsection 2.4.8).

Median and mean are related by an inequality, which says that the differ-
ence between both is bounded by one standard deviation [192, 211]:

|µ− µ| = |E(X − µ| ≤ E(|X − µ|) ≤

≤ E(|X − µ|) ≤
√
E
(
(X − µ)2

)
= σ .

(2.11)

The absolute difference between mean and median can’t be larger than one
standard deviation of the distribution.

For many purposes a generalization of the median from two to n equally
sized data sets is useful. The quantiles are points taken at regular intervals
from the cumulative distribution function F (x) of a random variable X . Or-
dered data are divided into n essentially equal-sized subsets and accordingly,
(n − 1) points on the x-axis separate the subsets. Then, the k-th n-quantile
is defined by P (X < x) ≤ k

n = p (figure 2.2) or equivalently
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Fig. 2.1 Probability densities and moments. As an example of an asymmetric
distribution with highly different values for mode, median, and mean, the lognormal
density

f(x) = 1√
2π σ x

exp
(

−(lnx− ν)2/(2σ2)
)

is shown. Parameters values: σ =
√
ln 2, ν = ln 2 yielding µ̃ = exp(ν − σ2/2) = 1 for

the mode, µ̄ = exp(ν) = 2 for the median and µ = exp(ν+σ2/2) = 2
√
2 for the mean,

respectively. The sequence mode<median<mean is characteristic for distributions
with positive skewness whereas the opposite sequence mean<median<mode is found
in cases of negative skewness (see also figure 2.3).

F−1(p) := inf{x ∈ R : F (x) ≥ p} and p =

∫ x

−∞
dF (u) . (2.12)

In case the random variable has a probability density the integral simplifies
to p =

∫ x
−∞ f(u)du. The median is simply the value of x for p = 1

2 . For

partitioning into four parts we haver the first or lower quartile at p = 1
4 , the

second quartile or median at p = 1
2 , and the third or upper quartile at p = 3

4 .
The lower quartile contains 25% of the data, the median 50%, and the upper
quartile eventually 75%.
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Fig. 2.2 Definition and determination of quantiles. A quantile q with pq = k/n
defines a value xq at which the (cumulative) probability distribution reaches the value
F (xq) = pq corresponding to P (X < x) ≤ p. The figure shows how the position
of the quantile pq = k/n is used to determine its value xq(p). In particular we
use here the normal distribution N (x) as function F (x) and the computation yields

F (xq) = 1
2

(

1 + erf
(xq−ν√

2σ2

)

)

= pq. Parameter choice: ν = 2, σ2 = 1
2
, and for the

quantile (n = 5, k = 2), yielding pq = 2/5 and xq = 1.8209.

2.1.2 Higher moments

Two other quantities related to higher moments are frequently used for a more
detailed characterization of probability distributions:3 (i) The skewness

γ1 =
µ3

µ
3/2
2

=
µ3

σ3
=

E
((
X − E(X )

)3)

(
E
((
X − E(X )

)2)
)3/2

(2.13)

and (ii) kurtosis , which is either defined as the fourth standardized moment
β2 or in terms of cumulants given as excess kurtosis, γ2,

3 In contrast to expectation value, variance and standard deviation, skewness and
kurtosis are not uniquely defined and it is necessary therefore to check carefully the
author’s definitions when reading text from literature.
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Fig. 2.3 Skewness and kurtosis. The upper part of the figures illustrates the sign
of skewness with asymmetric density functions. The examples are taken form the
binomial distribution Bk(n, p): γ1 = (1 − 2p)/

√

np(1 − p) with p = 0.1 (red), 0.5
(black; symmetric), and 0.9 (blue) with the values γ1 = 0.596, 0, −0.596.
Densities with different kurtosis are compared in the lower part of the figure: The
Laplace distribution (chartreuse), the hyperbolic secant distribution (green), and
the logistic distribution (blue) are leptokurtic with excess kurtosis values 3, 2, and
1.2, respectively. The normal distribution is the reference curve with excess kur-
tosis 0 (black). The raised cosine distribution (red), the Wigner semicircle distri-
bution (orange), and the uniform distribution (yellow) are platykurtic with excess
kurtosis values of -0.593762, -1, and -1.2 respectively. All densities are calibrated
such that µ = 0 and σ2 = 1 (The picture is recalculated and redrawn from
http://en.wikipedia.org/wiki/Kurtosis, March 30,2011).
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β2 =
µ4

µ2
2

=
µ4

σ4
=

E
((
X − E(X )

)4)

(
E
((
X − E(X )

)2)
)2 and

γ2 =
κ4
κ22

=
µ4

σ4
− 3 = β2 − 3 .

(2.14)

Skewness is a measure of the asymmetry of the probability density: curves
that are symmetric about the mean have zero skew, negative skew implies
a longer left tail of the distribution caused by more low values, and posi-

tive skew is characteristic for a distribution with a longer right tail. Positive
skew is quite common with empirical data (see, for example the log-normal
distribution in section 2.4.1).

Kurtosis characterizes the degree of peakedness of a distribution. High kur-
tosis implies a sharper peak and flat tails, low kurtosis in contrary charac-
terizes flat or round peaks and thin tails. Distributions are called leptokurtic

if they have a positive excess kurtosis and therefore are sharper peak and
a thicker tail than the normal distribution (section 2.3.3), which is taken as
a reference with zero kurtosis. Distributions are characterized as platykur-

tic if they have a negative excess kurtosis, a broader peak and thinner tails
(see figure 2.3; the distributions compared there with respect to kurtosis are
standardized to µ = 0 and σ2 = 1):

(i) Laplace distribution: f(x) = 1
2b exp

(
− |x−µ|

b

)
, b = 1√

2
,

(ii) hyperbolic secant distribution: f(x) = 1
2 sech

(
π
2 x
)
,

(iii) logistic distribution: f(x) = e−(x−µ)/s

s (1+e−(x−µ)/s)2
, s =

√
3/π ,

(iv) normal distribution: f(x) = 1√
2πσ2

e−(x−µ)2/(2σ2) ,

(v) raised cosine distribution: f(x) = 1
2s

(
1+cos(π(x−µ)/s)

)
, s = 1

√

1
3− 2

π2

,

(vi) Wigner’s semicircle: f(x) = 2
πr2

√
r2 − x2, r = 2 , and

(vii) uniform distribution: f(x) = 1
b−a , b− a = 2

√
3 .

These seven functions span the whole range of maxima from a sharp peak
to a completely flat plateau with the normal distribution chosen as reference
function (figure 2.3).

One property of skewness and kurtosis being caused by definition is impor-
tant to note: The expectation value, the standard deviation, and the variance
are quantities with dimensions, whereas skewness and kurtosis are defined as
dimensionless numbers.

The cumulants κn are the coefficients of a series expansion of the logarithm
of the characteristic function (2.28), which in turn is the Fourier transform
of the probability density function, f(x), or the logarithm of the moment

generating function (2.27)(see section 2.2):
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h(s) = ln φ(s) =

∞∑

n=1

κn
(ı
.
ı s)n

n!
with

φ(s) =

∫ +∞

−∞
exp(ı

.
ı s x) f(x) dx .

(2.15)

The first five cumulants κn (n = 1, . . . , 5) expressed in terms of the expecta-
tion value µ and the central moments µn (µ1 = 0) are

κ1 = µ

κ2 = µ2

κ3 = µ3

κ4 = µ4 − 3µ2
2

κ5 = µ5 − 10µ2µ3 .

(2.16)

We shall come back to the use of cumulants κn in sections 2.3 and 2.4 where
we shall compare frequently used individual probability densities and in sec-
tion 2.5 when we apply k-statistics in order to compute empirical moments
from incomplete data sets.

Fig. 2.4 The functional relation of information entropy. The plot shows the
function H = − x lnx in the range 0 ≤ x ≤ 1. For x = 0 the convention of probability
theory, − 0 ln 0 = 0 · ∞ = 0, is applied.
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2.1.3 Information entropy

Information theory has been developed during World War Two as theory
of communication of secret messages. No wonder that the theory has been
developed at Bell Labs and the person who was the leading figures in this area
was an American cryptographer, electronic engineer and computer scientist,
Claude Elwood Shannon [261, 262]. One of the central issues of information
theory is self-information or the content of information that can be encoded,
for example, in a sequence of given length. Commonly one thinks about binary
sequences and therefore the information is measured in binary digits or bits .4

I(ω) = lb

(
1

P (ω)

)
= − lbP (ω) (2.17)

The rationale behind this expression is the definition of a measure of informa-
tion that is positive and additive for independent events. From equation (1.34)
follows:

P (AB) = P (A) · P (B) =⇒ I(A ∩B) = I(AB) = I(A) + I(B) ,

and this relation is fulfilled by the logarithm. Since P (ω) ≤ 1 by definition,
the negative logarithm is a positive quantity. Equation (2.17) yields zero
information for an event taking place with certainty, P (ω) = 1. The outcome
of the fair coin toss with P (ω) = 1

2 provides 1 bit information, and rolling

two ’six’ with two dice in one throw has a probability P (ω) = 1
36 and yields

5.17 bits (For a modern treatise of information theory and entropy see [110]).

Finite sample space. In order to measure the information content of a proba-
bility distribution Claude Shannon introduced the information entropy, which
is simply the expectation value of the information content and which is rep-
resented by a function that resembles the expression for the thermodynamic
entropy in statistical mechanics. We consider first the discrete case of a prob-
ability mass function pk = P (X = xk) , k ∈ N>0, k ≤ n:

H(p) = −
n∑

k=1

pk log pk with pk ≥ 0 ,

n∑

k=1

pk = 1 . (2.18)

Thus, the entropy can be visualized as the expectation value of the negative
logarithm of the probabilities

4 The logarithm is taken to the base 2 and it is commonly called binary logarithm or
logarithmus dualis: log2 ≡ lb ≡ ld. In informatics the conventional unit of information
is the byte: 1 byte (B) = 8 bits being tantamount to the coding capacity of an eight
digit binary sequence. Although there is little chance of confusion, one should be aware
that in the International System of Units ’B’ is the abbreviation for the acoustical
unit ’bel’, which is the unit for measuring the signal strength of sound.
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Fig. 2.5 Maximum information entropy. The discrete probability distribution
with maximal information entropy in the uniform distribution Up. The entropy of

the probability distribution p1 = 1− ϑ
n and pj = (1 − ϑ

n − 1)/n ∀ j = 2, 3, . . . , n

with n = 10 is plotted against the parameter ϑ. All probabilities pk are defined and
the entropy H(ϑ) is real and non-negative on the interval −1 ≤ ϑ ≤ 9 and passes a
maximum at ϑ = 0.

H(p) = E(− log pk) = E

(
log
( 1

pk

))
,

where the term log(1/pk) can be viewed as the number of bits to be assigned
to to the point xk provided the binary logarithm is used (log ≡ lb).

The functional relationship, H = −x log x, on the interval 0 ≤ x ≤ 1
underlying the information entropy is a concave function (figure 2.4). It is
easily shown that the entropy of a discrete probability distribution is always
non-negative. A verification of this conjecture can be given, for example,
by considering the two extreme cases: (i) there almost certainly only one
outcome, p1 = P (X = x1) = 1 and pj = P (X = xj) = 0 ∀ j ∈ N>0, j 6= 1,
and the information entropy H = 0 in this completely determined case, and
(ii) all events have the same probability, we are dealing with the uniform
distribution, pk = P (X = xk) =

1
n , or a case of the principle of indifference,

the entropy is positive, and takes on its maximum value, H(p) = logn. The
entropies of all other discrete distributions lie in between:

0 ≤ H(p) ≤ logn or H(p) ≤ log n , (2.19)

and the value of the entropy is a measure of the lack of information on the
distribution. Case (i) is deterministic and we have the full information on the
outcome a priori, whereas case (ii) provides maximal uncertainty because
all outcomes have the same probability. A rigorous proof that the uniform
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Table 2.1 Probability distributions with maximum information entropy.
The table compares three probability distributions with maximum entropy: (i) the
discrete uniform distribution on the support Ω = {1 ≤ k ≤ n, k ∈ N}, (ii) the
exponential distribution on Ω = R≥0, and the normal distribution on Ω = R.

Distribution Space Ω Density Mean Var Entropy

uniform N>0
1
n
∀ k = 1, . . . , n n+1

2
n2−1
12

log n

exponential R≥0
1
µ
e−x/µ µ µ2 1 + log µ

normal R 1√
2πσ2

e−
(x−µ2)

2σ2 µ σ2
(

1 + log(2πσ2)
)

/2

distribution has maximum information entropy among all discrete distribu-
tions is found in the literature [36, 40]. We dispense from reproducing the
proof here but we illustrate by means of figure 2.5: The starting point is the
uniform distribution of n events with a probability of p = 1

n for each one,

and then we attribute a different probability to a single event: p1 = 1− ϑ
n

and pj = (1 − ϑ
n − 1)/n (j = 2, 3, . . . , n). The entropy of the distribution is

considered as a function of ϑ and indeed the maximum occurs at ϑ = 0.

Infinite measurable sample space. The information entropy of a continuous
probability density p(x) with x ∈ R is calculated by means of integration

H(p) = −
∫ +∞

−∞
p(x) log p(x) dx with pk ≥ 0 ,

∫ +∞

−∞
p(x) dx = 1 , (2.18’)

and as in the discrete case we can write the entropy as an expectation value
of log(1/p):

H(p) = E
(
− log p(x)

)
= E

(
log
( 1

p(x)

))
.

We consider two specific examples that are distributions with maximum en-
tropy: the exponential distribution (section 2.4.4) on Ω = R≥0 with the
density

fexp(x) =
1

µ
e−

x
µ ,

the mean µ and the variance var = µ2, and the normal distribution (sec-
tion 2.3.3) on Ω = R with the density

fN (x) =
1√
2πσ2

e−
(x−µ)2

2σ2 ,

the mean µ and the variance var = σ2
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In the discrete case we made a seemingly unconstrained search for the
distribution of maximum entropy, although the discrete uniform distribution
contained the number of sample points n as input restriction and indeed, n
appears as parameter in the analytical expression for the entropy (table 2.1).
Now, in the continuous case the constraints become more evident since we
shall use fixed mean (µ) or fixed variance (σ2) as the basis of comparison in
the search for distributions with maximum entropy.

The entropy of the exponential density on the sample space Ω = R≥0 with
mean µ and variance var = µ2 is calculated to be

H(fexp) = −
∫ ∞

0

1

µ
e−x/µ

(
− log µ − x

µ

)
dx = 1 + log µ . (2.20)

In contrast to the discrete case the entropy of the exponential probability
density can become negative for small µ-values as can be easily visualized
by considering the shape of the density: Since limx→0 fexp(x) = 1/µ, an
appreciable fraction of the density function adopts values fexp(x) > 1 for
sufficiently small µ and then −p log p < 0 is negative. Among all continuous
probability distributions with mean µ > 0 on the support R≥0 = [0,∞[ the
exponential distribution has the maximum entropy. Proofs for this conjecture
are available in the literature [36, 40, 231].

For the normal density we obtain from equation (2.18’):

H(fN ) = −
∫ +∞

−∞

1√
2πσ2

e−
(x−µ)2

2σ2

(

− log(
√
2πσ2)− 1

2

(x− µ

σ

)2
)

dx

=
1

2

(

1 + log(2πσ2)
)

.

(2.21)

It is not unexpected that the information entropy of the normal distribution
is independent of the mean µ, which causes nothing but a shift of the whole
distribution along the x-axis: all Gaussian densities with the same variance
σ2 have the same entropy. Again we see that the entropy of the normal
probability density can become negative for sufficiently small values of σ2.
The normal distribution is distinguished among all continuous distributions
on Ω = R with given variance σ2, since it the normal is the distribution with
maximum entropy. Several proofs for this theorem were developed, we refer
again to the literature [36, 40, 231]. The three distributions with maximum
entropy are compared in table 2.1.

Principle of maximum entropy. The information entropy can be interpreted
as the required amount of information we would need in order to fully de-
scribe the system. Equations (2.18) and (2.18’) are the basis of a search for
probability distribution with maximum entropy under certain constraints, for
example constant mean µ or constant variance σ2. The maximum entropy
principle has been introduced by the American physicist Edwin Thompson
Jaynes as a method of statistical inference [145, 146]: He suggests to use those
probability distributions, which satisfy the prescribed constraints and have
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the largest entropy. The rationale for this choice is to use a probability dis-
tribution that reflects our knowledge and does not contain any unwarranted
information. The predictions made on the basis of a probability distribution
with maximum entropy should be least surprising. If we chose a distribution
with smaller entropy, this distribution would contain more information than
justified by our a priori understanding of the problem. It is useful to illus-
trate a typical strategy [36]:“. . . , the principle of maximum entropy guides us

to the best probability distribution that reflects our current knowledge and it

tells us what to do if experimental data do not agree with predictions coming

from our chosen distribution: Understand why the phenomenon being studied

behaves in an unexpected way, find a previously unseen constraint, and maxi-

mize the entropy over the distributions that satisfy all constraints we are now

aware of, including the new one.”We realize a different way of thinking about
probability that becomes even more evident in Bayesian statistics, which is
sketched in sections 1.3 and 2.5.4.

The choice of the word entropy for the expected information content of a
distribution is not accidental. Ludwig Boltzmann’s statistical formula5

S = kB ln W with W =
N !

N1!N2! · · ·Nm!
, (2.22)

with W being the so-called thermodynamic probability and kB Boltzmann’s
constant: kB = 1.38065× 10−23 Joule·Kelvin−1 and N =

∑m
j=1Nj being the

total number of particles being distributed overm states with the frequencies
pk = Nk/N and

∑m
j=1 pj = 1. The number of particles N is commonly very

large and Stirling’s formula named after the Scottish mathematician James
Stirling applies: n! ≈ n lnn, and this leads to:

S = kB

(
N lnN −

m∑

i=1

Ni lnNi

)
= − kBN

(
− lnN +

m∑

i=1

Ni
N

lnNi

)
=

= − kBN
m∑

i=1

pi ln pi .

For a single particle we obtain an entropy

s =
S

N
= − kB

m∑

i=1

pi ln pi , (2.22’)

which is identical with Shannon’s formula (2.18) except the factor containing
the universal constant kB.

5 A few remarks are important: Equation (2.22) in Max Planck’s expression for the
entropy in statistical mechanics, although it has been carved in Boltzmann’s tomb
stone, and W is called a probability despite the fact that it is not normalized, W ≥ 0.
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Eventually we point at some important differences between thermody-
namic entropy and information entropy that should be kept in mind when
discussing analogies between them. The thermodynamic principle of maxi-
mum entropy is a physical law known as the second law of thermodynamics:
The entropy of an isolated system6 is nondecreasing in general and increasing
if processes are taking place, and hence approaches a maximum. The principle
of maximum entropy in statistics is a rule for appropriate design of distri-
bution functions and has the rank of a guideline and not that of a natural
law. Thermodynamic entropy is an extensive property and this means that
it increases with the size of the system. Information entropy, on the other
hand, is an intensive property and insensitive to size. An illustrative example
of this difference is due to the Russian biophysicist Mikhail Vladimirovich
Volkenshtein [296]: Considering the process of flipping a coin in reality and
calculating all contributions to the process shows that the information en-
tropy is a minute contribution to the thermodynamic entropy only. The total
thermodynamic entropy change as a result of the coin flipping process is
dominated by far by the metabolic contributions of the flipping individual,
as there are muscle contraction, joint rotations, and by the heat production
on the surface where the coin lands, etc. Imagine the thermodynamic en-
tropy production if you flip a coin two meters high – the gain in information
remains still one bit!

6 A isolated system exchanges neither matter nor energy with its environment (For
isolated, closed, and open systems see also section 4.3).
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2.2 Generating functions

In this section we introduce auxiliary functions, which allow for the deriva-
tion of compact representations of probability distributions and which pro-
vide convenient tools for handling functions of probabilities. The generating
functions commonly contain one or more auxiliary variables – here denoted
by s, which are lacking direct physical meaning but enable straightforward
calculation of properties of random variables at certain values ofs. In par-
ticular we shall make use of probability generating functions g(s), moment
generating functions M(s) and characteristic functions φ(s). The character-
istic function φ(s) exists for all distributions but we shall encounter cases
where no probability nd moment generating functions exist (see, for exam-
ple, the Cauchy-Lorentz distribution in subsection 2.4.6). In addition to the
three generating functions mentioned here other functions are in use as well.
An example is the cumulant generating function that is lacking a uniform
definition. It is either the logarithm of the moment generating function or
the logarithm of the characteristic function – we shall mention both.

2.2.1 Probability generating functions

Let X be a random variable taking only non-negative integer values with a
probability distribution given by

P (X = j) = aj ; j = 0, 1, 2, . . . . (2.23)

A auxiliary variable s is introduced and the probability generating function

is expressed by an infinite power series

g(s) = a0 + a1 s + a2 s
2 + . . . =

∞∑

j=0

aj s
j . (2.24)

As we shall show later, the full information on the probability distribution
is encapsulated in the coefficients aj (j ≥ 0). In most cases s is a real valued
variable, although it can be of advantage to consider also complex s. Recalling∑

j aj = 1 from (2.23) we verify easily that the power series (2.24) converges
for |s| ≤ 1:

|g(s)| ≤
∞∑

j=0

|aj | · |s|j ≤
∞∑

j=0

aj = 1 , for |s| ≤ 1 .
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For |s| < 1 we can differentiate7 the series term by term in order to calculate
the derivatives of the generating function g(s)

dg

ds
= g′(s) = a1 + 2 a2s + 3 a3s

2 + . . . =

∞∑

n=1

n ans
n−1 ,

d2g

ds2
= g′′(s) = 2 a2 + 6 a3s + . . . =

∞∑

n=2

n(n− 1) ans
n−2 ,

and, in general, we have

djg

dsj
= g(j)(s) =

∞∑

n=j

n(n− 1) . . . (n− j + 1) ans
n−j =

=

∞∑

n=j

(n)j an s
n−j =

∞∑

n=j

(
n

j

)
j ! an s

n−j ,

where (x)n stands for the falling Pochhammer symbol.8 Setting s = 0, all
terms vanish except the constant term

djg

dsj

∣∣∣
s=0

= g(j)(0) = j ! aj or aj =
1

j !
g(j)(0) .

In this way all aj’s may be obtained by consecutive differentiation from the
generating function and alternatively the generating function can be deter-
mined from the known probability distribution.

Putting s = 1 in g′(s) and g′′(s) we can compute the first and second
moments of the distribution of X :

g′(1) =
∞∑

n=0

n an = E(X ) ,

g′′(1) =

∞∑

n=0

n2 an −
∞∑

n=0

n an = E(X 2) − E(X )

E(X ) = g′(1) , and

E(X 2) = g′(1) + g′′(1) and σ2(X ) = g′(1) + g′′(1)− g′(1)2 .

(2.25)

7 Since we need the derivatives very often in this section, we make advantage of short
notations: dg(s)/ds = g′(s), d2g(s)/ds2 = g′′(s), and djg(s)/dsj = g(j)(s) and for
simplicity also (dg/ds)|s=k = g′(k) and (d2g/ds2)|s=k = g′′(k) (k ∈ N).
8 The Pochhammer symbol (x)n = x(x − 1) . . . (x − n + 1) is used here as, for
example, in combinatorics for the falling factorial, the rising factorial is written as
x(n) = x(x + 1) . . . (x+ n − 1). We remark that in the theory of special function, in
particular for the hypergeometric functions, (x)n is used for the rising factorial.
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We summarize: The probability distribution of a non-negative integer values
random variable can be converted into a generating function without loosing
information. The generating function is uniquely determined by the distribu-
tion and vice versa.

2.2.2 Moment generating functions

Basis of the moment generating function is the series expansion of the expo-
nential of the random variable X

eX s = 1 + X s +
X 2

2!
s2 +

X 3

3!
s3 . . . .

The moment generating function allows for direct computation of the mo-
ments of a probability distribution as defined in equation (2.23) since we
have:

MX (s) = E(eX s) = 1+ µ̂1 s+
µ̂2

2!
s2 +

µ̂3

3!
s3 . . . = 1+

∞∑

n=1

µ̂n
sn

n!
. (2.26)

wherein µ̂i is the i-th raw moment. The moments are obtained by differenti-
ating MX (s) i times with respect to s and then setting s = 0

E(Xn) = µ̂n = M
(n)
X =

dnMX
dsn

∣∣∣
s=0

.

A probability distribution thus has (at least) as many moments as many times
the moment generating function can be continuously differentiated (see also
characteristic function in subsection 2.2.3). If two distributions have the same
moment generating functions they are identical at all points:

MX (s) = MY(s) ⇐⇒ FX (x) = FY(x) .

This statement, however, does not imply that two distributions are iden-
tical when they have the same moments, because in some cases the mo-
ments exist but the moment generating function does not, since the limit

limn→∞
∑n
k=0

µ̂k s
k

k! diverges as, for example, in case of the logarithmic nor-
mal distribution.

The real cumulant generating function is the formal logarithm of the mo-
ment generating function that can be expanded in a power series
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k(s) = ln
(
E
(
eX s
))

= −
∞∑

n=1

1

n

(
1− E

(
eX s
))n

=

= −
∞∑

n=1

1

n

(
−

∞∑

m=1

µ̂m
sm

m!

)n
=

= µ̂1s +
(
µ̂2 − µ̂2

1

)s2
2!

+
(
µ̂3 − 3µ̂2µ̂1 + 2µ̂3

1

)s3
3!

+ . . .

(2.27)

The cumulants κn are obtained from the cumulant generating function
through the n-th differentiation of k(s) and calculating the derivative at s = 0:

κ1 =
∂k(s)

∂s

∣∣∣
s=0

= µ̂1 = µ ,

κ2 =
∂2k(s)

∂s2

∣∣∣
s=0

= µ̂2 − µ̂2
1 = σ2 ,

κ3 =
∂3k(s)

∂s3

∣∣∣
s=0

= µ̂3 − 3µ̂2µ1 + 1µ̂3
1 = µ3 , (2.16’)

...

κn =
∂nk(s)

∂sn

∣∣∣
s=0

,

...

As shown in equation (2.16) the first three cumulants coincide with the cen-
tered moments µ1, µ2, and µ3. All higher cumulants are polynomials of two
or more centered moments.

2.2.3 Characteristic functions

Like the moment generating function the characteristic function φ(s) of a
random variable X completely describes the probability distribution F (x). It
is defined by

φ(s) =

∫ +∞

−∞
exp(ı

.
ı s x) dF (x) =

∫ +∞

−∞
exp(ı

.
ı s x) f(x) dx , (2.28)

where the integral over dF (x) is of Riemann-Stieltjes type. In case a probabil-
ity density f(x) exists for the random variable X the characteristic function
is (almost) the Fourier transform of the density.9 From equation (2.28’) fol-

9 The difference between the Fourier transform f̂(s) and the characteristic function
φ(s) of a function f(x),
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lows the useful expression φ(s) = E(eı
.
ısX ) that we shall use, for example, in

solving most equations for stochastic processes (chapter 3).
The characteristic function exists for all random variables since it is an in-

tegral of a bounded continuous function over a space of finite measure. There
is a bijection between distribution functions and characteristic functions:

φX (s) = φY(s) ⇐⇒ FX (x) = FY(x) .

If a random variable X has moments up to k-th order, then the characteristic
function φ(x) is k times continuously differentiable on the entire real line and
vice versa if a characteristic function φ(x) has a k-th derivative at zero, then
the random variable X has all moments up to k if k is even and up to k − 1
if k is odd:

E(X k) = (−ı.ı)k d
kφ(s)

dsk

∣∣∣∣
s=0

and
dkφ(s)

dsk

∣∣∣∣
s=0

= ı
.
ık E(X k) . (2.29)

An interesting example is presented by the Cauchy distribution (subsec-
tion 2.4.6) with φ(s) = exp(|s|): It is not differentiable at s = 0 and the
distribution has no moments including the expectation value.

The moment generating function is related to the probability generating
function g(s) (subsection 2.2.1) and the characteristic function φ(s) (subsec-
tion 2.2.3) by

g (es) = E
(
eX s
)
= MX (s) and φ(s) = Mı

.
ıX (s) = MX (ı

.
ıs) .

All three generating functions are closely related but it may happen that not
all three are existing. As said, characteristic functions exist for all probability
distributions.

f̂(s) =
1

√

2π

∫ +∞

−∞
f(x) exp(+ı

.
ı s x) dx and φ(s) =

∫ +∞

−∞
f(x) exp(+ı

.
ı s x) dx ,

is only a matter of the factor (
√
2π)−1. The Fourier convention above is the one used

in modern physics, for other convention see, e.g., Mathematica.
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Table 2.2 Comparison of several common probability densities. Abbreviation and notations used in the table are: Γ (r, x) =
∫∞
x

sr−1e−sds and

γ(r, x) =
∫ x
0
sr−1e−sds are the upper and lower incomplete gamma function, respectively; Ix(a, b) = B(x; a, b)/B(1; a, b) is the regularized

incomplete beta function with B(x; a, b) =
∫ x
0
sa−1(1− s)b−1ds. For more details see [62].

Name Parameters Support pmf / pdf cdf Mean Median Mode Variance Skewness Kurtosis mgf cf

Poisson α > 0 ∈ R k ∈ N0 αk

k! e
−α Γ (⌊k+1⌋,α)

⌊k⌋! α ≈ ⌊α+ 1
3 − 0.02

α ⌋ ⌈α⌉−1 α 1√
α

1
α exp

(

α(es−1)
)

exp
(

α(eı
.
ıs−1)

)

π(α)

Binomial n ∈ N k ∈ N0
(n
k

)

pk(1−p)n−k I1−p = (n−k, 1+k) np ⌊np⌋ or ⌈np⌉ ⌊(n+1)p⌋ or np(1−p) 1−2p√
np(1−p)

1−6p(1−p)
np(1−p)

(1−p+ps)n (1−p+pı
.
ıs)n

B(n, p) p ∈ [0, 1] p ∈ [0, 1] ⌊(n+1)p⌋−1

Normal ν ∈ R x ∈ R 1√
2πσ2

e
− (x−ν)2

2σ2 1
2

(

1+erf
(

x−ν√
2σ2

)

)

ν ν ν σ2 0 0 exp(νs+ 1
2σ

2s2) exp(ı.ıνs− 1
2σ

2s2)

ϕ(ν, σ) σ2 ∈ R+

chi-square k ∈ N x ∈ [0,∞[ x
k
2
−1

e
− x

2

2
k
2 Γ

(

k
2

)

γ( k
2
, x
2
)

Γ ( k
2
)

k ≈ k
(

1− 2
9k

)3 max{k−2, 0} 2k
√

8
k

12
k (1−2s)−

k
2 (1−2ı.ıs)−

k
2

χ2(k) for s < 1
2

Logistic a ∈ R, b > 0 x ∈ R
sech2

(

(x−a)/2b

)

4b
1

1+exp
(

−(x−a)/b
) a a a π2b2/3 0 4.2 πbs eas

sin(πbs)
ı
.
ıπbs eas
sin(ı

.
ıπbs)

Laplace ν ∈ R x ∈ R 1
2b e

− |x−ν|
b































1
2 e

− ν−x
b ,

x < a

1− 1
2 e

− x−ν
b ,

x ≥ a

ν ν ν 2b2 0 3 exp(νs)

1−b2s2
exp(ı

.
ıνs)

1−b2s2

b > 0 for |s| < 1
b

Uniform a < b x ∈ [a, b]







1
b−a , x ∈ [a, b]

0 otherwise



















0, x < a

x−a
b−a , x ∈ [a, b]

1, x ≥ b

a+b
2

a+b
2 m̃ ∈ [a, b] (b−a)2

12 0 − 6
5

ebs−eas

(b−a)s
eı
.
ıbs−eı

.
ıas

ı
.
ı(b−a)s

U(a, b) a, b ∈ R

Cauchy x0 ∈ R x ∈ R 1

πγ

(

1+

(

x−x0
γ

)2
)

1
π arctan

(

x−x0
γ

)

– x0 x0 – – – – exp(ı.ıx0s−γ|s|)

γ ∈ R+
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2.3 Most common probability distributions

Before entering a discussion of individual probability distributions we present
an overview over the important characteristics of the most frequently used
distributions in table 2.2. Poisson, binomial and normal distributions and
transformations in the limits between them are discussed in this section.
The central limit theorem and the law of large numbers are presented in a
separate section following the normal distribution. We have listed also several
less common but nevertheless frequently used probability distributions, which
are of importance for special purposes. In the forthcoming chapters 3, 4, and
5 dealing with stochastic processes and applications we shall make use of
them.

2.3.1 The Poisson distribution

The Poisson distribution, named after the French physicist and mathemati-
cian Siméon Denis Poisson, is a discrete probability distribution expressing
the probability of occurrence of independent events within a given interval.
An popular example is dealing with the arrivals of phone calls within a fixed
time interval ∆t. The expected number of occurring calls per time interval,
α, is the only parameter of the distribution Pois(α; k), which returns the
probability that k calls are received during ∆t. In physics and chemistry the

Fig. 2.6 The Poisson probability density. Two examples of Poisson distribu-
tions, πk(α) = αke−α/k!, with α = 1 (black) and α = 5 (red) are shown. The
distribution with the larger α has the mode shifted further to the right and a thicker
tail.
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Poisson process is the stochastic basis of first order processes, for example
radioactive decay or irreversible first order reactions and the Poisson distri-
bution is the probability distribution underlying the time course of particle
numbers, N(t) = α(t). The events to be counted need not be on the time
axis, the interval can also be defined as a given distance, area, or volume.

Despite its major importance in physics and biology the Poisson distribu-
tion with the probability mass function (pmf) Pois(α; k), is a fairly simple
mathematical object. As said it contains a single parameter only, the real
valued positive number α:

P (X = k) = Pois(α; k) = π k(α) =
e−α

k!
αk ; k ∈ N0 . (2.30)

As an exercise we leave to verify the following properties:10

∞∑

k=0

π k = 1 ,

∞∑

k=0

k π k = α and

∞∑

k=0

k2 π k = α+ α2

Examples of Poisson distributions with two different parameter values, α = 1
and 5, are shown in figure 2.6. The cumulative distribution function (cdf) is
obtained by summation

P (X ≤ k) = exp(−λ)
⌊k⌋∑

j=0

λj

j!
=

Γ (⌊k + 1⌋, λ)
⌊k⌋! , (2.31)

where Γ (x, y) is the incomplete Gamma function.
By means of a Taylor expansion we can find the generating function of the

Poisson distribution,
g(s) = eα(s−1) . (2.32)

From the generating function we calculate easily

g′(s) = α eα(s−1) and g′′(s) = α2 eα(s−1) .

Expectation value and second moment follow straightforwardly from equa-
tion(2.25):

E(X ) = g′(1) = α , (2.32a)

E(X 2) = g′(1) + g′′(1) = α + α2 , and (2.32b)

σ2(X ) = α . (2.32c)

10 In order to be able to solve the problems some basic infinite series should be
recalled:
e =

∑∞
n=0

1
n!

, ex =
∑∞

n=0
xn

n!
for |x| <∞, e = limn→∞(1 + 1

n
)n,

e−α = limn→∞(1− α
n
)n.
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Fig. 2.7 The binomial probability density. Two examples of binomial distribu-
tions, Bk(n, p) =

(

n
k

)

pk(1−p)n−k, with n = 10, p = 0.5 (black) and p = 0.1 (red) are
shown. The former distribution is symmetric with respect to the expectation value
E(Bk) = n/2, and accordingly has zero skewness. The latter case is asymmetric with
positive skewness (see figure 2.3).

Both, the expectation value and the variance are equal to the parameter α
and hence, the standard deviation amounts to σ(X ) = √α. This remarkable
property of the Poisson distribution is not limited to the second moment.
The factorial moments , 〈X r〉f , fulfil the equation

〈X r〉f = E
(
X (X − 1) . . . (X − r + 1)

)
= αr , (2.32d)

which is easily verified by direct calculation.

2.3.2 The binomial distribution

The binomial distribution, B(n, p), characterizes the cumulative result of in-
dependent trials with two-valued outcomes, for example, yes-no decisions or
successive coin tosses as we discussed in sections 1.2 and 1.5:

Sn =

n∑

i=1

Xi , i ∈ N>0; n ∈ N>0 . (1.22’)

In general, we assume that head is obtained with probability p and tail with
probability q = 1 − p. The Xi’s are commonly called Bernoulli random vari-
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ables named after the Swiss mathematician Jakob Bernoulli, and the sequence
of events is named Bernoulli process after him (section 3.2.1.1). The corre-
sponding random variable is said to have a Bernoulli or binomial distribution::

P (Sn = k) = Bk(n, p) =

(
n

k

)
pk qn−k ,

q = 1− p and k ∈ N; k ≤ n .
(2.33)

Two examples are shown in figure 2.7. The distribution with p = 0.5 is
symmetric with respect to k = n/2.

The generating function for the single trial is g(s) = q+ ps. Since we have
n independent trials the complete generating function is

g(s) = (q + ps)n =

n∑

k=0

(
n

k

)
qn−k pk sk . (2.34)

From the derivatives of the generating function,

g′(s) = n p (q + ps)n−1 and g′′(s) = n(n− 1) p2 (q + ps)n−2 ,

we compute readily expectation value and variance:

E(Sn) = g′(1) = n p , (2.34a)

E(S2n) = g′(1) + g′′(1) = np + n2p2 − np2 = n p q + n2 p2 , (2.34b)

σ2(Sn) = n p q , and (2.34c)

σ(Sn) =
√
npq . (2.34d)

For p = 1/2, the case of the unbiased coin, we are dealing with the symmetric

binomial distribution with E(Sn) = n/2, σ2(Sn) = n/4, and σ(Sn) =
√
n/2.

We note that the expectation value is proportional to the number of trials,
n, and the standard deviation is proportional to its square root,

√
n.

Relation between binomial and Poisson distribution. The binomial distribu-
tion B(n, p) can be transformed into a Poisson distribution π(α) in the limit
n→∞. In order to show this we start from

Bk(n, p) =

(
n

k

)
pk (1− p)n−k , 0 ≤ k ≤ n (k ∈ N0, k ≤ n) .

The symmetry parameter p is assumed to vary with n, p(n) = α/n for
n ∈ N> 0, and thus we have

Bk

(
n,
α

n

)
=

(
n

k

) (α
n

)k (
1− α

n

)n−k
, (k ∈ N0, k ≤ n) .
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We let n go to infinity for fixed k and start with B0(n, p):

lim
n→∞

B0

(
n,
α

n

)
= lim

n→∞

(
1− α

n

)n
= e−α .

Now we compute the ratio of two consecutive terms, Bk+1/Bk:

Bk+1

(
n, αn

)

Bk
(
n, αn

) =
n− k
k + 1

·
(α
n

)
·
(
1− α

n

)−1

=
α

k + 1
·
[(

n− k
n

)
·
(
1− α

n

)−1
]
.

Both terms in the square brackets converge to one as n→∞, and hence we
find:

lim
n→∞

Bk+1

(
n, αn

)

Bk
(
n, αn

) =
α

k + 1
.

From the two results we compute all terms starting from the limit value of
B0,

lim
n→∞

B0 = exp(−α) and find

lim
n→∞

B1 = α exp(−α) ,

lim
n→∞

B2 = α2 exp(−α)/2! ,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

lim
n→∞

Bk = αk exp(−α)/k! .

Accordingly we have verified Poisson’s limit law:

lim
n→∞

Bk

(
n,
α

n

)
= πk(α) , k ∈ N . (2.35)

It is worth keeping in mind that the limit was performed in a peculiar way
since the symmetry parameter p(n) = α/n was shrinking with increasing n
and as a matter of fact vanished in the limit of n→∞.

2.3.3 The normal distribution

The normal or Gaussian distribution is of central importance in probabil-
ity theory because many distributions converge to it in the limit of large
numbers since the central limit theorem (CLT) states that under mild condi-
tions the sum of a large number of random variables is approximately normal
distributed (section 2.3.6). The normal distribution is a stable distribution

(section 3.2.4) and this fact is not unrelated to the central limit theorem.
The normal distribution is basic for the estimate of statistical errors and

thus we shall discuss it in some detail. Accordingly, the normal distribution
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is extremely popular in statistics and quite often ’overapplied’. Many em-
pirical values are not symmetrically distributed but skewed to the right but
nevertheless they are often analyzed by means of normal distributions. The
log-normal distribution [179] or the Pareto distribution, for example, might
do better in such cases. Statistics based on normal distribution is not robust
in the presence of outliers where a description by more heavy-tailed distribu-
tions like Student’s t-distribution is superior. Whether or not the tails have
more weight in the distribution can be easily checked by means of the excess
kurtosis: Student’s distribution has an excess kurtosis of

γ2 =





6
ν−4 for ν > 4 ,

∞ for 2 < ν ≤ 4 , and

undefined otherwise ,

which is always positive, whereas the excess kurtosis of the normal distribu-
tion is zero.

The normal distribution has also certain advantageous technical features.
It is the only absolutely continuous distribution, which has only zero cumu-
lants except the first two corresponding to expectation value and variance,
which have the straightforward meaining of the position and the width of the
distribution. For given variance the normal distribution has the largest infor-
mational entropy of all distributions on Ω = R (section 2.1.3). As a matter of
fact, the mean µ does not enter the expression for the entropy of the normal
distribution (table 2.1),

H(σ) =
1

2

(
1 + log (2πσ2)

)
, (2.21’)

or in other words, shifting the normal distribution along the x-axis does not
change the entropy of the distribution.

The density of the normal distribution11 is

fN (x) =
1√
2π σ

e−
(x−µ)2

2σ2 with

∫ +∞

−∞
f(x) dx = 1 , (2.36)

and the corresponding random variable X has the moments E(X ) = µ,
σ2(X ) = σ2, and σ(X ) = σ. For many purposes it is convenient to use
the normal density in centered and normalized form (σ2 = 1), which is often
called Gaussian bell-shaped curve:

fN (x; 0, 1) = ϕ(x) =
1√
2π

e−x
2/2 with

∫ +∞

−∞
ϕ(x) dx = 1 , (2.36’)

11 The notations applied here for the normal distribution are: N (µ, σ) in general, and
FN (x;µ, σ) for the cumulative distribution or fN (x;µ, σ) for the density. Commonly,
the parameters, (µ, σ) are omitted when no misinterpretation is possible.
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In this form we have E(X̃ ) = 0, σ2(X̃ ) = 1, and σ(X̃ ) = 1.
Integration of the density yields the distribution function

P (X ≤ x) = F (x) = Φ(x) =
1√
2π

∫ x

−∞
e−

u2

2 du . (2.37)

The function FN (x) is not available in analytical form, but it can be easily
formulated in terms of the error function, erf(x). This function as well as its
complement, erfc(x), defined by

erf(x) =
2√
π

∫ x

0

e−t
2

dt and erfc(x) =
2√
π

∫ ∞

x

e−t
2

dt ,

are available in tables and in standard mathematical packages.12 Examples of
the normal density fN (x) and the integrated distribution FN (x) with differ-
ent values of the standard deviation σ were shown in figure 1.19. The normal
distribution is also used in statistics to define confidence intervals: 68.2% of
the data points lie within an interval µ±σ, 95.4% within an interval µ± 2σ,
and eventually 99,7% with an interval µ± 3σ.

A Poisson density with sufficiently large values of α resembles a normal
density (figure 2.6) and it can be shown indeed that the two curves become
more and more similar with increasing α:

πk(α) =
αk

k!
e−α ≈ 1√

2π α
exp

(
− (k − α)2

2α

)
. (2.38)

This fact is an example of the central limit theorem presented and analyzed
in section 2.3.6.

The normal density function fN (x) has, among other remarkable proper-
ties, derivatives of all orders. Each derivative can be written as product of
fN (x) by a polynomial, of the order of the derivative, known as Hermite poly-
nomial. The function fN (x) decreases to zero very rapidly as |x| → ∞. The
existence of all derivatives makes the bell-shaped Gaussian curve x → f(x)
particularly smooth, and the moment generating function of the normal dis-
tribution is especially attractive (see subsection 2.2.2).M(s) can be obtained
directly by integration:

12 We remark that erf(x) and erfc(x) are not normalized in the same way as the
normal density: erf(x) + erfc(x) = 2√

π

∫∞
0

exp(−t2)dt = 1, but
∫∞
0

ϕ(x)dx =
1
2

∫+∞
−∞ ϕ(x)dx = 1

2
.
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M(s) =

∫ +∞

−∞
ex s f(x) dx =

∫ +∞

−∞
exp

(
x s − x2

2

)
dx =

=

∫ +∞

−∞
e(

s2

2 − (x−s)2

2 ) dx = es
2/2

∫ +∞

−∞
f(x− s) dx =

= es
2/2 .

(2.39)

All raw moments of the normal distribution are defined by the integrals

µ̂n =

∫ +∞

−∞
xn f(x) dx . (2.40)

They can be obtained, for example, by successive differentiation of M(s)
with respect to s (subsection 2.2.2). In order to obtain the moments more
efficiently we expand the first and the last expression in equation (2.39) in a
power series of s,

∫ +∞

−∞

(
1 + x s +

(x s)2

2!
+ . . .+

(x s)n

n!
+ . . .

)
f(x) dx =

= 1 +
s2

2
+

1

2!

(
s2

2

)2

+ . . .+
1

n!

(
s22
)n

+ . . . ,

or express it in terms of the moments µ̂n,

∞∑

n=0

µ̂n
n!
sn =

∞∑

n=0

1

2n n!
s2n ,

from which we compute the moments of ϕ(x) by putting the coefficients of
the powers of s equal on both sides of the expansion and find for n ≥ 1:13

µ̂2n−1 = 0 and µ̂2n =
(2n)!

2n n!
. (2.41)

All odd moments vanish because of symmetry. In case of the fourth moment,
kurtosis, a kind of standardization is common, which assigns zero excess kur-
tosis, γ2 = 0 to the normal distribution. In other words, excess kurtosis
monitors peak shape with respect to the normal distribution: Positive excess
kurtosis implies peaks that are sharper than the normal density, negative
excess kurtosis peaks that are broader than the normal density (figure 2.3).

13 The definite integrals are:

∫+∞
−∞ xn exp(−x2)dx =











√
π n = 0

0 n ≥ 1; odd
(n−1)!!

2n/2

√
π n ≥ 2; even

,

where (n− 1)!! = 1 · 3 · . . . · (n− 1).
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As already said all cumulants (2.16) of the normal distribution except
κ1 = µ and κ2 = sigma2 are zero, since the moment generating function of
the general normal distribution with mean µ and variance σ2 is of the form

MN (s) = exp
(
µs +

1

2
σ2 s2

)
. (2.42)

The expression for the standardized Gaussian distribution is the special case
with µ = 0 and σ2 = 1. Eventually, we list also the characteristic function of
the general normal distribution

φN (s) = exp
(
ı
.
ıµs − 1

2
σ2 s2

)
, (2.43)

which will be used, for example, in the derivation of the central limit theorem
(section 2.3.6).

2.3.4 Multivariate normal distributions

In applications to problems in science it is often necessary to consider
probability distributions in multiple dimensions. Then, a random vector,
~X = (X1, . . . ,Xn) with the joint probability distribution

P (X1 = x1, . . . ,Xn = xn) = p(x1, . . . , xn) = p(x) .

replaces the random variable X . This multivariate normal probability density
can be written as

f(x) =
1√

(2π)n |Σ|
exp
(
−1

2
(x− µ)t Σ−1 (x− µ)

)
.

The vector µ consists of the (raw) first moments along the different coor-
dinates, µ(µ1, . . . , µn) and the variance-covariance matrix Σ contains the n
variances in the diagonal and the covariances are combined as off-diagonal
elements

Σ =




σ2(X1) cov(X1,X2) . . . cov(X1,Xn)
cov(X2,X1) σ2(X2) . . . cov(X2,Xn)

...
...

. . .
...

cov(Xn,X1) cov(Xn,X2) . . . σ2(Xn)


 =




σ11 σ12 . . . σ1n
σ12 σ22 . . . σ2n
...

...
. . .

...
σ1n σ2n . . . σnn




which is symmetric, cov(Xi,Xj) = cov(Xj ,Xi) = σij , by the definition of
covariances.

Mean and variance are given by µ̂ = µ and the variance-covariance matrix
Σ, the moment generating function expressed in the dummy vector variable
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s = (s1, . . . , sn) is of the form

M(s) = exp
(
µts
)
· exp

(
1

2
stΣs

)
,

and, finally, the characteristic function is given by

φ(s) = exp
(
ı
.
ıµts

)
· exp

(
−1

2
stΣs

)

Without showing the details we remark that this particulary simple char-
acteristic function implies that all moments higher than order two can be
expressed in terms of first and second moments, in particular expectation
values, variances, and covariances. To give an example that we shall require
later in subsection 3.4.2, the fourth order moments can be derived from

E(X 4
i ) = 3 σ2

ii ,

E(X 3
i Xj) = 3 σiiσij ,

E(X 2
i X 2

j ) = σiiσjj + 2 σ2
ij ,

E(X 2
i XjXk) = σiiσjk + 2 σijσik and

E(XiXjXkXl) = σijσkl + σliσjk + σikσjl ,

(2.44)

with i, j, k, l ∈ {1, 2, 3, 4}.
The entropy of the multivariate normal distribution is readily calculated

and appears as a straightforward extension of equation (2.21) to higher di-
mensions:

H(f) = −
∫ +∞

−∞

∫ +∞

−∞
· · ·
∫ +∞

−∞
f(x) ln f(x) dx =

=
1

2

(
n+ ln

(
(2π)n|Σ|

))
,

(2.45)

where |Σ| is the determinant of the variance-covariance matrix.
The multivariate normal distribution presents and excellent example for

discussing the difference between uncorrelatedness and independence. Two
random variables are independent if

fXY(x, y) = fX (x) · fY(y) ∀ x, y ,

whereas uncorrelatedness of two random variables requires

σXY = cov(X ,Y) = 0 = E(XY) − E(X )E(Y) or

E(XY) = E(X )E(Y) .
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Fig. 2.8 Uncorrelated but not independent normal distributions. The figure
compares two different joint densities, which have identical marginal densities. The

contour plot on the l.h.s. (a) shows the joint distribution f(x1, x2) = 1
2π

e−
1
2
(x2

1
+x2

2
),

the contour lines are circles equidistant in f and plotted for f = 0.03, 0.09, . . . , 0.153.
The marginal distributions of this joint distribution are standard normal distributions
in x1 or x2. The density in b is derived from one random variable X1 with standard

normal density f(x1) = 1√
2π

e−
1
2
x2

1 and a second random variable that is modulated

by a perfect coin flip: X2 = X1 · W with W = ±1. The two variables X1 and X2 are
uncorrelated but not independent.

The covariance between two independent random variables vanishes:

E(XY) =

∫ +∞

−∞

∫ +∞

−∞
xy fX ,Y(x, y) dxdy =

=

∫ +∞

−∞

∫ +∞

−∞
xy fX (x)fY(y) dxdy =

=

∫ +∞

−∞
x fX (x)dx

∫ +∞

−∞
y fY(y)dy = E(X )E(Y) . ⊓⊔

We remark that the proof made nowhere use of the fact that the variables
are normally distributed and the statement independent variables are uncor-

related holds in full generality. The inverse, however, is not true as has been
shown by means of specific examples [209]: Uncorrelated random variables
X1 and X2, which both have the same (marginal) normal distribution, need
not be independent. The construction of such a contradicting example starts
from a two dimensional random vector ~X = (X1,X2)

t, which obeys a bivari-
ate normal distribution with mean µ = (0, 0)t and variance σ2

1 = σ2
2 = 1 and
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covariance cov(X1,X2) = 0

f(x1, x2) =
1

2π
exp

(
−1

2
(x1, x2)

(
1 0
0 1

)(
x1
x2

))
=

=
1

2π
e−

1
2
(x2

1+x
2
2) =

1√
2π

e−
1
2
x2
1 · 1√

2π
e−

1
2
x2
2 = f(x1) · f(x2) ,

and the two random variables are independent. Next we introduce a mod-
ification in one of the two random variables: X1 remains unchanged and
has the density f(x1) = 1√

2π
exp(− 1

2
x21), whereas the second random vari-

able is modulated with an ideal coin flip, W with the density f(w) =
1
2

(
δ(w + 1) + δ(w − 1)

)
. In other words, we have X2 = W · X1 = ±X1

with equal weights for both signs, and accordingly the density function is
f(x2) =

1
2f(x1) +

1
2f(−x1) = f(x1), since the normal distribution with zero

mean E(X1) = 0 is symmetric, f(x1) = f(−x1). Equality of the two dis-
tribution functions with the same normal distribution can also be derived
directly:

P (X2 ≤ x) = E
(
P (X2 ≤ x|W)

)
=

= P (X1 ≤ x)P (W = 1) + P (−X1 ≤ x)P (W = −1) =

= Φ(x)
1

2
+ Φ(x)

1

2
= Φ(x) = P (X1 ≤ x) .

The covariance of X1 and X2 is readily calculated,

cov(X1X2) = E(X1X2) − E(X1) · E(X2) = E(X1X2) − 0 =

= E
(
E(X1X2)|W

)
= E(X 2

1 )P (W = 1) + E(−X 2
1 )P (W = −1) =

= 1
1

2
+ (−1) 1

2
= 0 ,

and hence X1 and X2 are uncorrelated. The two random variables, however,
are not independent because

p(x1, x2) = P (X1 = x1,X2 = x2) =

=
1

2
P (X1 = x1,X2 = x1) +

1

2
P (X1 = x1,X2 = −x1)

)
=

=
1

2
p(x1) +

1

2
p(x1) = p(x1) ,

f(x1, x2) = f(x1) 6= f(x1) · f(x2) ,

since f(x1) = f(x2). Lack of independence follows also simply from |X1| =
|X2|. The example is illustrated in figure 2.8: The fact that marginal distri-
butions are identical does not imply that the joint distribution is also the
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same! The statement about independence, however, can be made stronger
and then it turns out to be true: “If random variables have a multivariate

normal distribution and are pairwise uncorrelated, then the random variables

are always independent.” [209].
The marginal distributions of a multivariate normal distribution are ob-

tained straightforwardly by simply dropping the marginalized variables. If
~X = (Xi,Xj ,Xk) is a multivariate, normally distributed variable with the
mean vector µ = (µi, µj , µk) and variance-covariance matrix Σ, then after

elimination of Xj the marginal joint distribution of the vector X̃ = (Xi,Xk)
is multivariate normal with the mean vector µ̃ = (µi, µk) and the variance-
covariance matrix

Σ̃ =

(
Σii Σik

Σki Σkk

)
=

(
σ2(Xi) cov(Xi,Xk)

cov(Xk,Xi) σ2(Xk)

)
.

It is worth noticing that non-normal bivariate distributions have been con-
structed, which have normal marginal distributions [170].

2.3.5 From binomial to normal distributions

The expression normal distribution actually originated from the fact that
many distributions can be transformed in a natural way for large numbers
n to yield the distribution FN (x). Here we shall derive it from the binomial
distribution

Bk(n, p) =

(
n

k

)
pk (1− p)n−k , 0 ≤ k ≤ n ,

through extrapolation to large values of n at constant p.14 The transformation
from the binomial distribution to the normal distribution is properly done in
two steps (see also [34, pp.210-217]): (i) standardization and (ii) taking the
limit n→∞.

At first we make the binomial distribution comparable to the standard normal
density, ϕ(x) = e−x

2/2/
√
2π, by shifting the maximum towards x = 0 and

adjusting the width (figures 2.9 and 2.10). For 0 < p < 1 and q = 1 − p the
discrete variable k is replaced by a new variable ξ : 15

ξ =
k − np√
npq

; 0 ≤ k ≤ n .

14 This is different from an extrapolation performed in a previous section2.3.2 be-
cause the limit limn→∞ Bk(n, α/n) = πk(α) leading to the Poisson distribution was
performed for vanishing p = α/n.
15 The new variable ξ depends on k and n, but for short we dispense from subscripts.
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Fig. 2.9 A fit of the normal distribution to the binomial distribution. The
curves represent normal densities (red), which were fit to the points of the binomial
distribution (black). The three examples. Parameter choice for the binomial distribu-
tion: (n = 4, p = 0.5), (n = 10, p = 0.5), and (n = 10, p = 0.1), for the upper, middle,
and lower plot, respectively.
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Fig. 2.10 Standardization of the binomial distribution. The figure shows a
symmetric binomial distribution B(20, 1

2
), which is centered around µ = 10 (black,

full line). The transformation yields a binomial distribution centered around the origin
with unit variance: σ = σ2 = 1 (black, broken line). The pink continuous curve is a

normal density fN (x) = exp
(

− (x− µ)2/(2σ2)
)

/
√
2πσ2 with the parameters µ = 10

and σ2 = np(1 − p) = 5, and the broken pink line is a standardized normal density
ϕ(x) (µ = 0, σ2 = 1), respectively.

Instead of the variables Xk and Sk in equation (1.22’) new random variables,
X ∗
k and S∗n =

∑n
k=1 X ∗

k are introduced, which are centered around x = 0 and
adjusted to the width of a standard Gaussian, ϕ(x), by making use of the
expectation value, E(Sn) = np, and the standard deviation, σ(Sn) = √npq,
of the binomial distribution.

The theorem of deMoivre and Laplace states now that for k in a neighborhood
of k = np – |ξ| ≤ c with c being an arbitrary fixed positive constant – the
approximation

(
n

k

)
pkqn−k ≈ 1√

2πnpq
e−ξ

2/2 ; p+ q = 1, p > 0, , q > 0 (2.46’)

becomes exact in the sense that the ration of the l.h.s. to the r.h.s. converges to
one as n→∞ [76, sectionVII.3]. The convergence is uniform with respect to
k in the range specified above. In order to proof the convergence we transform
the l.h.s. by making use of Stirling’s formula, n! ≈ nne−n

√
2πn as n→∞:

(n

k

)

pkqn−k =
n!

k!(n− k)!
pkqn−k ≈

√

n

2πk(n− k)

(

( k

np

)−k(n− k

nq

)−(n−k)
)

.

Next we introduce the variable ξ and transform to the exponential function
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(
n

k

)
pkqn−k ≈ 1√

2πnpq

((
1 + ξ

√
q

np

)−k(
1− ξ

√
p

nq

)−(n−k))
=

=
1√

2πnpq
e
ln

((
1+ξ
√

q
np

)−k(
1−ξ
√

p
nq

)−(n−k)
)

,

and expansion of the logarithm yields

ln

((
1 + ξ

√
q

np

)−k(
1− ξ

√
p

nq

)−(n−k))
=

= −k ln

(
1 + ξ

√
q

np

)
− (n− k) ln

(
1− ξ

√
p

nq

)
.

Making use of the expansion ln(1±γ) ≈ ±γ−γ2/2±γ3/3−... , and truncation
after the second term, and inserting k = np+ξ

√
npq and n−k = nq−ξ√npq

we find

ln

((
1 + ξ

√
q

np

)−k(
1− ξ

√
p

nq

)−(n−k))
=

= − (np+ ξ
√
npq )

(
ξ

√
q

np
− ξ2 q

np
+ . . .

)
−

− (nq − ξ√npq )
(
−ξ
√

p

nq
− ξ2 p

nq
+ . . .

)
.

Evaluation of the expressions eventually yields

ln

((
1 + ξ

√
q

np

)−k(
1− ξ

√
p

nq

)−(n−k))
≈ − ξ

2

2

and thereby we have proved the conjecture (2.46’). ⊓⊔
A comparison of figures 2.9 and 2.10 shows that the convergence of the bi-
nomial distribution to the normal distribution is particularly effective in the
symmetric case, p = q = 0.5. The difference is substantially larger for p = 0.1.
A value of n = 20 is sufficient to make the difference hardly recognizable with
the unaided eye. Figure 2.10 shows also the effect of standardization on the
binomial distribution.

In the context of the central limit theorem (section 2.3.6) it is useful to
formulate the theorem of de Moivre and Laplace in a slightly different way:
The distribution of the standardized random variable S∗n with a binomial dis-
tribution converges in the limit of large numbers n to the normal distribution
ϕ(x) on any finite constant interval ] a, b] with a < b:
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lim
n→∞

P

((Sn − np√
npq

)
∈ ]a, b]

)
=

1√
2π

∫ b

a

e−x
2/2 dx . (2.46)

In the proof [34, p. 215-217] the definite integral
∫ b
a ϕ(x) dx is partitioned into

n small segments like in Riemannian integration: The segments still reflect
the discrete distribution. In the limit n→∞ the partition becomes finer and
eventually converges to the continuous function described by the integral.
In the sense in section 1.8.1 we are dealing with convergence to a limit in
distribution.
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2.3.6 Central limit theorem

In addition to the transformation of the binomial distribution into the nor-
mal distribution analyzed in the previous section 2.3.5 we have already en-
countered two cases where probability distributions approached the normal
distribution in the limit of large numbers n: (i) the distribution of scores for
rolling n dice simultaneously (section 1.9.1) and (ii) the Poisson distribution
(section 2.3.3). It is obvious to conjecture therefore that more general reg-
ularities concerning the role of the normal distribution in the limit of large
n should exist. The Russian mathematician Aleksandr Lyapunov pioneered
the formulation and derivation of such a generalization that got the name
central limit theorem (CLT) [189, 190]. Research on CLT has been continued
and practically completed by extensive studies during the entire twentieth
century [3, 259].

The central limit theorem comes in various stronger and weaker forms. We
mention here three of them:

(i) The so-called classical central limit theorem is commonly associated
with the names of the Finnish mathematician Jarl Waldemar Lindeberg [181]
and the French mathematician Paul Pierre Lévy [177], and is the most com-
mon version used in practice. In essence, the Lindeberg-Lévy central limit
theorem provides the generalization of the deMoivre-Laplace theorem (2.46)
that has been used in the previous section 2.3.5 to show the transition from
the binomial to the normal distribution in the limit n → ∞. This gener-
alization proceeds from Bernoulli variables to independent and identically

distributed (iid) random variables Xi. The distribution is arbitrary, need not
be specified and the only requirements are finite expectation value and vari-
ances: E(Xi) = µ < ∞ and var(Xi) = σ2 < ∞. Again we consider the sum
of n random variables, Sn =

∑n
i=1 Xi, standardize to yield X ∗

i and S∗n, and
instead of equation (2.46) we obtain

lim
n→∞

P

(Sn − nµ√
nσ

∈ ]a, b]
)

=
1√
2π

∫ b

a

e−x
2/2 dx. (2.47)

For every segment a < b the arbitrary initial distribution converges to the
normal distribution in the limit n → ∞. Although this is already an enor-
mous extension of the validity in the limit of the normal distribution, the
results can be made more general.

(ii) Lyapunov’s earlier version of the central limit theorem [189, 190] re-
quires only independent not necessarily identically distributes variables Xi
with finite expectation values, µi, and variances, σ2

i provided a criterium
called Lyapunov condition is fulfilled by the sum of variances s2n =

∑n
i=1 σ

2
1 ,

lim
n→∞

1

s2+δ

n∑

i=1

E
(
|Xi − µi|2+δ

)
= 0 , (2.48)



114 2 Statistics

then the sum
∑n

i=1(Xi−µi)/sn converges in distribution in the limit n→∞
to the standard normal variable:

1

sn

n∑

i=1

(Xi − µi)
d−→ N (0, 1) . (2.49)

Whether or not a given sequence of random variables fulfils the Lyapunov
condition is commonly checked in practice by setting δ = 1.

(iii) Lindeberg showed in 1922 [182] that a weaker condition than Lya-
punov’s condition is sufficient to guarantee the convergence in distribution to
the standard normal distribution:

lim
n→∞

1

s2n

n∑

i=1

E
(
(Xi − µi)2 · 1|Xi−µi|>ǫsn

)
= 0 , (2.50)

where 1|Xi−µi|>ǫsn is the indicator function (1.53) identifying the sample
space

{|Xi − µi| > ǫ sn} := {ω ∈ Ω : |Xi(ω)− µi| > ǫ sn} .
If a sequence of random variables satisfies Lyapunov’s condition it satisfies
also Lindeberg’s condition but the converse does not hold in general. Linde-
berg’s condition is sufficient but not necessary in general, and the condition
for necessity is

max
i=1,...,n

σ2
i

s2n
→ 0 as n→∞ ,

or, in other words, the Lindeberg condition is fulfilled if and only if the central
limit theorem holds.

The three versions of the central limit theorem are related to each other:
Lindeberg’s condition (iii) is the most general form and hence both the clas-
sical CLT (i) and the Lyapunov CLT (ii) can be derived as special cases from
(iii). It is worth noticing, however, that (i) does not follow necessarily from
(ii), because (i) requires a finite second moment whereas the condition for (ii)
are finite moments of order (2 + δ).

In summary the central limit theorem for a sequence of independent ran-
dom variables Sn =

∑n
i=1 Xi with finite means, E(Xi) = µi < ∞, and vari-

ances, var(Xi) = σ2
i <∞ states that the sum Sn converges in distribution to a

standardized normal random variable N (0, 1) without any further restriction
on the distributions.

The literature on the central limit theorem is enormous and several proofs
with many variants have been derived (see, for example, [33]). We shall
present here only a short proof of the CLT in the from of equation (2.47)
that demonstrates the usefulness of characteristic functions (section 2.2.3;
[34, pp. 222-224]). We assume a sequence Sn =

∑n
i=1 Xi of independent and

identically distributed random variables Xi with finite means E(Xi) = µ and
variances var(Xi) = σ2, where the nature of the distribution needs not to
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be specified except the existence of finite mean and variance. The first step
towards a proof of the central limit theorem is the transformation of vari-
ables shifting the maximum to the origin and adjusting the width of the
distribution to var(S) = 1:

X ∗
j =

Xj − E(Xj)
σ(Xj)

and S∗n =
Sn − E(Sn)
σ(Sn)

=
1√
n

n∑

j=1

X ∗
j . (2.51)

The values for the first and second moments of the sequence are: E(Sn) = nµ
and σ(Sn) =

√
nσ. If V is the finite interval ]a, b] then the central limit

theorem states that F (V) = F (b)−F (a) for any distribution function F and
we can write the central limit theorem in compact form

lim
n→∞

Fn(V) = FN (V) , (2.52)

and in particular, for any interval ]a, b] with a < b the limit

lim
n→∞

P

(Sn − nµ√
nσ

∈ ]a, b]
)

=
1√
2π

∫ b

a

e−x
2/2 dx. (2.47’)

is fulfilled. The proof of the central limit theorem makes use of the charac-
teristic function for the unit normal distribution with µ = 0 and σ2 = 1:

φN (s) = exp(ı
.
ıµ s − 1

2
σ2 s2) = e−s

2/2 = ϕ(s) . (2.43’)

We assume that for every s the characteristic function for Sn converges to
the characteristic function φ(s),

lim
n→∞

φn(s) = ϕ(s) = e−s
2/2 .

Since φn(s) are the characteristic functions associated with an arbitrary dis-
tribution function Fn(x) follows for every x

lim
n→∞

Fn(x) = FN (x) =
1√
2π

∫ x

−∞
e−u

2/2du ., (2.53)

The deMoivre-Laplace theorem (section 2.3.5), for example, follows as a spe-
cial case.

Characteristic functions φ(s) of random variables X with mean zero,
µ = 0, and variance one, σ2 = 1, have the Taylor expansion

φ(s) = 1 − s2

2

(
1 + ε(s)

)
with lim

s→0
ε(s) = 0

at s = 0 and truncation after the second term. In order to prove this equation
we start from the full Taylor expansion up to the second term:
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φ(s) = φ(0) + φ′(0) s +
φ′′(0)
2

s2
(
1 + ε(s)

)
.

From φ(s) = E(eı
.
ısX ) follows by differentiation

φ′(s) = E
(
ı
.
ıX eı.ısX

)
and φ′′(s) = E

(
−X 2 eı

.
ısX )

and hence φ′(0) = E(ı
.
ıX ) = 0 and φ′′(0) = E(−X 2) = −1 yielding the

equation given above.
Next we consider the characteristic function of S∗n:

E
(
exp(ı

.
ısS∗n)

)
= E

(
exp
(
ı
.
ıs
(∑n

j=1
X ∗
j

)
/
√
n
))

Since all random variables have the same distribution, the right hand side of
the equation can be factorized and yields

E
(
eı
.
ıs
(
∑n

j=1 X ∗
j

)
/
√
n
)

= E
(
eı
.
ısX ∗

j /
√
n
)n

= φ
( s√

n

)n
,

where φ(s) is the characteristic function of the random variable Xj . Insertion
into the expression for the Taylor series yields now

φ
( s√

n

)
= 1 − s2

2n

(
1 + ε

( s√
n

))
.

Herein the number n is approaching infinity whereas s is fixed:

lim
n→∞

E
(
eı
.
ısS∗

n

)
= lim

n→∞

(
1 − s2

2n

(
1 + ε

( s√
n

)))n
= e−s

2/2 . (2.54)

For taking the limit in the last step of the derivation we recall the summation
of infinite series,

lim
n→∞

(
1− αn

n

)n
= e−α for lim

n→∞
αn = α , (2.55)

and remark that this is a stronger result than the convergence of the conven-
tional exponential series, limn→∞(1 − α/n)n = e−α. Thus, we have shown
that the characteristic function of the normalized sum of random variables,
S∗n, converges to the characteristic function of the standard normal distribu-
tion and therefore by equation (2.53) the distribution Fn(x) converges to the
unit normal distribution FN (x) and the validity of (2.52) follows straightfor-
wardly. ⊓⊔

Contrasting the rigorous mathematical derivation, simple practical appli-
cations used in large sample theory of statistics turn the central limit theorem
encapsulated in equation (2.54) into a rough approximation
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P (σ
√
nx1 < Sn − nµ < σ

√
nx2) ≈ FN (x2) − FN (x1) (2.56)

or for the spread around the sample mean µ by setting x1 = −x2

P (|Sn − nµ| < σ
√
nx) ≈ 2FN (x) − 1 . (2.56’)

For practical purposes equation (2.56) has been used in pre-computer time

together with extensive tabulations of the functions FN (x) and F−1
N (x), which

are still found in statistics textbooks.

2.3.7 Law of large numbers

The law of large numbers is derived as a straightforward consequence of the
central limit theorem (2.47) [34, pp.227-233]. For any fixed but arbitrary
constant c > 0 we have

lim
n→∞

P

(∣∣∣∣
Sn
n
− µ

∣∣∣∣ < c

)
= 1 . (2.57)

The constant c is fixed and therefore we can define a positive constant ℓ that
fulfils ℓ < c

√
n/σ and for which

{∣∣∣∣
Sn − nµ√

nσ

∣∣∣∣ < ℓ

}
implies

{∣∣∣∣
Sn − nµ

n

∣∣∣∣ < c

}
,

and hence,

P

(∣∣∣∣
Sn − nµ√

nσ

∣∣∣∣ < ℓ

)
≤ P

(∣∣∣∣
Sn − nµ

n

∣∣∣∣ < c

)
,

provided n is sufficiently large. Now we choose a symmetric interval a = −ℓ
and b = +ℓ for the integral and the l.h.s. of the inequality according to (2.47)

converges to
∫ +ℓ

−ℓ exp(−x2/2)dx/
√
2π in the limit n → ∞. For any δ > 0 we

can choose ℓ so large that the value of the integral exceeds 1− δ and we get

P

(∣∣∣∣
Sn
n
− µ

∣∣∣∣ < c

)
= 1 − δ (2.58)

for sufficiently large values of n and this proves that the law of large numbers
(2.57) is a corollary of (2.47). ⊓⊔

Related to and a consequence of equation (2.57) is Chebyshev’s inequality
for random variables X that have a finite second moment, which is named
after the Russian mathematician Pafnuty Lvovich Chebyshev :

P (|X | ≥ c) ≤ E(X 2)

c2
(2.59)



118 2 Statistics

and which is true for any constant c > 0. We dispense here from a proof that
is found in [34, pp. 228-233].

By means of Chebyshev’s inequality the law of large numbers (2.57) can
extended to a sequence of independent random variables Xj with different
expectation values and variances, E(Xj) = µ(j) and σ2(Xj) = σ 2

j , with the

restriction that there exists a constant Σ2 <∞ such that σ 2
j ≤ Σ2 is fulfilled

for all Xj . Then we have for each c > 0:

lim
n→∞

P

(∣∣∣∣
X1 + . . .+ Xn

n
− µ(1) + . . .+ µ(n)

n

∣∣∣∣ < c

)
= 1 . (2.60)

The main message of the law of large numbers is that for a sufficiently large
numbers of independent events the statistical errors in the sum will vanish
and the mean converges to the exact expectation value. Hence, the law of
large numbers provides the basis for the assumption of convergence in math-
ematical statistics (section 2.5).

2.3.8 Law of the iterated logarithm

The law of the iterated logarithm consists of two asymptotic regularities of
the sums of random variables, which are related to the central limit theorem
and the law of large numbers, and in a way complete the predictions of both.
The name of the law points at the appearance of the function ’log log’ in the
forthcoming expressions – it does not refer to the notion of iterated logarithm
in computer science16 – and the derivation is attributed to the two Russian
scholars of mathematics Aleksandr Khinchin and Andrey Kolmogorov [160,
166] and the proof for more general case used here was provided later [73, 122].
The law of the iterated logarithm provides upper and lower bounds for the
values of sums of random variables and in this ways confines the size of
fluctuations.

For a sum of n independent and identically distributed (iid) random vari-
ables with expectation value E(Xi) = µ and finite variance var(X ) = σ2 <∞,

Sn = X1 + X1 + . . . + Xn ,

16 In computer science the iterated logarithm of n is commonly written log∗ n and
represents the number of times the logarithmic function must be iteratively applied
before the result is is less than or equal to one:

log∗
.
=

{

0 if n ≤ 1 ,

1 + log∗(log n) if n > 1 .

The iterated logarithm is well defined for base ’e’, for base ’2’ and in general for any
base greater than e1/e = 1.444667... .
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Fig. 2.11 Illustration of the law of the iterated logarithm..

the following two limits are fulfilled with probability one:

lim sup
n→∞

Sn − nµ√
2n ln(ln n)

= + |σ| and (2.61a)

lim inf
n→∞

Sn − nµ√
2n ln(ln n)

= − |σ| . (2.61b)

The two theorems 2.61 are equivalent and this follows directly from the sym-
metry of the standardized normal distribution, N (0, 1). We dispense here
from the presentation of a proof for the law of the iterated logarithm that
can be found, for example, in a monograph by Henry McKean [201] or in a
publication by William Feller [73]. For the purpose of illustration we com-
pare with the already mentioned heuristic

√
n-law (see section 1.1), which

is based on the properties of the standardized binomial distribution B(n, p)
with p = 1

2 (section 2.3.2): The variance is to σ2 = np(1 − p) = n/4 and
accordingly we have 2σ/n = 1/

√
n and accordingly most values of Sn − nµ

lie in the interval −|σ| ≤ Sn ≤ +|σ|. The corresponding result from the law
of the iterated logarithm is

−
√

2 ln (ln n)

n
≤ Sn ≤ +

√
2 ln (ln n)

n

with probability one. One particular case of iterated Bernoulli trials – tosses
of a fair coin, is shown in figure 2.11, where the envelope of the sum Sn of the
cumulative score of n trials, ±

√
2 ln(lnn)/n is compared with the results of

the square root n law, µ± σ = ±
√
1/n.

The special importance of the results of the law of the iterated logarithm
for the Wiener process will be discussed later (section 3.2.3.2).

In essence, we may summarize the results of this section in three state-
ments, which are part of large sample theory: For independent and iden-
tically distributed (iid) random variables Xi with Sn =

∑n
i=1 Xi with

E(Xi) = E(X ) = µ and finite variance var(Xi) = σ < ∞ we have the
three large sample results:

(i) the law of large numbers : Sn → nE(X ) = nµ ,

(ii) the law of the iterated logarithm:




lim sup (Sn−nµ)√

2n ln(lnn)
→ +|σ|

lim inf (Sn−nµ)√
2n ln(lnn)

→ −|σ| , and

(iii) the central limit theorem: 1√
n

(
Sn − nE(X )

)
→ N (0, 1) .

The theorem (i) defines the limit of the expectation value, theorem (ii) de-
termines the size of fluctuations and theorem (iii), eventually, refers to the
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limiting distribution function, which turns out to be the normal distribution.
All three theorems can be extended in their range of validity to independent
random variables with arbitrary distributions provided mean and variance
are finite.
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Fig. 2.12 The log-normal distribution. The log-normal distribution, lnN (µ, σ),
is defined on the positive real axis, x ∈]0,∞[ and has the probability density (pdf)

flnN (x) = exp
(

−(ln x− µ)2/(2σ2)
) /

(x
√
2πσ2)

and the cumulative distribution function (cdf)

FlnN (x) =

(

1 + erf
(

(lnx− µ)/
√
2σ2

)

)

/

2 .

The two parameters are confined by the relations µ ∈ R and σ2 > 0. Parameter
choice and color code: µ = 0, σ =0.2 (black), 0.4 (red), 0.6 (green), 0.8 (blue), and
1.0 (yellow).
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2.4 Further probability distributions

In the previous section 2.3 we presented the three most relevant probability
distributions: (i) the Poisson distribution because it describes the distribu-
tion of occurrence of independent events, (ii) the binomial distribution dealing
with independent trials with two outcomes, and (iii) the normal distribution
being the limiting distribution of large numbers of individual events irrespec-
tively of the statistics of single events. In this section we shall discuss seven
more or less arbitrarily selected distributions, which play an important role
in science and/or in statistics. The presentation here is inevitably rather brief
and for reading of a detailed treatise we refer to [148, 149].

2.4.1 The log-normal distribution

The log-normal distribution in a continuous probability distribution of a ran-
dom variable Y with a normally distributed logarithm. In other words, if
X = logY is normally distributed then Y = exp(X ) has a log-normal dis-
tribution. Accordingly Y can take on only positive real values. Historically,
this distribution had several other names the most popular of them being
Galton’s distribution named after the pioneer of statistics in England, Fran-
cis Galton or McAlister’s distribution after the statistician Donald McAlister
[148, chap. 14, pp. 207-258].

The log-normal distribution meets the need for modeling empirical data
that show frequently observed deviation from the conventional normal dis-
tribution: (i) meaningful data are non-negative, (ii) positive skew implying
that there are more values above then below the maximum of the probabil-
ity density function (pdf), and (iii) more obvious meaning of the geometric
rather than the arithmetic mean [90, 199]. Despite its obvious usefulness and
applicability to problems in science, economics, and sociology the log-normal
distribution is not popular among non-statisticians [179].

The log-normal distribution contains two parameters, lnN (µ, σ2) with µ ∈
R and σ2 ∈ R>0, and is defined on the domain x ∈]0,∞[. The density function
and the cumulative distribution (cdf) are given by (figure 2.12):

pdf : f lnN (x) =
1

x
√
2πσ2

exp
(
− (lnx− µ)2

2σ2

)

cdf : F lnN (x) =
1

2

(
1 + erf

( lnx− µ√
2σ2

))
.

(2.62)

By definition the logarithm of the variable X is normally distributed, and
this implies

X = eµ+σZ ,



2.4 Distributions II 123

where N is a standard normal variable. The moments of the log-normal dis-
tribution are readily calculated17

mean : eµ+σ
2/2 ,

median : eµ ,

mode : eµ−σ
2

,

variance : (eσ
2 − 1) e2µ+σ

2

, (2.63)

skewness : (eσ
2

+ 2)
√
eσ2 − 1 , and

kurtosis : e4σ
2

+ 2e3σ
2

+ 3e2σ
2 − 6 .

The skewness γ1 is always positive and so is the excess kurtosis since σ2 = 0
yields γ2 = 0, and σ2 > 0 implies γ2 > 0.

The entropy of the log-normal distribution is

H(f lnN ) =
1

2

(
1 + ln(2πσ2) + 2µ

)
. (2.64)

Like the normal distribution has the maximum entropy of all distribution
defined on the real axis, x ∈ R, the log-normal distribution is the maximum
entropy probability distribution for a random variable X for which mean and
variance of lnX is fixed.

Finally, we mention that the log-normal distribution can be well approxi-
mated by a distribution [273]

F (x; µσ) =

((eµ
x

)π/(σ√3)

+ 1

)−1

that has integrals that can be expressed in terms of elementary functions.

2.4.2 The χ2-distribution

The χ2-distribution also written as chi-squared distribution is one of the most
frequently used distribution in inferential statistics for hypothesis testing and
construction of confidence intervals. In particular, the χ2 distributions is ap-
plied in the common χ2-test for the quality of the fit of an empirically deter-
mined distribution to a theoretical one (section 2.5.2). Many other statistical
tests are based on the χ2-distribution as well.

17 Here and in the following listings for other distributions t’t’kurtosis” stands for
excess kurtosis γ2 = β2 − 3 = µ4

/

σ4.
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Fig. 2.13 The χ2 distribution. The chi-squared distribution, χ2
k , k ∈ N, is defined

on the positive real axis, x ∈ [0,∞[, with the parameter k called the number of the
degrees of freedom, has the probability density (pdf)

fχ2
k
(x) = x

k
2
−1e−

x
2

/

(

2
k
2 Γ
(

k
2

)

)

and the cumulative distribution function (cdf)

Fχ2
k
(x) = γ

(

k
2
, x
2

)

/

Γ
(

k
2

)

.

Parameter choice and color code: k =1 (black), 1.5 (red), 2 (yellow), 2.5 (green), 3
(blue), 4 (magenta) and 6 (cyan). Although k, the number of degrees of freedom, is
commonly restricted to integer values, we show here also the curves for two interme-
diate values (k=1.5, 2.5).
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The chi-squared distribution, χ2
k,

18 is the distribution of a random variable
Q, which is given by the sum of the squares of k independent, standard normal
variables with distribution N (0, 1)

Q =

k∑

i=1

X 2
i , (2.65)

where the only parameter of the distribution, k, is called the number of the
degrees of freedom being tantamount to the number of independent variables
Xi. Q is defined on the positive real axis (including zero), x ∈ [0,∞[ and has
the following density function and cumulative distribution (figure 2.13):

pdf : fχ2(x) =
x

k
2
−1 e−

x
2

2
k
2

, x ∈ R≥0 and

cdf : Fχ2 (x) =
γ
(
k
2 ,

x
2

)

Γ
(
k
2

) = P

(
k

2
,
x

2

)
.

(2.66)

where γ(k, z) is the lower incomplete Gamma function and P (k, z) is the
regularized Gamma function. The special case with k = 2 has the particularly
simple form: Fχ2(x; 2) = 1− e− x

2 .
The conventional χ2-distribution is sometimes denoted as central χ2-

distribution in order to distinguish it from the noncentral χ2-distribution,
which is derived from k independent and normally distributed variables with
means µi and variances σ2

i . The random variable

Q =

k∑

i=1

(Xi
σi

)2

is distributed according to the noncentral χ2-distribution χ2
k(λ) with two

parameters, k and λ, where λ =
∑k

i=1(µi/σi)
2 is the noncentrality parameter.

The moments of the central χ2
k-distribution are readily calculated

18 The chi-squared distribution is sometimes written χ2(k) we prefer the subscript
since the number of degrees of freedom, the parameter k, specifies the distribution.
Often the random variables Xi fulfil a conservation relation and then the number of
independent variables is reduced to k − 1, and we have χ2

k−1 (section 2.5.2).
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Fig. 2.14 Student’s t-distribution. Student’s distribution is defined on the real
axis, x ∈] − ∞,+∞[, with the parameter r ∈ N>0 called the number of degrees of
freedom, has the probability density (pdf)

fstud(x) =
Γ
(

r+1
2

)

√
πrΓ

(

r
2

)

(

1 + x2

r

)
r+1
2

and the cumulative distribution function (cdf)

Fstud(x) =
1
2
+ xΓ

(

r + 1
2

)

· 2F1

(

1
2
, r+1

2
, 3
2
,−x2

r

)

√
πrΓ ( r

2 )
.

The first curve (magenta, r = 1) represents the density of the Cauchy-Lorentz dis-
tribution (figure 2.17). Parameter choice and color code: r =1 (magenta), 2 (blue), 3
(green), 4 (yellow), 5 (red) and +∞ (black). The black curve representing the limit
r →∞ of Student’s distribution is the standard normal distribution.
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mean : k ,

median : ≈ k
(
1− 2

9k

)3
,

mode : max{k − 2 , 0} ,
variance : 2k , (2.67)

skewness :
√
8/k , and

kurtosis : 12/k .

The skewness γ1 is always positive and so is the excess kurtosis γ2. The
raw moments µ̂n = E(Qn) and the cumulants of the χ2

k-distribution have
particularly simple expressions:

E(Qn) = µ̂n = k(k + 2)(k + 4) · · · (k + 2n − 2) = 2n
Γ
(

n+ k
2

)

Γ
(

k
2

) and (2.68)

κn = 2n−1 (n− 1)! k . (2.69)

The entropy of the χ2
k-distribution is readily calculated by integration:

H(fχ2) =
k

2
+ ln

(
2Γ
(k
2

))
+
(
1− k

2

)
· ψ
(

k

2

)
, (2.70)

where ψ(x) = d
dx lnΓ (x) is the digamma function.

The χ2
k-distribution has a simple characteristic function

φχ2(s) = (1 − 2ı
.
ı s)−k/2 . (2.71)

The moment generating function is defined only for s < 1
2 :

Mχ2(s) = (1 − 2 s)−k/2 for s <
1

2
. (2.72)

Because of its central importance for tests of significance numerical tables
of the χ2-distribution are found in almost every textbook of mathematical
statistics.

2.4.3 Student’s t-distribution

Student’s t-distribution has a remarkable history. It has been discovered by
the famous English statistician William Sealy Gosset who published his works
under the pen name Student [234]. Gosset was working at the brewery of
Arthur Guinness in Dublin, Ireland, where it was forbidden to publish any
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paper regardless of the contained information, because Guinness was afraid
that trade secrets and other confidential information could be disclosed. Al-
most all of Gosset’s paper including the one describing the t-distribution
were published under the pseudonym“Student” [272]. Gosset’s work has been
known to and was supported by Karl Pearson but it was Ronald Fisher who
appreciated the importance of Gosset’s work on small samples [81].

Student’s t-distribution is a family of continuous, normal probability distri-
butions that applies to situations when the sample size is small, the variance is
unknown and one wants to derive a reliable estimate of the mean. Student’s
distribution plays a role in a number of commonly used tests in analyzing
statistical data an example being Student’s test accessing the significance of
differences between two sample means – for example to find out whether or
not a difference in mean body height between basketball players and soc-
cer players is significant – or the construction of confidence intervals for the
difference between population means. In a way Student’s t-distribution is re-
quired for higher order statistics in the sense of a statistics of statistics, for
example, to estimate, how likely it is to find the true mean within a given
range around the finite sample mean (section 2.5). In other words, n sam-
ples are taken from a population with a normal distribution having fixed but
unknown mean and variance, the sample mean and the sample variance are
computed from these n points and the t-distribution is the distribution of
the location of the true mean relative to the sample mean, calibrated by the
sample standard deviation.

To make the meaning of Student’s t-distribution precise we assumes n
independent random variables Xi, i = 1, . . . , n drawn from the same popula-
tion which is normally distributed with mean value E(Xi) = µ and variance
var(Xi) = σ2. Then the sample mean and the unbiased sample variance are
the random variables

Xn =
1

n

n∑

i=1

Xi and S2n =
1

n− 1

n∑

i=1

(Xi −Xn)2 .

As follows from Cochran’s theorem [35] the random variable V = (n−1)S2n/σ2

follows a χ2-distribution with r = n − 1 degrees of freedom. The deviation
of the sample mean from the population mean is properly expressed by the
variable

Z = (X n − µ)
√
n

σ
, (2.73)
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which is the basis for the calculation of z-scores.19 The variable Z is normally
distributed with mean zero and variance one as follows from the fact that the
sample mean Xn obeys a normal distribution with mean µ and variance
σ2/n. In addition, the two random variables Z and V are independent, and
the pivotal quantity20

T :=
Z√

V/(n− 1)
= Xn − µ)

√
n

Sn
(2.74)

follows a Student’s t-distribution, which depends on the degrees of freedom
r = n− 1 but neither on µ nor on σ.

Student’s distribution is a one parameter distribution with r being the
number of sample points or the so-called degree of freedom. It is symmetric
and bell-shaped like the normal distribution but the tails are heavier in the
sense that more values fall further away from the mean. Student’s distribution
is defined on the real axis, x ∈] − ∞,+∞[ and has the following density
function and cumulative distribution (figure 2.14):

pdf : fstud(x) =
Γ
(
r + 1
2

)

√
πr Γ

( r
2

)
(
1 +

x2

r

)−r + 1
2

, x ∈ R and

cdf : Fstud(x) =
1

2
+ x Γ

(
r + 1

2

)
·
2F1

(
1
2 ,

r + 1
2 , 32 ,−x2

r

)

√
πr Γ

(r
2

) .

(2.75)

where 2F1 is the hypergeometric function. The t-distribution has simple ex-
pressions for several special cases:

(i) r = 1, Cauchy-distribution: f(x) = 1
π(1+x2) , F (x) =

1
2 + 1

π arctan(x) ,

(ii) r = 2: f(x) = 1

(2+x2)
3
2
, F (x) = 1

2

(
1 + x√

2+x2

)
,

(iii) r = 3: f(x) = 6
√
3

π(3+x2)2 , F (x) =
1
2 +

√
3x

π(3+x2) +
1
π arctan

(
x√
3

)
,

(iv) r =∞, normal distribution: f(x) = ϕ(x) = 1√
2π
e−

x2

2 , F (x) = Φ(x) .

Formally the t-distribution represents an interpolation between the Cauchy-
Lorentz distribution (section 2.4.6) and the normal distribution both stan-
dardized to mean zero and variance one. In this sense it has a lower maximum
and heavier tails than the normal distribution and a higher maximum and
less heavy tails than the Cauchy-Lorentz distribution.

19 In mathematical statistics (section 2.5) the quality of measured data is often
characterized by scores. The z-score of a sample corresponds to the random variable Z
(2.73) and it is measured in standard deviations from the population mean as unites.
In bone densitometry this evaluation relative to the peak bone mass it is often replaced
by a so-called T -value that measures the bone density of an individual relative to the
mean within a subpopulation consisting of his age group.
20 A pivotal quantity or a pivot is a function of measurable and unmeasurable param-
eters whose probability distribution does not depend on the unknown parameters.
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Fig. 2.15 The exponential distribution. The exponential distribution is defined
on the real axis including zero, x ∈ [0,+∞[, with the parameter λ ∈ R>0 called the
rate parameter, and has the probability density (pdf)

fexp(x) = λ exp(−λx)
and the cumulative distribution function (cdf)

Fexp(x) = 1− exp(−λx) .
Parameter choice and color code: λ =0.5 (black), 2 (red), 3 (green), and 4 (blue).
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The moments of Student’s distribution are readily calculated

mean : 0, for r > 1, otherwise undefined ,

median : 0 ,

mode : 0 ,

variance :





∞ for 1 < r ≤ 2 ,
r

r − 2 for r > 2 ,

undefined otherwise ,

(2.76)

skewness : 0, for r > 3, otherwise undefined , and

kurtosis :





∞ for 2 < r ≤ 4 ,
6

r − 4 for r > 4 ,

undefined otherwise .

If the variance of Student’s distribution is defined it is larger one the variance
of the standard normal distribution. In the limit of infinite degrees of freedom
Student’s distribution converges to the standard normal distribution and so
does the variance, inevitably: limr→∞ r

r − 2 = 1. Student’s distribution is
symmetric and hance the skewness γ1 is either zero or undefined, and the
excess kurtosis γ2 is undefined or positive and converges to zero in the limit
r →∞.

The raw moments µ̂n = E(T n) of the t-distribution have fairly simple
expressions:

E(T k) =





0 k odd , 0 < k < r ,
1√

π Γ
(

r
2

) r
k
2 Γ

(
k+1
2

)
Γ
(
r−k
2

)
k even , 0 < k < r ,

undefined k odd , 0 < r ≤ k ,
∞ k even , 0 < r ≤ k .

(2.77)

The entropy of Student’s t-distribution is readily calculated by integration:

H(fstud) =
k + 1

2

(
ψ
(1 + r

2

)
− ψ

(r
2

))
+ ln

(√
r B
(r
2
,
1

2

))
, (2.78)

where ψ(x) = d
dx lnΓ (x) is the digamma function and

B(x, y) =
∫ 1

0 t
x−1(1− t)y−1 dt is the beta function.

Student’s-distribution has the characteristic function

φstud(s) =
Kr/2(

√
r |s|) · (√r |s|)r/2

2
r
2
−1 · Γ

( r
2

) for r > 0 . (2.79)
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where Kα(x) is a modified Bessel function.

2.4.4 The exponential and the geometric distribution

The exponential distribution is a family of continuous probability distribu-
tions, which describe the distribution of the time intervals between events in
a Poisson process (section 3.2.3.5), which is a process where the number of
events in any time interval has a Poisson distribution.21 The Poisson process
is a process where events occur steadily, independently of each other and at a
constant average rate λ ∈ R>0, which is the only parameter of the exponential
distribution (and the Poisson process).

The exponential distribution has widespread applications in science and
sociology. It describes the time to decay of radioactive atoms, other irre-
versible first order processes in chemistry and biology, the waiting times in
all kinds of queues from independently acting customers, the time to failure
of components with constant failure rates, and many other events.

The exponential distribution is defined on the positive real axis, x ∈ [0,∞[,
with a positive rate parameter λ ∈]0,∞[. The density function and cumulative
distribution are of the form (figure 2.15):

pdf : fexp(x) = λ exp(−λx), x ∈ R>0 and

cdf : Fexp(x) = 1 − exp(−λx), x ∈ R>0 .
(2.80)

The moments of exponential distribution are readily calculated

mean : λ−1 = µ ,

median : λ−1 ln 2 ,

mode : 0 ,

variance : λ−2 , (2.81)

skewness : 2 , and

kurtosis : 6 .

A commonly used alternative parametrization uses a survival parameter β =
µ = λ−1 instead of the rate parameter, and survival is often measured in
terms of half-life, which is the expectation value of the time when one half
of the events have taken place – for example 50% of the atoms have decayed

21 It is important to distinguish the exponential distribution and the class of expo-
nential families of distributions, which comprises many other distributions like the
normal distribution, the Poisson distribution, the binomial distribution and many
others [62].
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– and represents just another name for the median: µ = β ln 2 = ln 2/λ. The
exponential distribution provides an easy to verify test case for the median-
mean inequality:

|E(X )− µ| =
1 − ln 2

λ
<

1

λ
= σ .

The raw moments of the exponential distribution are given simply by

E(Xn) = µ̂n =
n!

λn
. (2.82)

Among all probability distribution with the support [0,∞[ and mean µ the
exponential distribution with λ = 1/µ has the largest entropy (section 2.1.3):

H(fexp) = 1 − logλ = 1 + logµ . (2.20’)

The moment generation function of the exponential distribution is

Mexp(s) =
(
1 − s

λ

)−1

, (2.83)

and the characteristic function is

φexp(s) =

(
1 − ı

.
ı s

λ

)−1

. (2.84)

Finally, we mention a property of the exponential distribution that makes
it unique among all continuous probability distributions: It is memory-

less . Memorylessness can be encapsulated in an example called ”hitchhiker’s
dilemma”: Waiting for hours on a lonely road does not increase the probabil-
ity of arrival of the next car. Cast into probabilities this means for a random
variable T :22

P (T > s+ t |T > s) = P (T > t) ∀ s, t ≥ 0 . (2.85)

In other words, the probability of arrival does not change no matter how
many events have happened.

The discrete analogue to the exponential distribution is the geometric dis-
tribution. Considered is a sequence of independent Bernoulli trials with p
being the probability of success and the only parameter of the distribution:
0 < p ≤ 1. The random variable X ∈ N is the number of trials before the
first success.

The probability mass function and the cumulative distribution function of
the geometric distribution are:

22 We remark that memoryless is not tantamount to independence. Independence
would require P (T > s+ t | T > s) = P (T > s+ t).
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Fig. 2.16 The logistic distribution. The logistic distribution is defined on the
real axis, x ∈] − ∞,+∞[, with two parameters, the location µ ∈ R and the scale
b ∈ R<0, has the probability density (pdf)

flogist(x) =
e−(x−µ)b

b (1+e−(x−µ)/b)2

and the cumulative distribution function (cdf)
Flogist(x) =

1
1+e−[x−µ)/b .

Parameter choice and color code: µ = 2, b =1 (black), 2 (red), 3 (yellow), 4 (green),
5 (blue) and 6 (magenta).
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pmf : fgeom
k;p = p · (1− p)k, k ∈ N and

cdf : F geom
k;p = 1 − (1− p)k+1), k ∈ N .

(2.86)

The moments of geometric distribution are readily calculated

mean :
1− p
p

,

median : λ−1 ln 2 ,

mode : 0 ,

variance :
1− p
p2

, (2.87)

skewness :
2− p√
1− p , and

kurtosis : 6 +
p2

1− p .

Like the exponential distribution the geometric distribution is lacking mem-
ory in the sense of equation (2.85). The information entropy has the form

H(fgeom
k;p ) = − 1

p

(
(1− p) log(1 − p) + p log p

)
. (2.88)

Finally, we present the moment generating function and the characteristic
function of the geometric distribution:

Mgeom(s) =
p

1− (1 − p) exp(s) and (2.89)

φgeom(s) =
p

1− (1 − p) exp(ı.ı s) , (2.90)

respectively.

2.4.5 The logistic distribution

The logistic distribution is commonly used as a model for growth with limited
resources. It is applied, for example, in economics to model the market pene-
tration of a new product, in biology for population growth in an ecosystem, in
agriculture for the expansion of agricultural production or to weight gain in
animal fattening. It is a continuous probability distribution with two param-
eters, the position of the mean µ and the scale b. The cumulative distribution
function of the logistic distribution is the logistic function.
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The logistic distribution is defined on the real axis, x ∈] +∞,∞[, with
two parameters, the position of the mean µ ∈ R and the scale b ∈ R>0. The
density function and cumulative distribution are of the form (figure 2.16):

pdf : flogist(x) = λ exp(−λx), x ∈ R>0 and

cdf : Flogist(x) = 1 − exp(−λx), x ∈ R>0 .
(2.91)

The moments of logistic distribution are readily calculated

mean : µ ,

median : µ ,

mode : µ ,

variance :
π2 b2

3
, (2.92)

skewness : 0 , and

kurtosis :
6

5
.

A frequently used alternative parametrization uses the variance as parameter,
σ = πb/

√
3 or b =

√
3σ/π. The density and the cumulative distribution can

be expressed also in terms of hyperbolic functions

flogist(x) =
1

4b
sech2

(
x− µ
2b

)
and Flogist(x) =

1

2
+

1

2
tanh

(
x− µ
2b

)
.

The logistic distribution resembles the normal distribution and like Student’s
distribution the logistic distribution has heavier tails and a lower maximum
than the normal distribution. The entropy takes on the simple form

H(flogist) = log b + 2 . (2.93)

The moment generating of the logistic distribution is

Mlogist(s) = exp(µs)B(1− bs, 1 + bs , (2.94)

for |bs| < 1 and B(x, y) being the Beta function. The characteristic function
is

φlogist(s) =
πbs exp(ı

.
ı µs)

sinh(πbs)
. (2.95)
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Fig. 2.17 Cauchy-Lorentz density and distribution. In the two plots the
Cauchy-Lorentz distribution, C(δ, γ), is shown in from of the probability density

fC(x) = γ
/

(

π
(

(x− δ)2 + γ2
)

)

and the probability distribution

FC(x) = 1
2 + arctan

(

(x− δ)/γ
)

/

π .

Choice of parameters: δ = 6 and γ = 0.5 (black), 0.65 (red), 1 (green), 2 (blue) and
4 (yellow).
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Fig. 2.18 Comparison of Cauchy-Lorentz and normal density.The plots com-
pare the Cauchy-Lorentz density, C(δ, γ) (full lines), and the normal density N (µ, σ2)
(broken lines). In the flanking regions the normal density decays to zero much faster
than the Cauchy-Lorentz density, and this is the cause of the abnormal behavior of
the latter. Choice of parameters: δ = µ = 6 and γ = σ2 = 0.5 (black), 1 (red).

2.4.6 The Cauchy-Lorentz distribution

The Cauchy-Lorentz distribution C(γ, δ) is a continuous distribution with two
parameters, the position δ and the scale γ. It is named after the French math-
ematician Augustin Louis Cauchy and the Dutch physicist Hendrik Antoon
Lorentz and is important in mathematics and in particular in physics where
it occurs as the solution to the differential equation for forced resonance. In
spectroscopy the Lorentz curve is used for the description of spectral lines that
are homogeneously broadened. The Cauchy distribution is a typical heavy-
tailed distribution in the sense that larger values of the random variable are
more likely to occur in the right tail than in the exponential distribution.
Heavy-tailed distributions may also have heavy left tails, or both tails may
be heavy as in the Cauchy distribution. As we shall see in section 3.2.4 the
Cauchy distribution is a stable distribution and can be partitioned into a sum
of Cauchy distributions.

The Cauchy probability density function and the cumulative probability
distribution are of the form (figure 2.17)
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pdf : fC(x) =
1

π γ
· 1

1 +
(
x−δ
γ

)2 =

=
1

π
· γ

(x− δ)2 + γ2
x ∈ R and

cdf : FC(x) =
1

2
+

1

π
arctan

(
x− δ
γ

)
.

(2.96)

The two parameters define the position of the peak, δ, and the width of the
distribution, γ (figure 2.17). The peak height or amplitude is 1/(πγ). The
function FC(x) can be inverted

F−1
C (p) = δ + γ tan

(
π
(
p− 1

2

))
(2.96’)

and we obtain for the quartiles and the median the values: (ϑ−γ, ϑ, ϑ+γ). As
with the normal distribution we define a standard Cauchy distribution C(δ, γ)
with δ = 0 and γ = 1, which is identical with Student’s t-distribution with one
degree of freedom, r = 1 (section 2.4.3). Another remarkable relation concerns
the ratio between two independent normally distributed random variables
that fulfils a standard Cauchy distribution: N1(0, 1)/N2(0, 1) = C(0, 1).

Compared to the normal distribution the Cauchy distribution has heavier
tails and accordingly a lower maximum (figure 2.18. In this case we cannot
use the (excess) kurtosis as an indicator because all moments of the Cauchy
distribution are undefined, but we can compute and compare the heights of
the standard densities: fC(x = δ) = 1

π · 1γ and fN (x = µ) = 1√
2π
· 1σ , which

yields fC(δ) = 1
π and fN (µ) = 1√

2π
for γ = σ = 1 with 1

π < 1√
2π

. ⊓⊔The
Cauchy distribution has, nevertheless, a defined median and mode, which
both coincide with the position of the maximum of the density function,
x = δ.

The entropy of the Cauchy density is: H(fC(δ,γ)) = log γ+ log 4. It cannot
be compared with the entropy of the normal distribution in the sense of the
maximum entropy principle (section 2.1.3), because this principle refers to
distributions with variance σ2 whereas the variance of the Cauchy distribution
is undefined.

The Cauchy distribution has no moment generating function but a char-
acteristic function:

φC(s) = exp(ı
.
ı δ s − γ |s|) . (2.97)

A consequence of the lack of defined moments is that the central limit theo-
rem cannot be applied to a sequence of Cauchy variables. It is can be shown
by means of the characteristic function that the mean of a sequence of inde-
pendent and identically distributed random variables with standard Cauchy
distribution, S =

∑n
i=1 Xi/n has the sam standard Cauchy distribution and

is not normally distributed as the central limit theorem predicts.
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Fig. 2.19 Lévy density and distribution. In the two plots the Lévy distribution,
L(δ, γ), is shown in from of the probability density

fL(x) =
√

γ
2π

exp
(

− γ
2(x−δ)

)

/

(x− δ)3/2

and the probability distribution

FL(x) = erfc
(
√

γ
2(x−δ)

)

.

Choice of parameters: δ = 0 and c = 0.5 (black), 1 (red), 2 (green), 4 (blue) and 8
(yellow).
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Fig. 2.20 A bimodal probability density. The figure illustrates a bimodal distri-
bution modeled as a superposition of two normal distributions (2.100) with α = 1/2
and different values for mean and variance (ν1 = 2, σ2

1 = 1/2) and (ν2 = 6, σ2
2 = 1):

f(x) = (
√
2e−(x−2)2 + e−(x−6)2/2)

/

(2
√
2π). The upper part shows the proba-

bility density corresponding to the two modes µ̃1 = ν1 = 2 and µ̃2 = ν2 = 6.
Median µ̄ = 3.65685 and mean µ = 4 are situated near the density minimum between
the two maxima. The lower part presents the cumulative probability distribution,

F (x) = 1
4

(

2 + erf
(

x − 2
)

+ erf
(

x−6√
2

)

)

, as well as the construction of the median.

The variances in this example are: µ̂2 = 20.75 and µ2 = 4.75.
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2.4.7 The Lévy distribution

The Lévy distribution L(γ, δ) is a continuous one-sided probability distribu-
tion, which is defined for values of the variable x that are larger or equal a
shift parameter δ: x ∈ [δ,∞[. It is a special case of the inverse gamma dis-

tribution and belongs together with the normal and the Cauchy distribution
the class of analytically accessible stable distributions .

The Lévy probability density function and the cumulative probability dis-
tribution are of the form (figure 2.19)

pdf : fL(x) =

√
γ

2π
· 1

(x − δ)3/2 exp

(
− γ

2(x− δ)

)
, x ∈ [δ,∞[, and

cdf : FL(x) = erfc

(√
γ

2(x− δ)

)
.

(2.98)

The two parameters δ ∈ R and γ ∈ R>0 are the location of fL(x) = 0
and the scale parameter. Mean and variance of the Lévy distribution are
infinite, skewness and kurtosis undetermined. For δ = 0 the mode of the
distribution appears at µ̃ = γ/3 and the median takes on the value µ̄ =
γ/
(
2(erfc−1(1/2))2

)
.

The entropy of the Lévy distribution is

H
(
fL(x)

)
=

1 + 3 γ + ln(16πγ2)

2
with γ being Euler’s constant,

and the characteristic function

φL(s) = exp(ı
.
ı δ s −

√
−2ı.ı γ s) , (2.99)

is the only defined generating function.
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2.4.8 Bimodal distributions

As the name of the bimodal distribution indicates that the density function
f(x) has two maxima. It arises commonly as a mixture of two unimodal
distribution in the sense that the bimodally distributed random variable X
is defined as

Prob (X ) =

{
P (X = Y1) = α and

P (X = Y2) = (1− α) .

Bimodal distributions commonly arise from statistics of populations that are
split into two subpopulations with sufficiently different properties. The sizes
of weaver ants give rise to a bimodal distributions because of the existence of
two classes of workers [301]. In case the differences are too small as in case of
the combined distribution of body heights for men and women monomodality
is observed [253].

As an illustrative model we choose the superposition of two normal dis-
tributions with different means and variances (figure 2.20). The probability
density for α = 1/2 is then of the form:

f(x) =
1

2
√
2π

(
e

−(x−ν1)2

2σ2
1

/√
σ2
1 + e

−(x−ν2)2

2σ2
2

/√
σ2
2

)
. (2.100)

The cumulative distribution function is readily obtained by integration. As in
the case of the normal distribution the result is not analytical but formulated
in terms of the error function, which is available only numerically through
integration:

F (x) =
1

4

(
2 + erf

(
x− ν1√

2σ2
1

)
+ erf

(
x− ν2√

2σ2
2

))
. (2.101)

In the numerical example shown in figure 2.20 the distribution function shows
two distinct steps corresponding to the maxima of the density f(x).

As an exercise first an second moments of the bimodal distribution can be
readily computed analytically. The results are:

µ̂1 = µ =
1

2
(ν1 + ν2) , µ1 = 0 and

µ̂2 =
1

2
(ν21 + ν22 ) +

1

2
(σ2

1 + σ2
2) , µ2 =

1

4
(ν1 − ν2)2 +

1

2
(σ2

1 + σ2
2) .

The centered second moment illustrates the contributions to the variance
of the bimodal density. It is composed of the sum of the variances of the
subpopulations and the square of the difference between the two means, (ν1−
ν2)

2.
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2.5 Mathematical statistics

Mathematical statistics provides the bridge between probability theory and
the analysis of real data, which will always represent incomplete since finite
samples. Nevertheless, it turned out very appropriate to use infinite samples
as a reference (section 1.3). Large sample theory and in particular the law of
large numbers (section 2.3.6) deal with the asymptotic behavior of series of
samples with increasing size. Although mathematical statistics is a discipline
in its own right and would require a separate course, we mention here briefly
only three basic concepts, which is of general importance for every scientist.23

First we shall be concerned with approximations to moments derived from
finite samples. In practice, we can collect data for all sample points of the
sample space Ω only in very exceptional cases. Otherwise exhaustive mea-
surements are impossible and we have to rely on limited samples as they
are obtained in physics through experiments or in sociology through opinion
polls. As an example for the evaluation of the justification of assumptions
we introduce Pearson’s chi-squared test and finally we illustrate statistical
inference by means of an example applying Bayes’ theorem.

2.5.1 Sample moments

As we did before for complete sample spaces, we evaluate functions Z from
incomplete random samples (X1, . . . ,Xn) and obtain as output random vari-
ables Z = Z(X1, . . . ,Xn). Similarly we compute sample expectation values,
also called sample means, sample variances, sample standard deviations and
other quantities as estimators from limited sets of data, x = {x1, x2, . . . , xn}.
They are calculated in the same way as if the sample set would cover the
entire sample space. In particular we compute the sample mean

m =
1

n

n∑

i=1

xi (2.102)

and the moments around the sample mean. For the sample variance we obtain

m2 = =
1

n

n∑

i=1

x2i −
(
1

n

n∑

i=1

xi

)2

, (2.103)

23 For the reader who is interested in more details on mathematical statistics we
recommend the classical textbook by the Polish mathematician Marek Fisz [87] and
the comprehensive treatise by Stuart and Ord [270, 271], which is a new edition of
Kendall’s classic on statistics. A text that is useful as an not too elaborate introduction
is found in [131], the monograph [38] is particularly addressed to experimentalists
practicing statistics, and a great variety of other and equally well suitable texts are,
of course, available in the rich literature on mathematical statistics.
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and for the third and fourth moments after some calculations

m3 =
1

n

n∑

i=1

x3i −
3

n2

(
n∑

i=1

xi

)


n∑

j=1

x2j


 +

2

n3

(
n∑

i=1

xi

)3

(2.104a)

m4 =
1

n

n∑

i=1

x4i −
4

n2

(
n∑

i=1

xi

)


n∑

j=1

x3j


 +

+
6

n3

(
n∑

i=1

xi

)2



n∑

j=1

x2j


 − 3

n4

(
n∑

i=1

xi

)4

. (2.104b)

These näıve estimators, mi (i = 2, 3, 4, . . .), contain a bias because the exact
expectation value µ around which the moments are centered is not known and
has to be approximated by the sample mean m. For the variance we illustrate
the systematic deviation by calculating a correction factor known as Bessel’s
correction but more properly attributed to Carl Friedrich Gauss [156, part
2, p.161]. In order to obtain an expectation value for the sample moments
we repeat drawing of samples with n elements and denote their expectation
values by < mi >.

24 In particular we have

m2 =
1

n

n∑

i=1

x2i −
(
1

n

n∑

i=1

xi

)2

=

=
1

n

n∑

i=1

x2i −
1

n2




n∑

i=1

x2i +

n∑

i,j=1, i6=j
xi xj


 =

=
n− 1

n2

n∑

i=1

x2i −
1

n2

n∑

i,j=1, i6=j
xi xj .

The expectation value is now of the form

< m2 > =
n− 1

n

〈
1

n

n∑

i=1

x2i

〉
− 1

n2

〈
n∑

i,j=1, i6=j
xi xj

〉
,

and by using < xixj >=< xi >< xj >=< xi >
2 we find

24 It is important to note that < mi > is the expectation value of an average over
a finite sample, where the expectation value refers to the entire sample space. In
particular, we find

< m >=
〈

1
n
∑

n
i=1 xi

〉

= µ = α1 ,

where µ is the first (raw) moment. For the higher moments the situation is more
complicated and requires some care (see text).
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< m2 > =
n− 1

n

〈
1

n

n∑

i=1

x2i

〉
− n(n− 1)

n2

〈
n∑

i=1

xi

〉2

=

=
n− 1

n
α2 −

n(n− 1)

n2
µ2 =

n− 1

n
(α2 − µ2) ,

where α2 = µ̂2 is the second raw moment or second moment about zero.
Using the identity α2 = µ2 + µ2 we find eventually

< m2 > =
n− 1

n
µ2 and var(x) =

1

n− 1

n∑

i=1

(xi −m)2 . (2.105)

Further useful measures of correlation between pairs of random variables can
be derived straightforwardly: (i) the unbiased sample covariance

MXY =
1

n− 1

n∑

i=1

(xi − m) (yi − m) , (2.106)

and (ii) the sample correlation coefficient

RXY =

∑n
i=1 (xi − m) (yi − m)√

(
∑n

i=1 (xi − m)2) (
∑n
i=1 (yi − m)2)

. (2.107)

For practical purposes Bessel’s correction is often unimportant when the data
sets are sufficiently large but the recognition of the principle is important in
particular for statistical properties more involved than variances. Sometimes
a problem is encountered in cases where the second moment of a distribution,
µ2, does not exist, which means it diverges. Then, computing variances from
incomplete data sets is also unstable and one may choose the mean absolute

deviation,

D(X ) =
1

n

n∑

i=1

|Xi −m| , (2.108)

as a measure for the width of the distribution [244, pp.455-459], because it is
commonly more robust than variance or standard deviation.

Ronald Fisher conceived k-statistics in order to derive estimators for the
moments of finite samples [82]. The cumulants of a probability distribution
are derived as expectation values, < ki >= κi, of finite set cumulants calcu-
lated in the same way as the complete sample set analogues [157, pp.99-100].
The first four terms of k-statistics for n sample points are
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k1 = m ,

k2 =
n

n− 1
m2 ,

k3 =
n2

(n− 1)(n− 2)
m3 and

k4 =
n2
(
(n+ 1)m4 − 3 (n− 1)m 2

2

)

(n− 1)(n− 2)(n− 3)
,

(2.109)

which can be derived by inversion of the well known relationships

< m > = µ ,

< m2 > =
n− 1

n
µ2 ,

< m3 > =
(n− 1)(n− 2)

n2
µ3 ,

< m 2
2 > =

(n− 1)
(
(n− 1)µ4 + (n2 − 2n+ 3)µ 2

2

)

n3
, and

< m4 > =
(n− 1)

(
(n2 − 3n+ 3)µ4 + 3 (2n− 3)µ 2

2

)

n3
.

(2.110)

The usefulness of these relations becomes evident in various applications.
The statistician computes moments and other functions from his empirical

data sets, which is almost always non-exhaustive, for example {x1, . . . , xn}
or {(x1, y1), . . . , (xn, yn)} by means of the equations (2.102) and (2.105) to
(2.107). The underlying assumption, of course, is that the values of the em-
pirical functions converge to the corresponding exact moments as the random
sample increases and the theoretical basis for this assumption is provided by
the law of large numbers.
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2.5.2 Pearson’s chi-squared test

The main issue of mathematical statistics, however, is not so much to compute
approximations to the moments but and has always been and still is the
development of independent tests that allow for the derivation of information
on the appropriateness of models and the quality of data. Predictions on the
reliability of the computed values are made by means of a great variety of
tools. We dispense from details, which are extensively treated in the literature
[88, 270, 271]. Karl Pearson conceived a test in 1900 [236], which became
popular under the name chi-squared test. This test has also been used by
Ronald Fisher when he analyzed Gregor Mendel’s data on genetics of the
garden pea pisum sativum and we shall use the data given in table 1.2 to
illustrate the application of the chi-squared test.

The formula of Pearson’s test is made plausible by means of a simple
example [132, pp. 407-414]: A random variable Y1 is binomially distributed
according to Bk(n, p1) with expectation value E(Y1) = n p1 and variance
σ2
1 = n p1(1−p1) (section 2.3.2) and then, following the central limit theorem

the random variable

Z =
Y1 − np1√
np1(1− p1)

Fig. 2.21 The p-value in significance test of null hypothesis. The figure shows
the definition of the p-value. The bell-shaped curve is the probability density function
(PDF) of possible results. Two specific data points are shown one at values above
the most frequent outcome at x = 5 near x = 7 (blue) and the other one at x ≈ 3.5
(green). The p-value – not to be mistaken for a score – is the cumulative probability
of more extreme cases, i.e., results that are further away of the most frequent outcome
than the data point and obtained as the integral under the PDF. Depending of the
position of the observed result this integral has to be taken to higher (blue) or lower
(green) values of x, respectively.
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Fig. 2.22 Calculation of the p-value in significance test of null hypothesis.
The figure shows the p-values from equation (2.116) as a function of the calculated
values of X2

k for the k-values 1 (black), 2 (red), 3 (yellow), 4 (green), and 5 (blue).
The highlighted area at the bottom of the figure shows the range where the null
hypothesis is rejected.

has a standardized binomial distribution, which approximates N (0, 1) for
sufficiently large n (section 2.3.5). A second random variable is Y2 = n− Y1
with expectation value E(Y2) = n p2 and variance σ2

2 = σ2
1 = n p2(1 − p2) =

n p1(1 − p1), since p2 = (1 − p1). The sum Z2 = Y2
1 + Y2

2 is approximately
χ2 distributed:

Z2 =
(Y1 − np1)2
np1(1− p1)

=
(Y1 − np1)2

np1
+

(Y2 − np2)2
np2

since

(Y1 − np1)2 =
(
n − Y1 − n(1− p1)

)2
= (Y2 − np2)2 .

We can now rewrite the expression by introducing the expectation values

Q1 =

2∑

i=1

(
Yi − E(Yi)

)2

E(Yi)
,

and indicating the number of independent random variables as a subscript.
Provided all products n pi are sufficiently large – a conservative estimate
would be npi ≥ 5 ∀ i – the quantity Q1 has an approximate chi-squared
distribution with one degree of freedom: χ2

1.
The generalization to an experiment with k mutually exclusive and exhaus-

tive outcomes A1, A2, . . . , Ak of the variables X1,X2, . . . ,Xk, is straightfor-
ward. All variables Xi are assumed to have finite mean µi and finite variance
σ2
i such that central limit theorem applies and the distribution for large n
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converges to the normal distribution N (0, 1). We define the probability to
obtain the result Ai by P (Ai) = pi and by conservation of probabilities we

have
∑k

i=1 pi = 1. One variable is thus lacking independence and we choose
it to be Xk:

Xk = n −
k−1∑

i=1

Xi , (2.111)

then the joint distribution of of k− 1 variables X1,X2, . . . ,Xk−1 has the joint
probability mass function (pmf)

f(x1, x2, . . . , xk−1) = P (X1 = x1,X2 = x2, . . . ,Xk−1 = xk−1) .

Next we consider n independent trials, x1 times yielding A1, x2 times yielding
A2, . . . ,xk times yielding Ak, where the particular outcome has a probability

P (X1 = x1,X1 = x1, . . . ,Xk−1 = xk−1) = px1
1 · px2

2 · . . . · pxk

k with

the frequency factor or statistical weight

g(x1, x2, . . . , xk) =

(
n

x1, x2, . . . , xk

)
=

n!

x1!, x2!, . . . , xk!
,

and eventually we find for the pmf

f(x1, x2, . . . , xk−1) = g(x1, x2, . . . , xk) · P (X1 = x1,X2 = x2, . . . ,Xk−1 = xk−1) =

=
n!

x1!, x2!, . . . , xk!
px1
1 · px2

2 · . . . · pxk

k , (2.112)

with the two restrictions yk = n−∑k−1
i=1 xi and pk = 1−∑k−1

i=1 pi. Pearson’s
construction follows the lines we have shown for the binomial with k = 2 and
yields under consideration of equation 2.111:

Qk−1 = X2
k−1 =

k∑

i=1

(
Xi − E(Xi)

)2

E(Xi)
. (2.113)

The sum of squares Qk−1 in (2.113) is called Pearson’s cumulative test statis-

tic. It has an approximate chi-squared distribution with k-1 degrees of free-
dom, χ2

k−1,
25 and again if n is sufficiently large to fulfil n p1 ≥ 5 ∀ i the

distributions are close enough for most practical purposes.
In order to be able to test hypotheses we divide our sample space into k

cells and record observations falling into individual cells. In essence, these
cells Ci are tantamount to the outcomes Ai but we can define them to be
completely general, for example collecting all instances that falls in a certain

25 We indicate the expected converge in the sense of the central limit theorem by
choosing the symbol X2

k−1 for the finite n expression.
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range. At the end of the registration period the number of observations is n
and the number of those that were falling into the cell Ci is νi with

∑k
i=1 νi =

n. Equation (2.113) is now applied to test a (null) hypothesis H0 against
empirically recorded values for all outcomes,

H0 : E
(0)
i (Xi) = εi0 , i = 1, . . . , k . (2.114)

In other words, the null hypothesis predicts the distribution score values
falling into the cells Ci to be εi0 ; i = 1, . . . , k and this in the sense of ex-

pectation values E
(0)
i . If the null hypothesis were, for example, the uniform

distribution we had εi0 = n/k ∀ i = 1, . . . , k. The cumulative test statistic
X2 converges to the χ2 distribution in the limit n → ∞ – just as the mean
value of a stochastic variable, Z =

∑n
i=1 zi converges to the expectation value

limn→∞ Z = E{Z}. This implies that X2 is never exactly equal to χ2 and
the approximation that will always become better when the sample size is
increased. Usually a lower limit is defined for the number of entries in the
cells to be considered, values between 5 and 10 are common.

If the null hypotheses H0 were true, νi and εi0 should be approximately
equal. Thus we expect the deviation expressed by

X2
d =

k∑

i=1

(νi − εi0)
2

εi0
≈ χ2

d (2.115)

should be small if H0 is acceptable. Otherwise, we shall reject H0 if the devi-
ation is too large: X2

d ≥ χ2
d(α), where α is the predefined level of significance

for the test. Two quantities are still undefined (i) the degree of freedom d
and (ii) the significance level α.

Next the number of degrees of freedom d of the theoretical distribution
to which the data are fitted has to be determined. The number of cells, k,
represents the maximal number of degrees of freedom, which is reduced by
one because of the conservation relation discussed above: d = k − 1. The
dimension d is reduced further when parameters are needed in fitting the
distribution of the null hypothesis. If the number of such parameters is s we
get d = k− 1− s. Choosing the uniform distribution U that is parameter free
we find d = n− 1.

The significance of the null hypothesis for a given set of data is commonly
tested by means of the so-called p-value: For p < α the null hypothesis is
rejected. Precisely, the p-value is the probability of obtaining a test statistic
that is at least as extreme as the actually observed one under the assumption
that the null hypothesis is true. We call a probability P (A) more extreme

than P (B) if A is less likely to occur under the null hypothesis as B. As
shown in figure 2.21 this probability is calculated as the integral below the
probability density function from the calculated X2

d -value to +∞. For the χ2
d

distribution we have
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p =

∫ +∞

X2
d

χ2
d(x) dx = 1 −

∫ X2
d

0

χ2
d(x) dx = 1 − F (X2; d) , (2.116)

which involves the cumulative distribution function F (x; d) defined in equa-
tion (2.66). Commonly, the null hypothesis is rejected when p is smaller than
the significance level: p < α with 0.02 ≤ α ≤ 0.05. If the condition p < α
is fulfilled one says the null hypothesis is statistically significantly rejected.
In other words, the null hypothesis is statistically significant or statistically
confirmed in the range α ≤ p ≤ 1.

A simple example is used for the purpose of illustration: Two random
samples of N animals were drawn from a population, ν1 were males and ν2
were females with ν1 + ν2 = n. The first sample ν1 = 170, ν2 = 152,

n = 322, ν1 = 170, ν2 = 152 : X2
1 =

(170 − 161)2 + (152 − 161)2

322
= 0.503 ,

p = 1− F (0.503; 1) = 0.478 ,

clearly supports the null hypothesis that that males and females are equally
frequent since p > α ≈ 0.05. The second sample ν1 = 207, ν2 = 260,

n = 467, ν1 = 207, ν2 = 260 : X2
1 =

(207 − 233.5)2 + (260 − 233.5)2

233.5
= 6.015 ,

p = 1− F (6.015; 1) = 0.0142 ,

leads to a p-value, which is below the critical limit of significance and the
rejection of the null hypothesis, the numbers of males and females are equal,
is statistically significant or there is very likely another reason than random
fluctuation responsible for the difference.

As a second example we test Gregor Mendel’s experimental data on the
garden pea, pisum sativum, given in table 1.2. Here the null hypothesis to be
tested is the ratio between phenotypic features developed by genotypes. We
consider two features: (i) the shape, roundish and wrinkled, and (ii) the color
of seeds, yellow and green, which are determined by two independent loci
and two alleles each, A and a or B and b, respectively. The two alleles form
four diploid genotypes, AA, Aa, and aA, aa, or, BB, Bb, and bB, bb. Since
the alleles a and b are recessive only the the genotypes aa or bb develop
the second phenotype, wrinkled and green, respectively, and based on the
null hypothesis of a uniform distribution of genotypes we expect a 3:1 ratio
of phenotypes. In table 2.3 we apply Pearson’s chi-square hypothesis to the
null hypothesis of 3:1 ratios for the phenotypes roundish and wrinkled or
yellow and green. As examples we have chosen the total sample of Mendel’s
experiments as well as three plants (‘1’, ‘5’, and ‘8’) in table 1.2) being typical
(‘1’) or showing extreme ratios (’5’ having the best and the worst value for
shape and color, respectively, and ‘8’ showing the largest ratio, 4.89). All
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Table 2.3 Pearson χ2-test of Gregor Mendel’s experiments with the gar-
den pea (pisum sativum). The total results as well as the data for three selected
plants are analyzed by means of Karl Pearson’s chi-square statistics. Two character-
istic features of the seeds are reported: the shape, roundish or angular wrinkled, and
the color, yellow or green. The phenotypes of the two dominant alleles are: A= round
and B= yellow. The recessive phenotypes are a=wrinkled and b= greenThe data are
taken from table 1.2.

Property Sample space Number of seeds χ2-statistics

A/B a/b X2
1 p

shape (A,a) total 5 474 1 850 0.2629 0.6081

color (B,b) total 6 022 2 001 0.0150 0.9025

shape (A,a) plant 1 45 12 0.4737 0.4913

color (B,b) plant 1 25 11 0.5926 0.4414

shape (A,a) plant 5 32 11 0.00775 0.9298

color (B,b) plant 5 24 13 2.0405 0.1532

shape (A,a) plant 8 22 10 0.6667 0.4142

color (B,b) plant 8 44 9 1.8176 0.1776

p-values in this table are well above the critical limit and without further
discussion required confirm the 3:1 ratio.26

The test of independence is relevant for situations when an observation
registers two outcomes and the null hypothesis is that these outcomes are
statistically independent. Each observation is allocated to one cell of a two-
dimensional array of cells called a contingency table (see next section 2.5.3).
In the general case there are m rows and n columns in a table. Then, the
theoretical frequency for a cell under the null hypothesis of independence is

εij =

∑n
k=1 νik

∑m
k=1 νkj

N
, (2.117)

where N is the (grand) total sample size or the sum of all cells in the table.
The value of the X2 test-statistic is

X2 =

m∑

i=1

n∑

j=1

(νij − εij)2
εij

. (2.118)

Fitting the model of independence reduces the number of degrees of freedom
by π = m+n−1. Originally the number of degrees of freedom is equal to the

26 We should remember that the claim of Ronald Fisher and others had been that
Mendel’s data are too good to be true.
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number of cells, m · n, and after reduction by π we have d = (m− 1) · (n− 1)
degrees of freedom for comparison with the χ2 distribution. The p-value is
again obtained by insertion into the cumulative distribution function (cdf),
p = 1 − F (X2; d), and a value of p less than a predefined critical value,
commonly p < α = 0.05, is considered as justification for rejection of the
null hypothesis or in other words the row variable does not appear to be
independent of the column variable.

2.5.3 Fisher’s exact test

The second example out of many statistical significance test developed in
mathematical statistics we mention here is Fisher’s exact test for the analysis
of contingency tables. In contrast to the χ2-test Fisher’s test is valid for all
sample sizes and not only for sufficiently large samples. We begin by defining
a contingency table, which in general is a m×n matrix M where all possible
outcomes of one variable x enter the columns in one row and distribution of
outcomes of the second variable y is contained in the columns for a given row.
The most common case – and the one that is most easily analyzed – is 2× 2,
two variables with two values each. The the contingency table has the form

x1 x2 total

y1 a b a+ b

y2 c d c+ d

total a+ c b+ d N

where every variable, x and y, has two outcomes and N = a+ b+ c+ d is the
grand total. Fisher’s contribution was to prove that the probability to obtain
the set of values (x1, x2, y1, y2) is given by the hypergeometric distribution

probability mass function fµ,ν(k) =

(
µ
k

)(
N−µ
ν−k

)
(
N
ν

) ,

cumulative density function Fµ,ν(k) =
k∑

i=0

(
µ
k

)(
N−µ
ν−k

)
(
N
ν

) ,

(2.119)

where N ∈ N = {1, 2, . . .}, µ ∈ {0, 1, . . . , N}, ν ∈ {1, 2, . . . , N}, and the
support k ∈ {max(0, ν+µ−N), . . . ,min(µ, ν)}. Translating the contingency
table into the notation of probability functions we have: a ≡ k, b ≡ µ − k,
c ≡ ν − k, and d ≡ N + k − (µ+ ν) and hence Fisher’s result for the p-value
of the general 2× 2 contingency table is
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p =

(
a+b
a

)(
c+d
c

)
(
N
a+c

) =
(a+ b)! (c+ d)! (a+ c)! (b + d)!

a! b! c! d!N !
, (2.120)

where the expression on the rhs shows beautifully the equivalence between
rows and columns.

We present the right- or left-handedness of human males or females as
an example for the illustration of Fisher’s test: A sample consisting of 52
males and 48 females yields 9 left-handed males and 4 left-handed females. Is
the difference statistically significant and allows for the conclusion that left-
handedness is more common among males than females? The contingency
table in this case reads

xm xf total

yr 43 44 87

yl 9 4 13

total 52 48 100

The calculation yields p ≈ 0.10 which is above the critical value 0.02 ≤ α ≤
0.05 and p > α confirms the rejection of the assumption that men are more
likely to be left-handed for these data.

2.5.4 Bayesian inference

In this section we present a simple but analytically tractable example as an
illustration for the application of Bayesian statistics [52], which has been
adapted from the original work of Reverend Thomas Bayes posthumous pub-
lication in 1763 [245]. More detailed applications of the Bayesian approach
can be found in a number of excellent monographs, for example [95].

The example is called table game and is played by two persons, Alice (A)
and Bob (B) as well as a third person (C) acting as game master and being
neutral and a random number generator simulating a uniform distribution of
pseudorandom numbers in the range 0 ≤ R < 1. The pseudorandom number
generator is operated by the game master and cannot be seen by the two
players. In essence, A and B are completely passive, have no information on
the game except the basic setup and know the scores, which are a(t) for A and
b(t) for B. The person who reaches a predefined score value, z, first has won.
This simple game starts through drawing a pseudorandom number, R = r0,
by the game master. Consecutive drawings yielding numbers ri assign points
to A iff 0 ≤ ri < r0 is fulfilled and to B iff r0 ≤ ri < 1 holds. The game is
continued until one person, A or B, reaches the score z.

The problem is to compute fair odds of winning for A and B when the
game is terminated premature, and r0 is unknown. Let us assume that the
scores at the time of termination were: a(t) = a and b(t) = b with a < z
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x
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Fig. 2.23 The Bayesian method of inference. The figure sketches the Bayesian
method by means of normal density functions. The sample data are given in form of

the likelihood function (P (Y|X ) = N (2, 12), red) and additional external information

on the parameters enters the analysis as prior distribution (P (X ) = N (0, 1/
√
2),

green). The resulting posterior distribution P (X|Y) = P (Y|X ) · P (X )/P (Y) (black)
is here again a normal distribution with mean µ̄ = (µ1σ2

2 + µ2σ2
1)/(σ

2
1 + σ2

2) and
variance σ̄2 = (σ2

1σ
2
2)/(σ

2
1 + σ2

2). It is straightforward to show that the mean µ̄ lies
between µ1 and µ2 and variance has become smaller σ̄ ≤ min(σ1, σ2) (see text).

and b < z, and to make the calculations easy we assume that A is only one
point away from winning, a = z − 1 and b < z − 1. If r0 were known the
answer would be trivial. In the conventional approach we would make an
assumption about the parameter r0. In the lack of knowledge we could make
the null hypothesis r0 = r̂0 = 1

2 , and find simply

P0(B) = Prob (B is winning) = (1 − r̂0)z−b =
(
1

2

)z−b
,

P0(A) = Prob (A is winning) = 1 − (1− r̂0)z−b = 1 −
(
1

2

)z−b
,

because the only way for B to win is to make z − b scores in a row. Thus
fair odds for A to win would be (2z−b − 1) : 1. An alternative approach is to
make the maximum likelihood estimate on the unknown parameter r0 = r̃0 =
a/(a+ b) and again we calculate the probabilities and find by the same token
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Pml(B) = Prob (B is winning) = (1− r̃0)z−b =

(
b

a+ b

)z−b
,

Pml(A) = Prob (A is winning) = 1 − (1− r̃0)z−b = 1 −
(

b

a+ b

)z−b
,

and for the odds in favor of A:
(a+ b

b

)z−b − 1.
The Bayesian solution considers r0 = p as a unknown but variable param-

eter about which no estimate is made. Instead the uncertainty is modeled
rigorously by integrating over all possible values: 0 ≤ p ≤ 1. The expected
probability for B to win is then

E
(
P (B)

)
=

∫ 1

0

(1 − p)z−b P (p |a, b) dp ,

where (1 − p)z−b is the probability for winning B and P (p |a, b) is the prob-
ability of a certain value of p provided the data a and b were obtained at
the termination of the game. The probability P (p |a, b) formally written as
P (model|data) is the inversion of the common problem P (data|model) – given
a certain model what is the probability to find a certain set of data – and a
so-called inverse probability problem. The solution of the problem is provided
by Bayes’ theorem, which is an almost trivial truism for two random variables
X and Y:

P (X|Y) =
P (Y|X ) · P (X )

P (Y) =
P (Y|X ) · P (X )

∑
Z P (Y|Z) · P (Z)

, (1.4’)

where the sum over the random variable Z covers entire sample space. Equa-
tion (1.4’) yields in our example

P (p |a, b) =
P (a, b |p) · P (p)

∫ 1

0
P (a, b |̺) · P (̺) d̺

.

The interpretation of the equation is straightforward: The probability of a
particular choice of p given the data (a, b) called the posterior probability

(figure 1.3) is proportional to the probability to obtain the observed data
if p were true – the likelihood of p – multiplied by the prior probability of
this particular value of p relative to all other values of p. The integral in
the denominator takes care of the normalization of the probability – the
summation is replaced by an integral, because p is a continuous variable, and
0 ≤ p ≤ 1 is the entire domain of p.

The likelihood term is calculated readily from the binomial distribution

P (a, b |p ) =

(
a+ b

b

)
pa (1− p)b ,
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but the probability prior requires more care. By definition P (p) is the proba-
bility of p before the data have been recorded. How can we estimate p before
we have seen any data? We are thus referred to the situation how r0 is de-
termined, and we know it has been picked from the uniform distribution and
hence, P (p) is a constant that appears in the numerator and in the denomi-
nator and thus cancels in the equation for Bayes’ theorem (1.4’). After some
algebraic computation we eventually obtain for winning of B:

E
(
P (B)

)
=

∫ 1

0 p
a (1− p)z dp

∫ 1

0
p a (1− p)b dp

.

Integration is straightforward, because the integrals are known as Euler in-
tegrals of the first kind, which have the Beta-function as solution

B(x, y) =

∫ 1

0

zx−1 (1− z)y−1 dz =
(x− 1)! (y − 1)!

(x+ y − 1)!
=

Γ (x)Γ (y)

Γ (x + y)
. (2.121)

Finally, we obtain the following expression for the chance of winning of B

E
(
P (B)

)
=

z! (a+ b+ 1)!

b! (a+ z + 1)!
,

and the Bayesian estimation for fair odds yields

(
b! (a+ z + 1)!

z! (a+ b+ 1)!
− 1

)
: 1 .

A specific numerical example is given in [52]: a = 5, b = 3, and z = 6.
The null hypothesis of equal probabilities of winning for A and B, r̂0 = 0.5
yields an advantage of 7:1 for A, the maximum likelihood approach with
r̃0 = a/(a + b) = 5/8 yields ≈18:1, and the Bayesian estimate yields 10:1.
The large differences should not be surprising since the sample size is very
small. The correct answer of the table game with the values for a, b, and z
is indeed 10 as can be easily verified by numerical computation with a small
computer program.

Finally, we show how the Bayesian approach operates on probability distri-
butions (a simple but straightforward description is found in [268]). Accord-
ing to equation (1.4’) the posterior probability P (X|Y) is obtained through
multiplication of the prior probability P (X) by the data likelihood function
P (Y|X ) and normalization. We illustrate the relation between the probability
function by means of two normal distributions and their product (figure 2.23).
For the prior probability and the data function we assume
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P (X ) = f1(x) =
1√
2πσ2

1

e−(x−µ1)
2/(2σ2

1) and

P (X|Y) = f2(x) =
1√
2πσ2

2

e−(x−µ2)
2/(2σ2

2) ,

and obtain for the product with the normalization factorN = N (µ1, µ2, σ1, σ2)

P (Y|X ) = N f1(x) f2(x) = N g e−(x−µ̄)2/(2σ̄2) with

µ̄ =
µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

, σ̄2 =
σ2
1 σ

2
2

σ2
1 + σ2

2

, g =
1

2π σ1 σ2
e
− 1

2
(µ2−µ1)2

σ2
1
+σ2

2 , and

N g =

√
σ2
1 + σ2

2√
2π σ1 σ2

=
1√

2π σ̄2
,

as required for normalization of the Gaussian curve.
Two properties of the posterior probability are easily tested by means of

our example: (i) the averaged mean, µ̄, lies always between µ1 and µ2 and
(ii) the product distribution is sharper than the two factor distributions

σ2
1 σ

2
2

σ2
1 + σ2

2

≤ min{σ2
1 , σ

2
2} ,

with the equals sign requiring either σ1 = 0 or σ2 = 0. The improvement of
the Bayesian analysis thus reduces the difference in the mean values between
expectation and model, and the distribution becomes smaller in the sense of
reducing uncertainty.

Whereas the Bayesian approach does not seem to provide a lot more in-
formation in situations where the models are confirmed by many other inde-
pendent applications like, for example, in the majority of problems in physics
and chemistry, the highly complex situations in modern biology, economics,
or social sciences require highly simplified and flexible models and there is an
ample field for application of Bayesian statistics.





Chapter 3

Stochastic processes

With four parameters I can fit an elephant and with
five I can make him wiggle his trunk.
Enrico Fermi citing John von Neumann, 1953 [51].

Abstract Different classes of stochastic processes are defined and their prop-
erties are listed. The Chapman-Kolmogorov equation is introduced, derived in
differential form, and used as basis for the classification of the major stochas-
tic processes: drift, diffusion, and jump processes, which in pure form are
described by Liouville equations, stochastic diffusion equations, and master
equations, respectively. The most popular and frequently used equation is the
Fokker-Planck equation that describes the evolution of a probability density
through drift and diffusion. Stochastic differential equations (SDEs) model
processes at the level of random variables by solving an ordinary differential
equation upon which a diffusion or Wiener process is superimposed. Ensem-
bles of individual trajectories of SDEs are equivalent to densities described by
Fokker-Planck equations. Master equations are dealing with jump processes
only and represent the appropriate tool for modeling processes described by
discrete variables. For technical reasons they are difficult to handle unless
population sizes are relatively small.

Stochastic processes introduce time into probability theory and represent
the most prominent possibility to combine dynamical phenomena and ran-
domness as a result of incomplete information. In physics and chemistry the
dominant source of randomness is thermal motion but in biology the over-
whelming complexity of systems is commonly prohibitive for a complete de-
scription, and then lack of information results also from the simplifications
on the model. In essence, there are two ways to visualize stochasticity in pro-
cesses: (i) calculation or recording of stochastic variables as functions of time
called trajectories and sampling of trajectories from repetitions yielding bun-
dles of curves that represent the stochastic process, and (ii) modeling of the
time dependence of entire probability densities. For an illustrative example
comparing superposition of trajectories and migration of the probability den-
sity we refer to the Ornstein-Uhlenbeck process shown in figures 3.8 and 3.9.
The expectation value of a random variable as a function of time, E

(
X (t)

)
,

often coincides with the deterministic solution of the corresponding differ-

161
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Fig. 3.1 Models of stochastic processes. The sketch presents a family tree of
stochastic models [282]. Almost all stochastic models used in science are based on
the Markov property of processes, which – in a nutshell – states that full information
on the system at present is sufficient for predicting or modeling the future (sec-
tion 3.2.1.3). Models fall into two major classes depending on the objects they are
dealing with: (i) random variables X (t) or (ii) probability densities P (X (t) = x). In
the center of stochastic modeling stands the Chapman-Kolmogorov equation (CKE)
that introduces the Markov property into time series of probability densities. In dif-
ferential form CKE contains three model dependent functions A(x, t), B(x, t), and
W(x, t), which determine the nature of the stochastic process. Different combinations
of these functions yield the most important equations for stochastic modeling: the
Fokker-Planck equation with A 6= 0 and B 6= 0, the stochastic diffusion equation
with B 6= 0, and the master equation with W 6= 0. For stochastic processes without
jumps the stochastic differential equation to the evolution of a probability density,
P (X (t) = x), described by a Fokker-Planck equation (red arrow). Common approxi-
mations by means of expansions are shown in blue.
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ential equation. In absence of bifurcations the typical solutions of ordinary
(ODEs) or partial differential equations (PDEs) consists of single trajectories
whereas the solutions of stochastic processes correspond to bundles of tra-
jectories, which differ in the sequence of random events and which surround
the deterministic solution. Commonly, a sharp reference state is chosen as
initial condition and the bundle of trajectories diverges either in the future
or in the past depending on whether the process is studied in the forward

or in the backward direction. The stochastic equations in the forward and
backward direction are different and in a way the typical symmetry of dif-
ferential equations with respect to time reversal is no more existent because
of the diffusion term [4, 60, 263]. In the forward direction the time depen-
dent variance, σ2

(
X (t)

)
allows for the distinction of two types of processes:

(i) The variance increases with time and grows without limits, a behavior
that is typical for spatial diffusion and some biologically important processes
involving populations in abstract spaces, and (ii) the variance approaches a
finite long time limit, which corresponds to thermodynamic equilibrium or to
a stationary state and fulfil an approximate

√
N -law.

Figure 3.1 presents a listing of the most frequently used general stochas-
tic models,1 which are introduced in this chapter, and shows how they are
interrelated [282, 283]. The two classes of equations of central importance
are (i) the differential form of the Chapman-Kolmogorov equation (dCKE;
section 3.2.2) for the evolution of probability densities and (ii) the stochas-
tic differential equation (SDE; section 3.4) describing stochastic trajectories.
The Fokker-Planck equation and the master equation are derived from the
differential Chapman-Kolmogorov equation through restriction to continuous
processes or jump processes, respectively. The chemical master equation is a
master equation adapted for modeling chemical reaction networks where the
jumps are integer changes in the particle numbers of chemical species (sec-
tion 4.2.1). In this chapter we shall present an introduction to and a general
formalism for modeling stochastic processes that is essentially based on two
textbooks [41, 93, 287] and use the notation introduced by Crispin Gardiner
[92]. A few examples of stochastic processes of general importance will be
discussed here for the purpose of illustration of formalisms. Applications are
presented in the forthcoming two chapters 4 and 5. Analysis of stochastic
processes by mathematics is complemented by numerical simulations [106],
which became more and more important over the years for two reasons: (i)
the accessibility of cheap and extensive computing power, and (ii) the need
for stochastic treatments of complex kinetics in chemistry and biology. Nu-
merical simulation methods will also be presented and discussed in the two
forthcoming chapters 4 and 5.

1 By general we mean here methods that are widely applicable and not tailored
specifically for one case or a few examples only.
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Fig. 3.2 Time order in modeling stochastic processes. Time is progressing
from left to right and the most recent event is given by the rightmost recording.
Conventional numbering of instances in physics starts at some time t0 = 0 and ends
at time tn. It might be useful to have two series of events, one beginning at τ1 and
ending at τν , and a second and later one ranging from t1 to tn (upper time axis).
In the theory of stochastic processes an opposite ordering of times is often preferred
and τ1 and t1, respectively, are the latest events of the series (lower time axis). The
Chapman-Kolmogorov equation describing stochastic processes comes in two forms:
(i) the forward equation predicting the future from past and present and (ii) the
backward equation that extrapolates back in time from present to past.

3.1 Trajectories and processes

Systems evolving probabilistically in time are described and modeled as
stochastic processes . More precisely, we postulate the existence of a time
dependent random variable X (t) or random vector

~X (t) =
(
X1(t),X2(t), . . . ,Xn(t)

)
.2

and we distinguish the simpler discrete case,

Pn(t) = P
(
X (t) = xn

)
with n ∈ N , (3.1)

from the continuous or probability density case,

dF (x, t) = f(x, t) dx = P
(
x ≤ X (t) ≤ x+ dx

)
with x ∈ R . (3.2)

In both cases an experiment, a sample path or trajectory, is understood as a
recording of the particular values of X at certain times:

T =
(
(x1, t1), (x2, t2), (x3, t3), · · · , (xk, tk), (xk+1, tk+1), · · ·

)
. (3.3)

2 At first we need not specify whether X (t) is a simple random variable or a random
vector. Later on, when a distinction between problems of different dimensionality
becomes necessary, we shall make clear, in which sense X (t) is used

(

variable in one

dimension or vector ~X (t)
)

.
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Although it is not essential for the application of probability theory, but for
the sake of clearness we shall always assume that the recorded values are time
ordered, here with the earliest or oldest values on the rightmost position and
the most recent values at the latest entry on the left-hand side (figure 3.2):

t1 ≥ t2 ≥ t3 ≥ · · · ≥ tk ≥ tk+1 ≥ · · · .
A trajectory thus is a sequence of time ordered doubles (x, t). It is worth
noticing that the conventional time axis in drawings of processes in physics
goes in opposite direction, from left to right:

T =
(
(xn, tn), (xn−1, tn−1), (xn−2, tn−2), · · · , (xk, tk), (xk−1, tk−1), · · ·

)
,

with the ordering

tn ≥ tn−1 ≥ tn−2 ≥ · · · ≥ tk ≥ tk−1 ≥ · · · .
In order to avoid confusion we shall always state explicitly when we are not
using the convention shown in (3.3).3

So far we have only used the vague notion of scores and not yet specified,
which quantities the random variables (A,B, . . . ,W) ∈ Ω describe and what
their realizations in some measurable space, (a, b, . . . , w) ∈ R, are. Stochastic
processes in chemistry and biology are commonly modeling the time develop-
ment of ensembles or populations. In spatially homogeneous chemical reaction
systems the variables are discrete particle numbers or continuous concentra-
tions, A(t) or a(t). Spatial heterogeneity can be accounted for by diffusion
resulting in reaction-diffusion systems, where the solutions are visualized best
as migration of evolving probability densities in time and space, which is con-
ventional physical space in three dimensions. Then, the variables are functions
in space and time, A(r, t) or a(r, t), with r = (x, y, z) ∈ R3 being a vector in
space. In biology the variables can be numbers of individuals in populations
and then they depend exclusively on time or as in chemistry they can depend
on three-dimensional space when migration processes are considered. Some-
times it is of advantage to consider stochastic processes in formal spaces like
the genotype or sequence space, which is a discrete space where the points
represent individual genotypes and the distance of two genotypes counts the
minimal number of mutations required to bridge the interval between them.
Neutral evolution (section 5.3.2) can then be visualized as a diffusion pro-
cess and Darwinian selection as a hill climbing process in genotype space.
Biology has to face also another problem that gives rise to lack of precision:
When modeled at the molecular level, which is the appropriate reference
state, biological processes become exceedingly complex and the complexity
is prohibitive for modeling in full detail at the current situation. Simplifica-

3 The different writing of sequences mentioned here should not be confused with
forward and backward processes to be discussed later on (section 3.3).
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Table 3.1 Notation used in modeling stochastic processes. Four different
approaches to model stochastic processes by probability densities are compared: (i)
discrete values of the random variable X and discrete time, (ii) discrete values and
continuous time, (iii) continuous values and discrete time, and eventually (iv) contin-
uous values and continuous time.

Time

Values discrete continuous

discrete Pn,k = P (Xk = xn) ; k, n ∈ N Pn(t) =
(

X (t) = xn

)

; n ∈ N, t ∈ R

pk(x) dx = P (x ≤ Xk ≤ x+ dx) = p (x, t) dx = P (x ≤ Xk ≤ x+ dx) =

continuous = fk(x) dx = dFk(x) = f(x, t) dx = dF (x, t)

k ∈ N , x ∈ R x, t ∈ R

tion and drastic reduction of variables is indispensable and introduces model
inherent errors and randomness into the description.

3.2 Modeling stochastic processes

The use of conventional differential equations for modeling dynamical systems
implies determinism in the sense that full information at a single instant t0
allows for computation of future and past. Stochasticity provides also the
possibility for modeling a rich variety of different behavior with respect to
influence from the past on the future. In this section we shall present different
types of stochastic processes with characteristic properties with respect to
memory effects . Markov processes are of particular importance in science
because they have no memory in the sense that probabilistically the future
can predicted form the presence and no knowledge on previous events is
required.

A stochastic process, as we shall assume, is determined by a set of joint
probability densities the existence and analytical form of which is presup-
posed.4 The probability density encapsulates the physical nature of the pro-
cess and contains all parameters and data on external conditions and hence
we can assume that they determine the system completely:

4 The joint density p is defined in the same way as in equations (1.30) and subsec-
tion 1.9.2 but with a slightly different notation. In describing stochastic processes we
are always dealing with doubles (x, t), and therefore we separate individual doubles
by a semicolon: · · · ;xk, tk; xk+1, tk+1; · · · .
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p(x1, t1;x2, t2;x3, t3; · · · ;xn, tn; · · · ) . (3.4)

By the phrase ’the determination is complete’ we mean that no additional
information is needed to describe the progress in terms of a time ordered series
(3.3) and we shall call such a process a separable stochastic process . Although
more general processes are conceivable, they play little role in current physics,
chemistry, and biology and therefore we shall not consider them here.

Calculation of probabilities from (3.4) by means of marginal densities
(1.33) and (1.66) is straightforward. For the discrete case the result is ob-
vious:

P (X = x1) = p(x1, ∗) =
∑

xk 6=x1

p(x1, t1;x2, t2;x3, t3; · · · ;xn, tn; · · · ) .

The probability to record the value x1 for the random variable X at time
t1 is obtained through summation over all previous values x2, x3, . . . . In the
continuous case we obtain analogously

P (X1 = x1 ∈ [a, b]) =

∫ b

a

dx1

∫∫∫ ∞

−∞
dx2dx3 · · · dxn · · ·

p(x1, t1;x2, t2;x3, t3; · · · ;xn, tn; · · · ) .

Time ordering allows us to formulate predictions of future values from the
known past in terms of conditional probabilities:

p(x1, t1;x2, t2; · · · |xk, tk;xk+1, tk+1, · · · ) =

=
p(x1, t1;x2, t2; · · · ;xk, tk;xk+1, tk+1, · · · )

p(xk, tk;xk+1, tk+1, · · · )
,

with t1 ≥ t2 ≥ · · · ≥ tk ≥ tk+1 ≥ · · · . In other words, we may compute

{(x1, t1), (x2, t2), · · · } from known {(xk, tk), (xk+1, tk+1), · · · } .
With respect to the temporal progress of the process we shall distinguish
discrete and continuous time: A trajectory in discrete time is just a time
ordered sequence of random variables, X1,X2, . . . ,Xn where time is implicitly
included in the index of the variable in the sense that X1 is recorded at time
t1, X2 at time t2, and so on. For the probability distribution we require
to indices, n for the values the random variable can adopt and k for time:
Pn,k = P (Xk = xn) with n, k ∈ N (table 3.1). The introduction of continuous
time is straightforward, since we need only replace k ∈ N by t ∈ R. The
random variable is still discrete and the probability mass function becomes a
function of time, Pn,k ⇒ Pn(t). The transition to a continuous sample space
for the random variable is done in precisely the same way as in the case of
probability mass functions described in section 1.9.
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Before we derive a general concept that allows for flexible modeling and
stochastic descriptions, which are applicable to chemical kinetics and biologi-
cal modeling, we introduce a few common classes of stochastic processes with
characteristic properties and different behavior behavior with respect to past,
present and future.

3.2.1 Memory in stochastic processes

Three simple stochastic processes with characteristic memory effects will be
discussed here: (i) the fully factorizable process with probability densities
that are independent of other events with the special case of the Bernoulli
process where the probability densities are also independent of time, (ii) the
martingale where the (sharp) initial value of the stochastic variable is equal to
the conditional mean value of the variable in the future, and (iii) the Markov
process where the future is completely determined by the presence.

3.2.1.1 Independence and Bernoulli processes

The simplest class of stochastic processes is characterized by complete inde-

pendence of events,

p(x1, t1;x2, t2;x3, t3; · · · ) =
∏

i

p(xi, ti) , (3.5)

which implies that the current value X (t) is completely independent of its
values in the past. A special case is the sequence of Bernoulli trials (see in
previous chapters, in particular in sections 1.5 and subsection 2.3.2) where
the probability densities are also independent of time: p(xi, ti) = p(xi), and
then we have

p(x1, t1;x2, t2;x3, t3; · · · ) =
∏

i

p(xi) . (3.5’)

Further simplification occurs, of course, when all trials are based on the same
probability distribution – for example, if the same coin is tossed in Bernoulli
trials – and then the product is replaced by p(x)n.

3.2.1.2 Martingales

The notion of martingale has been introduced by the French mathematician
Paul Pierre Lévy and the development of the theory of martingales is due to
the American mathematician Joseph Leo Doob. Appropriately, we distinguish
discrete time and continuous time processes. A discrete-time martingale is a
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Fig. 3.3 The discrete time one-dimensional random walk. The one-
dimensional random is shown as an example of a martingale. Five trajectories were
calculated with different seeds for the random number generator. The expectation
value E

(

X (t)
)

= x0 = 0 is constant and the variance grows linearly with time

σ2
(

X (t)
)

= n = τ−1t = 2ϑt. The three black lines in the figure correspond to
E(t) and E(t) ± σ(t), and the grey area represent the confidence interval of 68,2%.
Choice of parameters: τ−1 = 1 (= 2ϑ); l = 1; random number generator: Mersenne
Twister, seeds: 491 (yellow), 919 (blue), 023 (green), 877 (red), 127 (violet).

sequence of random variables, X1,X2, . . . , which satisfy the conditions

E(Xn+1|X1, . . . ,Xn) = Xn and E(|Xn|) <∞ . (3.6)

Given all past values X1, . . . ,Xn the conditional expectation value for the
next observation E(Xn+1) is equal to the last recorded value Xn.

A continuous time martingale refers to a random variable X (t) with the
expectation value E

(
X (t)

)
. We define first the conditional expectation value

of the random variable for X (t0) = x0 and E(|X (t)|) <∞:

E
(
X (t)|(x0, t0)

)
:=

∫
dx p(x, t|x0, t0) .

In a martingale the conditional mean is simply given by

E
(
X (t)|(x0, t0)

)
= x0 . (3.7)

The mean value at time t is identical to the initial value of the process. The
martingale property is rather strong and we shall use it for several specific
situations.



170 3 Stochastic processes

As an example of a martingale we show the unlimited symmetric random
walk in one dimension (figure 3.3): Equally sized steps of length l to the right
and to the left are taken with equal probability. In the discrete time random
walk the waiting time between two steps is τ and appropriately we measure
time in multiples of the waiting time: t = k ·τ . The corresponding probability
to be at location x = n · l at time is simply expressed by

P (n, k + 1 |n0, k0) =
1

2

(
P (n+ 1, k |n0, k0) + P (n− 1, k |n0, k0)

)
. (3.8)

Equation (3.8) can be readily solved by means of the characteristic function
φ(s, k) =

〈
eı
.
ıns
〉
=
∑

n P (n, k |n0, k0) e
ı
.
ıns, and yields

φ(s, k) = coshk(ı
.
ıs) and P (n, k | 0, 0) =

(
1

2

)k
k!(

k−n
2

)
!
(
k+n
2

)
!
, (3.9)

where the inial conditions were simplified without loosing generality: n0 = 0
and k0 = 0. Calculation of first and second moments is straightforward and
can be achieved best by using the derivatives of the characteristic function
as shown in equation (2.29):

∂φ(s, k)

∂s
= ı

.
ı n coshn−1(ı

.
ıs) · sinh(ı.ıs) and

∂2φ(s, k)

∂s2
= −n

(
coshn(ı

.
ıs) + (n− 1) coshn−2(ı

.
ıs) · sinh2(ı.ıs)

)

Insertion of s = 0 yields (∂φ/∂s)|s=0 = 0 and (∂2φ/∂s2)|s=0 = −n and by
equation (2.29) we obtain with n(0) = n0 and k(0) = k0 for the moments

E
(
X (t)

)
= x0 = n0 · l and σ2

(
X (t)

)
= t− t0 = (k− xk0) τ . (3.10)

The unlimited symmetric (discrete) random walk in one dimension is a mar-
tingale and the standard deviation σ

(
X (t)

)
increases with

√
t as predicted

in the path-breaking works of Albert Einstein [58] and Marian von Smolu-
chowski [298].

The somewhat relaxed notion of a semimartingale is of importance because
it covers the majority of processes that are accessible to modeling by stochas-

tic differential equations. A semimartingale is composed of a local martingale

and an adapted càdlàg-process5 with bounded variation

X (t) = M(t) + A(t)

5 The property càdlàg is an acronym from French for “continue à droite, limites
à gauche”. It is a common property of step functions in probability theory (sec-
tion 1.6.1).
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A local martingale is a stochastic process that satisfies locally the martingale
property (3.7) but its expectation value 〈M(t)〉 may be distorted at long
times by large values of low probability. Hence, every martingale is a local
martingale and every bounded local martingale is a martingale. In particu-
lar, every driftless diffusion process is a local martingale but need not be a
martingale.

An adapted process A(t) is nonanticipating in the sense that it cannot see
into the future. An informal interpretation [303, section II.25] would say: A
stochastic process X (t) is adapted if and only if for every realization and for
every time t, X (t) is known at time t and not before. The notion ’nonan-
ticipating’ is irrelevant for deterministic processes but matters for processes
containing fluctuating elements, because the independence of random or ir-
regular increments makes it impossible to look into the future. The concept of
adapted processes is essential, for the Itō stochastic integral, which requires
that the integrand is an adapted process (section 3.4.2).

Two generalizations of martingales are in common use: (i) A discrete time
submartingale is a sequence X1,X2,X3, . . ., of random variables that satisfy

E(Xn+1|X1, . . . ,Xn) ≥ Xn , (3.11)

and for the continuous time analogue we have the condition

E
(
X (t)|{X (τ) : τ ≤ s}

)
≥ X (s) ∀ s ≤ t . (3.12)

(ii) The relations for supermartingales are in complete analogy to the sub-
martingales, only the ’≥’ relations have to be replaced by ’≤’:

E(Xn+1|X1, . . . ,Xn) ≤ Xn , (3.13)

E
(
X (t)|{X (τ) : τ ≤ s}

)
≤ X (s) ∀ s ≤ t . (3.14)

A straightforward consequence of the property of martingales is: If a sequence
or a function of random variables is a simultaneously submartingale and a
supermartingale it is a martingale.

3.2.1.3 Markov processes

Another simple concept assumes that knowledge of the present only is suffi-
cient to predict the future. It is realized in Markov processes named after the
Russian mathematician Andrey Markov6 and can formulated easily in terms

6 The Russian mathematician Andrey Markov (1856-1922) is one of the founders
of Russian probability theory and pioneered the concept of memory free processes,
which is named after him. He expressed more precisely the assumptions that were
made by Albert Einstein [58] and Marian von Smoluchowski [298] in their derivation
of the diffusion process.
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of conditional probabilities:

p(x1, t1;x2, t2; · · · |xk, tk;xk+1, tk+1, · · · ) = p(x1, t1;x2, t2; · · · |xk, tk) .
(3.15)

In essence, the Markov condition expresses independence of the history of
the process prior to time tk, or in other words and said more sloppily: “A
Markov process has no memory and the future is completely determined by

the presence”. In particular, we have

p(x1, t1;x2, t2;xk, tk) = p(x1, t1|x2, t2) p(x2, t2|xk, tk) .

As we have seen in section 1.6.3 any arbitrary joint probability can be simply
expressed as products of conditional probabilities:

p(x1, t1;x2, t2;x3, t3; · · · ;xn, tn) =

= p(x1, t1|x2, t2) p(x2, t2|x3, t3) · · · p(xn−1, tn−1|xn, tn) p(xn, tn) (3.15’)

under the assumption of time ordering t1 ≥ t2 ≥ t3 ≥ . . . ≥ tn−1 ≥ tn.
Stationarity is an important property of Markov processes, and we shall

make use of it in the search for thermodynamic equilibria and stationary
states. Several definitions of stationarity are possible and we shall adopt here
a rather strict one [93, pp. 56-65]: A stochastic process is called stationary if
X (t) and X (t+∆t) obey the same statistics for every ∆t. Accordingly, joint
probability densities are invariant to time translation:

p(x1, t1;x2, t2; . . . ;xn, tn) = p(x1, t1 +∆t;x2, t2 +∆t; . . . ;xn, tn +∆t) .
(3.16)

In other words, the probabilities are only functions of the differences in time,
tk − tj , and this leads to time independent stationary one-time probabilities

p(x, t) =⇒ p̄(x) , (3.17)

and two-times joint or conditional probabilities of the form

p(x1, t1;x2, t2) =⇒ p̄(x1, t1 − t2;x2, 0) and

p(x1, t1|x2, t2) =⇒ p̄(x1, t1 − t2|x2, 0) .
(3.18)

Since all joint probabilities of a Markov process can be written as products
of two-time conditional probabilities and a one-time probability (3.15’), the
necessary and sufficient condition for stationarity is cast into the require-
ment to be able to write all one- and two-time probabilities as shown in
equations (3.17) and (3.18). A Markov process that becomes stationary in
the limit t→∞ or t0 → −∞ is called a homogeneous Markov process .
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Fig. 3.4 Notation of time dependent variables. In the following sections we
shall require several time dependent variables and adopt the following notations:
In case of the Chapman-Kolmogorov equation we require three variables at different
times denoted by x1, x2, and x3. The variable x2 is associated with intermediate time
t2 (red) and disappears through integration. In the forward equation (x3, t3) are fixed
initial conditions and (x1, t1) is moving (A). For backward integration the opposite
relation is assumed: (x1, t1) being fixed and (x3, t3) moving (B). In both cases real
time progresses from the left to the right. The lower part of the figure shows notations
used for forward and backward differential Chapman-Kolmogorov equations: In the
forward equation (C) x(t) is the variable, the initial conditions are denoted by (x0, t0)
and (z, t) is an intermediate double (red). In the backward equation the time order
is reversed (D): y(τ) is the variable and (y0, τ0) are the final conditions.

3.2.1.4 Continuity in stochastic processes

The condition of continuity in Markov processes requires a more detailed
discussion. For this goal we consider a process that progresses from location
z at time t to location x at time t+∆t denoted as (z, t)→ (x, t+∆t).7 Then
the process is continuous if and only if in the limit lim∆t→ 0 the probability
of x to be finitely different from z goes to zero faster than ∆t as expressed
by the equation

lim
∆t→0

1

∆t

∫

|x−z|>ε
dx p (x, t+∆t|z, t) = 0 , (3.19)

7 For the time dependent variables we use the notation listed in figure 3.4.
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and this convergence is uniform in z, t, and ∆t. In other words, the difference
in probability as a function of |x − z | approaches zero sufficiently fast and
therefore no jumps occur in the random variable X (t).

Two illustrative examples for the analysis of continuity are chosen and
sketches in figure 3.5: (i) the Einstein-Smoluchowski solution of Brownian
motion, which is a continuous version of the random walk in one dimension
shown in figure 3.3,8 which leads to a normally distributed probability,

p(x, t+∆t|z, t) =
1√

4πD∆t
exp

(
− (x− z)2

4D∆t

)
, (3.20)

and (ii) the so-called Cauchy process following the Cauchy-Lorentz distribu-
tion,

p(x, t+∆t|z, t) =
∆t

π

1

(x − z)2 +∆t2
. (3.21)

In case of the Wiener process we exchange the limit and the integral,
introduce ϑ = (∆t)−1, perform the limit ϑ→∞, and have

lim
∆t→0

1

∆t

∫

|x−z|>ε
dx

1√
4πD

1√
∆t

exp

(
− (x− z)2

4D∆t

)
=

=

∫

|x−z|>ε
dx lim

∆t→0

1

∆t

1√
4πD

1√
∆t

exp

(
− (x− z)2

4D∆t

)
=

=

∫

|x−z|>ε
dx lim

ϑ→∞
1√
4πD

ϑ3/2

exp
(

(x−z)2
4D ϑ

) , where

lim
ϑ→∞

ϑ3/2

1 + (x−z)2
4D · ϑ + 1

2!

(
(x−z)2

4D

)2
· ϑ2 + 1

3!

(
(x−z)2

4D

)3
· ϑ3 + . . .

= 0 .

Since the power expansion of the exponential in the denominator increases
faster than every finite power of ϑ, the ratio vanishes in the limit ϑ→∞, the
value of the integral is zero, and the Wiener process is continuous everywhere.
Although it is continuous, the curve of Brownian motion [27] is extremely
irregular since it is nowhere differentiable (figure 3.5).

In the second example, the Cauchy process, we exchange limit and integral
as in case of the Wiener process, and perform the limit ∆t→ 0:

8 Later on we shall discuss the continuous version of this stochastic process in more
detail and call it a Wiener process.
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Fig. 3.5 Continuity in Markov processes. Continuity is illustrated by means
of two stochastic processes of the random variable X (t), the Wiener process W(t)
(3.20; black) and the Cauchy process C(t) (3.21; grey). The Wiener process describes
Brownian motion and is continuous but almost nowhere differentiable. The even more
irregular Cauchy process is wildly discontinuous.

lim
∆t→0

1

∆t

∫

|x−z|>ε
dx

∆t

π

1

(x − z)2 +∆t2
=

=

∫

|x−z|>ε
dx lim

∆t→0

1

∆t

∆t

π

1

(x − z)2 +∆t2
=

=

∫

|x−z|>ε
dx lim

∆t→0

1

π

1

(x− z)2 +∆t2
=

∫

|x−z|>ε

1

π(x− z)2 dx 6= 0 .

The value of the last integral, I =
∫∞
|x−z|>ε dx/(x − z)2 = 1/

(
π(x − z)

)
, is

of the order I ≈ 1/ε and accordingly finite. Consequently, the curve for the
Cauchy-process is not only irregular but also discontinuous (figure 3.5).

Both processes, as required for consistency, fulfill the relation

lim
∆t→0

p (x, t+∆t| z, t) = δ(x− z) ,

where δ(·) is the so-called delta-function (see section 1.6.2).
We are now in the position to give a concise mathematical definition for

continuity in Markov processes [93, p. 46], which will be used to derive a
comprehensive and convenient equation for stochastic processes. For general
validity we use vector notation for the locations:
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A Markov process has – with probability one – sample paths that are
continuous functions of time t, if for any ε > 0 the limit

lim
∆t→0

1

∆t

∫

|x−z|<ε
dx p(x, t+∆t| z, t) = 0 . (3.22)

is approached uniformly in z, t, and ∆t.

In essence, equation (3.22) expresses the fact that probabilistically the differ-
ence between x and z converges to zero faster than ∆t does.

3.2.2 Chapman-Kolmogorov equations

At the basis of general modeling of stochastic processes stands a straightfor-
ward consideration concerning the propagation of probability distributions in
time: How to calculate the probability to come fromN3 = n3 at time t = t3 to
N1 = n1 at time t = t1. We assume an intermediate state (N2 = n2 at t = t2)
and an implicit order in time: t1 ≥ t2 ≥ t3. The value of the variable N2 need
not be unique or, in other words, there may be different paths or trajecto-
ries leading from (n3, t3) to (n1, t1). If the individual values of the random
variables are replaced by probabilities, N = n =⇒ P (N = n, t) = P (n, t), an
equation is obtained that encapsulates the full diversity of sources of random-
ness with the exception of quantum uncertainty [94]. The only restriction in
the generally used form of this equation is the Markov property of the stochas-
tic process. The equation is named Chapman-Kolmogorov equation after the
British geophysicist and mathematician Sydney Chapman and the Russian
mathematician Andrey Kolmogorov and for the rest of this section we shall
be concerned with it.

3.2.2.1 Discrete and continuous Chapman-Kolmogorov equations

The relation between the three random variables N1, N2, and N3 can be
illustrated by application of set theoretical considerations. If all mutually
exclusive events of one kind are included in the summation the corresponding
variable B is eliminated:

∑

B

P (A ∩B ∩ C) = P (A ∩ C) .

First we assume to be dealing with a discrete state space and accordingly
the random variables N ∈ N are defined on the integers. Then we can simply
make use of state space covering and find for the marginal probability
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P (n1, t1) =
∑

n2

P (n1, t1;n2, t2) =
∑

n2

P (n1, t1|n2, t2)P (n2, t2) .

Now we introduce a third event (n3, t3) and describe the process by the
equations for conditional probabilities

P (n1, t1|n3, t3) =
∑

n2

P (n1, t1;n2, t2|n3, t3) =

=
∑

n2

P (n1, t1|n2, t2;n3, t3)P (n2, t2|n3, t3) .

Both equations are of general validity for all stochastic processes, and the
series could be extended further to four, five events and so on. Adopting the
Markov assumption and introducing the time order t1 ≥ t2 ≥ t3 provides
the basis for dropping the dependence on (n3, t3) in the doubly conditioned
probability and leads to

P (n1, t1|n3, t3) =
∑

n2

P (n1, t1|n2, t2)P (n2, t2|n3, t3) . (3.23)

This is the Chapman-Kolmogorov equation in its simplest general form. Equa-
tion (3.23) can be interpreted as a matrix multiplication where the size of
the matrices depends on the event space of n2 – it could even be countably
infinite.

The extension from the discrete case to probability densities is straight-
forward. By the same token we find for the continuous case

p(x1, t1) =

∫
dx2 p(x1, t1;x2, t2) =

∫
dx2 p(x1, t1|x2, t2) p(x2, t2) ,

and the extension to three events leads to

p(x1, t1|x3, t3) =

∫
dx2 p(x1, t1;x2, t2|x3, t3) =

=

∫
dx2 p(x1, t1|x2, t2;x3, t3) p(x2, t2|x3, t3) .

For t1 ≥ t2 ≥ t3 and making again use of the Markov assumption we obtain
the continuous version of the Chapman-Kolmogorov equation:

p(x1, t1|x3, t3) =

∫
dx2p(x1, t1|x2, t2) p(x2, t2|x3, t3) . (3.24)

Equation (3.24) is of very general nature. The only relevant approximation
is the assumption of a Markov process, which is empirically full justified in
physics, chemistry and biology. General validity is commonly accompanied
by a variety of different solutions and the Chapman-Kolmogorov equation is
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Fig. 3.6 Time order in the differential Chapman-Kolmogorov equation
(dCKE) . The one-dimensional sketch shows the notation used in the derivation of
the forward dCKE. The variable z is integrated over the entire sample space Ω in
order to sum up all trajectories leading from (x0, t0) via (z, t) to (x, t+∆t).

no exception in this aspect. The generality of (3.24) in the description of a
stochastic process becomes evident when the evolution in time is continued
t1 ≥ t2 ≥ t3 ≥ t4 ≥ t5 . . . , where summations over all intermediate states are
performed. Sometimes it is useful – and we shall adopt this notation here – to
indicate an initial state by the doublet (x0, t0). As said before, all expressions
are valid also for vectors x in space.

3.2.2.2 Differential Chapman-Kolmogorov forward equation

Since we aim at a description of processes the Chapman-Kolmogorov equa-
tions in discrete and continuous form as expressed in equations (3.23) and
(3.24), respectively, provide a general definition of Markov processes but they
are not really useful to describe the temporal evolution. Much better suited
for describing stochastic processes as well as analyzing nature and properties
of solutions or performing actual calculations is an equation in differential
form. In a way the differential formulation of basic stochastic processes can
be compared to the invention of calculus by Gottfried Wilhelm Leibniz and
Isaac Newton, which provides the ultimate basis for all modeling by means
of differential equations. Analytical solution or numerical integration of such
a differential Chapman-Kolmogorov equation (dCKE) is then expected to
provide the desired description of the process. A differential form of the
Chapman-Kolmogorov equation has been derived by Crispin Gardiner [93,
pp. 48-51]9 . We shall follow here, in essence, a simpler approach given more
recently by Mukhtar Ullah and Olaf Wolkenhauer[282, 283].

9 The derivation is contained already in the first edition of Gardiner’s Handbook
of stochastic methods [92] and it has been Crispin Gardiner who coined the name
differential Chapman-Kolmogorov equation.
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The Chapman-Kolmogorov equation is considered for an interval t→ t+∆t
defined for a sample space Ω and the initial conditions (x0, t0):

p (x, t+∆t|x0, t0) =

∫

Ω

dz p (z, t+∆t|x0, t0) p (z, t|x0, t0) . (3.24 ’)

The probability of a transition (x0, t0)→ (x, t+∆t) is obtained by summation
of all probabilities to occur via an intermediate, (x0, t0)→ (z, t)→ (x, t+∆t)
as illustrated in figure 3.6. In order to simplify derivation and notation we
shall assume fixed initial conditions (x0, t0) for conditioning probability and
transition:

p (x, t) = p (x, t|x0, t0) . (3.25)

We introduce the time derivative by tacitly assuming that the probability
p (x, t) is differentiable with respect to time:

∂

∂t
p (x, t) = lim

∆t→0

1

∆t

(
p (x, t+∆t) − p(x, t)

)
(3.26)

Introducing the CKE in form (3.24’) and multiplying p (x, t) formally by one
in the form of the normalization condition of probabilities,10

1 =

∫

Ω

dz p (z, t+∆t|x, t) ,

we can rewrite equation (3.26) as

∂

∂t
p (x, t) = lim

∆t→0

1

∆t

∫

Ω

dz
(
p (x, t+∆t| z, t) p (z, t)−

− p (z, t+∆t|x, t) p (x, t)
)
.

(3.27)

For the purpose of integration the sample space Ω is divided up into to parts
with respect to an arbitrarily small parameter ǫ > 0. Using the notion of
continuity (section 3.2.1.4) the region D1 defined by ‖x − z‖ < ǫ represents
a continuous process.11 Part two of sample space, D2 with ‖x − z‖ ≥ ǫ,
corresponds to a jump process, and for the derivative taken on the entire
sample space Ω we get:

10 It is important to note that the trick in the derivation is that the time order is
reversed in this integral.
11 The notation ‖ · ‖ refers to a suitable vector norm – in the one-dimensional case
we would just use the absolute value |x− z|.



180 3 Stochastic processes

∂

∂t
p (x, t) = D1 + D2 , with

D1 = lim
∆t→0

1

∆t

∫

‖x−z‖<ǫ
dz
(
p (x, t+∆t| z, t) p (z, t)−

− p (z, t+∆t|x, t) p (x, t)
)
, and

D2 = lim
∆t→0

1

∆t

∫

‖x−z‖≥ǫ
dz
(
p (x, t+∆t| z, t) p (z, t)−

− p (z, t+∆t|x, t) p (x, t)
)
.

(3.28)

In the first region with ‖x − z‖ < ǫ the integrand is expanded in a Taylor
series with r = x− z

D1 = lim
∆t→0

1

∆t

∫

‖r‖<ǫ
dr
(
p (x, t+∆t|x− r, t) p (x− r, t)−

− p (x− r, t+∆t|x, t) p (x, t)
)
.

In this Taylor expansion all terms higher than second order are vanishing for
consistence [93, 282]. Provided the differentiability conditions are fulfilled we
obtain in the limit ǫ→ 0:

D1 = −
∑

i

∂

∂xi

(

Ai(x, t) p (x, t)
)

+
1

2

∑

i

∑

j

∂2

∂xi∂xj

(

Bij(x.t) p (x, t)
)

. (3.29)

which defines a Fokker-Planck equation. In the limit ǫ → 0 the continuous
part of the process becomes equivalent to an equation for the differential
increments of the random vector ~X (t) describing a single trajectory:

~X (t+ dt) = ~X (t) + A
(
~X(t), t

)
dt +

(
B
(
~X (t), t

)
dt
) 1

2

. (3.30)

Equation (3.30) is a stochastic differential equation or Langevin equation (see
section 3.4.1).
The second part of the integration over sample space Ω involves the proba-
bility rate for jumps:

D2 = lim
∆t→0

1

∆t

∫

‖x−z‖≥ǫ
dz
(
p (x, t+∆t| z, t) p (z, t)−

− p (z, t+∆t|x, t) p (x, t)
)
.

The condition for a jump process is ‖x− z‖ ≥ ǫ (section 3.2.1.4) and accord-
ingly we have

lim
∆t→0

1

∆t

(
p (x, t+∆t| z, t) p (z, t)

)
= W (x| z, t) p (z, t) , (3.31)
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whereW (x| z, t) is the transition rate for the jump z→ x. By the same token
we define a transition rate for the jump in the reverse direction x → z. As
ǫ→ 0 the integration is extended over the whole same space Ω and eventually
we obtain

lim
ǫ→0

D2 =

∫

Ω

dz
(
W (x| z, t) p (z, t) − W (z| z, t) p (x, t)

)
, (3.32)

which completes the somewhat simplified derivation of the differential Chapman-
Kolmogorov equation.

The evolution of the system is now expressed in terms of functions A(x, t),
which correspond to the functional relations in conventional differential equa-
tions, a diffusion matrix B(x, t), and transition matrix for discontinuous
jumps W(x|z, t):

∂p (x, t)

∂t
= −

∑

i

∂

∂xi

(
Ai(x, t) p (x, t)

)
+ (3.33a)

+
1

2

∑

i,j

∂2

∂xi∂xj

(
Bij(x, t) p (x, t)

)
+ (3.33b)

+

∫
dz
(
W(x |z, t) p (z, t)−W(z |x, t) p (x, t)

)
. (3.33c)

Equation (3.33) is called a forward equation in the sense of figure 3.15. In
the derivation surface terms at the boundary of the domain of x have been
neglected [93, p. 50]. This assumption is not critical for most cases considered
here. It is always correct for infinite domains because the probabilities vanish:
limx→±∞ p(x, t) = 0.

From a mathematical purist’s point of view it is not clear from the deriva-
tion that solutions of the differential Chapman-Kolmogorov equation (3.33)
exist, are unique and are solutions to the Chapman-Kolmogorov equation
(3.24) as well. It is true, however, that the set of conditional probabilities
obeying equation (3.33) does generate a Markov process in the sense that
the joint probabilities produced satisfy all probability axioms. It has been
shown, however, that a non-negative solution to the differential Chapman-
Kolmogorov equations exists and satisfies the Chapman-Kolmogorov equa-
tion under certain conditions (see [100, Vol.II]):

(1) A(x, t) = {Ai(x, t); i = 1, . . .} and B(x, t) = {Bij(x, t); i, j = 1, . . .} are
specific vectors and positive semidefinite matrices12 of functions, respec-
tively,

(2) W(x|z, t) and are W(z|x, t) non-negative quantities,
(3) the initial condition has to satisfy p(x, t|x0, t0) = δ(x0−x) which follows

from the definition of a conditional probability density, and

12 A positive definite matrix has exclusively positive eigenvalues, λk > 0 whereas a
positive semidefinite matrix has non-negative eigenvalues, λk ≥ 0.
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(4) appropriate boundary conditions have to be fulfilled.

The boundary conditions are very hard to specify for the full equation but
can be discussed precisely for special cases, for example in the case of the
Fokker-Planck equation [250].

The nature of the different stochastic processes associated with the three
terms in equation (3.33), A(x, t), B(x, t), W(x | z, t) and W(z |x, t), is visu-
alized by setting some parameters equal to zero and analyzing the remaining
equation. We shall discuss here four cases that are modeled by different equa-
tions (for relations between them see figure 3.1).

(i) B = 0, W = 0, deterministic drift process: Liouville equation,
(ii) A = 0, W = 0, drift free diffusion process or Wiener process,
(iii) W = 0, drift and diffusion process: Fokker-Planck equation, and
(iv) A = 0, B = 0, pure jump process: master equation.

The first term in differential Chapman-Kolmogorov equation, equation (3.33a)
is the probabilistic version of a differential equation describing deterministic
motion, which is known as Liouville equation named after the French mathe-
matician Joseph Liouville. It is a fundamental equation of statistical mechan-
ics and will be discussed in some detail subsection 3.2.3.1. With respect to the
theory of stochastic processes (3.33a) encapsulates the drift of a probability
distribution.

The second term in equation (3.33) describes spreading of probability den-
sities by diffusion and is called a stochastic diffusion equation. In pure form it
is represented by the Wiener process, which got the name from the American
mathematician Norbert Wiener and which can be understood as the continu-
ous time and continuous space limit of the one-dimensional random walk (see
figure 3.3). The Wiener process is fundamental for understanding stochastic-
ity in continuous space and time and will be discussed in subsection 3.2.3.2.

Combining equations (3.33a) and (3.33b) yields the Fokker-Planck equa-
tion, which we repeat here because of its general importance:

∂p (x, t)

∂t
= −

∑

i

∂

∂xi

(

Ai(x, t) p (x, t)
)

+
1

2

∑

i,j

∂2

∂xi∂xj

(

Bij(x, t) p (x, t)
)

. (3.34)

The equation is named after two physicists, the Dutchman Adriaan Daniël
Fokker and the German Max Planck. Fokker-Planck equations are frequently
used in physics to model and analyze processes with fluctuations [250].

If only the third term of the differential Chapman-Kolmogorov equation,
(3.33c), has nonzero elements, the variables x and z change only in steps and
the corresponding differential equation is called a master equation. Master
equations are the most important tools for describing processes in discrete
spaces, X (t) ∈ N. We shall discuss specific examples in sections 3.2.3.5 and
3.2.3.6 and treat them in a whole section (section 3.2.5. In particular, mas-
ter equations are indispensable for modeling chemical reactions or biological
processes with small particle numbers. Specific applications in chemistry and
biology will be presented in two separate chapters 4 and 5.
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It is important to stress that the mathematical expressions of the three
contributions to the general stochastic process represent a pure formalism
that can be applied equally well to problems in physics, chemistry, biology,
sociology, economics or other disciplines. Specific empirical knowledge enters
the model in form of the parameters: the drift vector A, the diffusion matrix
B, and the jump transition matrix W. By means of examples we shall show
how physical laws are encapsulated in the regularities between parameters.

3.2.3 Examples of stochastic processes

In this section we present examples of stochastic processes with characteristic
properties that will be used in the forthcoming applications: (i) the Liouville
process, (ii) the Wiener process, (iii) the Ornstein-Uhlenbeck process, (iv)
the Poisson process, and (v) the random walk in one dimension.

3.2.3.1 Liouville equation

The Liouville equation is the straightforward link between deterministic mo-
tion and stochastic processes. As shown in figure 3.1 all elements of the jump
transition matrix W and the diffusion matrix B are zero and what remains is
a differential equation falling into the class of Liouville equations from clas-
sical mechanics. A Liouville equation is used commonly for the description
of the deterministic motion of particles in phase space.13 Following [93, p. 54]
we show that deterministic trajectories are identical to solutions of the dif-
ferential Chapman-Kolmogorov equation with D = 0 and W = 0 and then
relate the result to Liouville’s theorem in classical mechanics [184, 185].

The probability density p (x, t) with sharp initial conditions p (x, t0) =
δ(x− x0).

14 From the dCKE we obtain

∂p (x, t)

∂t
= −

∑

i

∂

∂xi

(
Ai(x, t) p(x, t)

)
, (3.35)

and the goal is to show equivalence to the differential equation

dξ(t)

dt
= A

(
ξ(t), t

)
with ξ(t0) = x0 (3.36)

13 Phase space is an abstract space, which is particularly useful for the visual-
ization of particle motion. The six independent coordinates of particle Sk are the
position coordinates qk = (qk1, qk2, qk3) and the (linear) momentum coordinates
pk = (pk1, pk2, pk3). In Cartesian coordinates they read: qk = (xk, yk, zk) and
pk = mk · vk with v = (vx, vy, vz) being the velocity vector.
14 For simplicity we write p (x, t) instead of the conditional probability p (x, t|x0, t0)
as long as the initial conditions (x0, t0) refer to the sharp density p (x, t0) = δ(x−x0).
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in form of the common solution

p (x, t) = δ
(
x− ξ(t)

)
. (3.37)

The proof is done by direct substitution

∑

i

∂

∂xi

(
Ai(x, t) δ

(
x− ξ(t)

))
=
∑

i

∂

∂xi

(
Ai
(
ξ(t), t

)
δ
(
x− ξ(t)

))
=

=
∑

i

(
Ai
(
ξ(t)

) ∂

∂xi
δ
(
x− ξ(t)

))
,

and
∂

∂t
δ
(
x− ξ(t)

)
= −

∑

i

(dξi(t)
dt

· ∂

∂xi
δ
(
x− ξ(t)

))
.

Making use of equation (3.36) we see that the sums in the expressions on the
last two lines are equal. ⊓⊔

Deterministic motion as described be equation (3.36) is a special case of
a Markov process in which the distribution p (x, t) degenerates to a Dirac
delta-function. We may relax the initial conditions p (x, t0) = δ(x − x0) →
p (x, t0) = p (x0) and then the result is a distribution migrating through
space with unchanged shape instead of a delta function travelling on a single
trajectory (see equation (3.39’) below).

The following part on Liouville’s equation15 illustrates how empirical sci-
ence – here Newtonian mechanics – enters a formal stochastic equation. In
Hamiltonian mechanics [117, 118] dynamical systems may be represented by
a density function or classical density matrix ̺ (q,p) in phase space. The
density function allows for the calculation of system properties. Commonly it
is normalized such that the expected total number of particles is the integral
over phase space:

N =

∫
· · ·
∫
̺ (q,p) (dq)n(dp)n .

The evolution of the system is described by a time dependent density that is
commonly denoted as ̺

(
q(t),p(t), t

)
with ̺

(
q0,p0, t0

)
being the initial con-

ditions. For a particle Sk the generalized spatial coordinated qki are related
to conjugate momenta pki by Newton’s equations of motion

dpki
dt

= fki(q) and
dqki
dt

=
1

mk
pki; i = 1, 2, 3 ,

where fki is the component of the force acting on particle Sk in the direction
of qki and mk the particle mass, respectively. Liouville’s theorem based on
Hamiltonian mechanics of an n particle system makes a statement on the

15 The name Liouville equation has been created by Josiah Willard Gibbs [98].
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evolution of the density ̺

d̺ (q,p, t)

dt
=

∂̺

∂t
+

n∑

k=1

3∑

i=1

(
∂̺

∂qki

dqki
dt

+
∂̺

∂pki

dpki
dt

)
= 0 (3.38)

Insertion of the individual time derivatives yields:

∂̺ (q,p, t)

∂t
= −

n
∑

k=1

n
∑

i=1

(

1

mi

pki
∂

∂qki

̺ (q,p, t) + fki
∂

∂pki

̺ (q,p, t)

)

. (3.39)

Equation (3.39) is already of the form of a differential Chapman-Kolmogorov
equation (3.35) with B = 0 and W = 0 as follows from

̺ (q,p, t) ≡ p (x, t) with

x ≡ (q11, . . . , qn3, p11, . . . , pn3) and

A ≡
(

1

m1
p11, . . . ,

1

mn
pn3, f11, . . . , fn3

)

where the 6n coordinates represent the 3n coordinates determining the posi-
tions and the 3n coordinates for the linear momenta of n particles.

Finally, we indicate how the case of an extended probability density is
handled in equation (3.35). The density function is the expectation value of
the probability distribution,

̺
(
q(t),p(t), t

)
= E

(
̺
(
q(t),p(t), t

))
, (3.40)

and it fulfils the Chapman-Kolmogorov equation:

∂̺ (q,p, t)

∂t
= −

3n∑

i=1

(
1

mi
pi

∂

∂qi
̺ (q,p, t) + fi

∂

∂pi
̺ (q,p, t)

)
. (3.39’)

The Liouville equation states the conservation of density in phase space or in
other words the distribution function ̺ (q,p, t) is constant along any trajec-
tory in phase space.

3.2.3.2 Wiener process and diffusion equation

The Wiener process named after the American mathematician and logician
Norbert Wiener is fundamental in many aspects. It is often used synonymous
to Brownian motion or white noise and describes among other things diffusion
due to random fluctuations caused by thermal motion. The fluctuation driven
random variable is denoted by W(t) and is characterized by the cumulative
probability distribution,
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P (W(t) ≤ w) =
∫ w

−∞
p (v, t) dv .

From the point of view of stochastic processes the probability density of
the Wiener process is the solution of the differential Chapman-Kolmogorov
equation in one variable with a diffusion term B = D = 1, zero drift A = 0
and no jumps W = 0:

∂p (w, t)

∂t
=

1

2

∂2

∂w2
p (w, t) with p (w, t0) = δ(w − w0) . (3.41)

Again a sharp initial condition (w0, t0) is assumed and we write for short
p (w, t) = p (w, t|w0, t0).

In physics and chemistry equation (3.41) – apart from the factors 1/2 and
D, respectively – occurs in connection with particle numbers or concentra-
tions as functions of space and time: c(x, t) in the one-dimensional case, which
fulfils

∂ c (x, t)

∂t
= D

∂2

∂x2
c (x, t) with c (x, t0) = c0(x) (3.42)

as initial condition. Equation (3.42) is called diffusion equation,16 because
c(x, t) describes the spreading of concentrations in homogeneous media driven
by thermal molecular motion (for a detailed mathematical description of dif-
fusion see, for example, [44]). The parameter D is called the diffusion coef-
ficient and here it is assumed to be a constant. The diffusion equation has
been derived first by Adolf Fick in 1855 [239]. Replacing the concentration by
the temperature distribution in an one-dimensional object c(x, t) ⇔ u(x, t)
and the diffusion constant by the thermal diffusivity, D ⇔ α, the diffusion
equation (3.42) becomes the heat equation, which describes the distribution
of heat in a given region over time.

Solutions of equation (3.41) can be derived readily by means of the char-
acteristic function

φ(s, t) =

∫ +∞

−∞
dw p (w, t) exp(ı

.
ıs w) .

First we derive a differential equation for the characteristic function by ap-
plying integration by parts twice.17 The first and second integration steps
yield

16 We distinguish the two formally identical equations (3.41) and (3.42), because
the interpretation is different: The first equation (3.41) describes the evolution of a
probability distribution with the conservation relation

∫

dw p (w, t) = 1, whereas the
second equation (3.42) deals with a concentration profile, which fulfils

∫

dx c (x, t) =
ctot corresponding to mass conservation. In case of the heat equation the conserved
quantity is total heat.
17 Integration by parts is a standard integration method in calculus. It is encapsulated
in the formula
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ı
.
ıs φ(s, t) = p (w, t) eı

.
ısw

∣∣∣∣
∞

−∞
−
∫ +∞

−∞
dw

∂p (w, t)

∂w
exp(ı

.
ıs w) and

− s2 φ(s, t) =
∂p (w, t)

∂w
eı
.
ısw

∣∣∣∣
∞

−∞
−
∫ +∞

−∞
dw

∂2p (w, t)

∂w2
exp(ı

.
ıs w) .

The function p (w, t) is a probability density and accordingly has to vanish in
the limits w → ±∞. The same is true for the first derivatives, ∂p (w, t)/∂w.
Differentiation of φ(s, t) in equation (2.28) with respect to t and using equa-
tion (3.41) we obtain

∂φ(s, t)

∂t
= −1

2
s2 φ(s, t) (3.43)

Next we compute the characteristic function by integration:

φ(s, t) = φ(s, t0) · exp
(
−1

2
s2 (t− t0)

)
. (3.44)

With the initial condition φ(s, t0) = exp(ı
.
ıs w0) we complete the characteristic

function

φ(s, t) = exp
(
ı
.
ıs w0 −

1

2
s2 (t− t0)

)
(3.45)

and eventually obtain the probability density through inverse Fourier trans-
formation

p (w, t|w0, t0) =
1√

2π (t− t0)
exp

(
− (w − w0)

2

2 (t− t0)

)
. (3.46)

Hence, the density function of the Wiener process is a normal distribution
with expectation value and variance,

E
(
W(t)

)
= w0 and σ(t)2 = E

((
W(t)− w0

)2)
= t− t0 , (3.47)

respectively. The standard deviation, σ(t) =
√
t− t0, is proportional to the

square root of the time elapsed since the start of the process, t−t0, and fulfils
the famous

√
t-law. Starting the Wiener process at time t0 = 0 at the origin

w0 = 0 yields E
(
W(t)

)
= 0 and σ

(
W(t)

)2
= t. An initially sharp distribu-

tion spreads in time as illustrated in figure 3.7, and this is precisely what
is experimentally observed in diffusion. The infinite time limit of (3.46) is a

∫ b

a

u(x) v′(x) dx = u(x) v(x)

∣

∣

∣

∣

b

a

−
∫ b

a

u′(x) v(x) dx .

Characteristic functions are especially well suited for partial integration, because
exponential functions, v(x) = exp(ı

.
ısx), can be easily integrated and probability

densities u(x) = p (x, t) as well as their first derivatives u(x) = ∂p (x, t)/∂x vanish in
the limits x→ ±∞.
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Fig. 3.7 Probability density of the Wiener process. In the figure we show
the conditional probability density of the Wiener process, which is identical with the
normal distribution (figure 1.19),

p(w, t|w0, t0) = exp
(

−(w − w0)2/
(

2(t− t0)
)

)

/
√

2π(t− t0).

The values used are w0 = 5 and t− t0 =0 (black), 0.01 (red), 0.5 (yellow), 1.0 (blue),
and 2.0 (green). The initially sharp distribution, p(w, t|w0, t0) = δ(w − w0) spreads
with increasing time until it becomes completely flat in the limit t→∞.

uniform distribution U(w) = 0 on the whole real axis and hence p (w, t|w0, t0)
vanishes in the limit t→∞,.

Although the expectation value E
(
W(t)

)
= w0 is well defined and inde-

pendent of time in the sense of a martingale, the mean square E
(
W(t)2

)

becomes infinite as t → ∞. This implies that the individual trajectories,
W(t), are extremely variable and diverge after short time (see, for example,
the five trajectories of the forward equation in figure 3.3). We shall encounter
such a situation with finite mean but diverging variance also in biology in
the case of multiplication as a pure birth and death process (chapter 5): The
mean although well defined looses its value in practice when the standard
deviation becomes larger than the expectation value.

An important generalization of Wiener processes is the Gaussian process
Xt with t ∈ T = (t1, . . . , tn), for which any finite linear combination of sam-
ples has a joint normal distribution. The Gaussian property can be defined in
terms of normal distributions: (X , t ∈ T ) is Gaussian if and only if for every
finite index set t1, . . . , tn there exist real numbers µk and σkl with σkk > 0
such that

E

(
exp
(
ı
.
ı

n∑

i=1

tiXti
))

= exp
(
−1

2

n∑

i=1

n∑

j=1

σijtitj + ı
.
ı

n∑

i=1

µiti

)
, (3.48)
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where µk (k = 1, . . . , n) are the mean value of the variables Xk and σkl (k, l =
1, . . . , n) are the elements of the covariance matrix Σ. Whereas the Wiener
process is nonstationary since the variance grows with

√
t, the Ornstein-

Uhlenbeck process (section 3.2.3.4) is an example for a stationary Gaussian
process.

Continuity of sample paths of the Wiener process has been discussed al-
ready in subsection 3.2.2. Here we present proofs for two more features of
the Wiener process: (i) individual trajectories, although being continuous,
are nowhere differentiable and (ii) the increments of the Wiener Process are
independent of each other. The nondifferentiability of the trajectories of the
Wiener process has a consequence for the physical interpretation as Brownian
motion: The moving particle has no defined velocity. Independence of incre-
ments is indispensable for the integration of stochastic differential equations
(section 3.4).

In order to show nondifferentiability we consider the convergence behavior
of the difference quotient

lim
h→0

∣∣∣∣
W(t+ h)−W(t)

h

∣∣∣∣ ,

where the random variable W has the conditional probability (3.46). Lud-
wig Arnold [7, p.48] illustrates the nondifferentiability in a heuristic way:
The difference quotient

(
W(t+ h)−W(t)

)
/h follows the normal distribution

N (0, 1/|h|), which diverges as h ↓ 0 – the limit of a normal distribution with
exploding variance is undefined – and hence for every bounded measurable
set S we have

P
((
W(t+ h)−W(t)

)
/h ∈ S

)
→ 0 as h ↓ 0 .

Accordingly, the difference quotient cannot converge with nonzero probability
to a random variable with finite value. The information on the convergence
can be made more precise by using the law of the iterated logarithm: We
obtain for almost every sample function and arbitrary ǫ in the interval 0 <
ǫ < 1 as h ↓ 0

W(t+ h)−W(t)

h
≥ (1− ǫ)

√
2 ln(ln

(
1/h)

)

h
infinitely often

and simultaneously

W(t+ h)−W(t)

h
≤ (−1 + ǫ)

√
2 ln(ln

(
1/h)

)

h
infinitely often .
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Since expressions on the r.h.s. approach ±∞ as h ↓ 0, the difference quotient(
W(t+h)−W(t)

)
/h has with probability one, for every fixed t, the extended

real line [−∞,+∞] as its limit set of cluster points.
Because of the general importance of the Wiener process it is essential to

present a proof for the statistical independence of nonoverlapping increments
of W(t) [93, pp. 67,68]. We are dealing with a Markov process and hence we
can write the joint probability as a product of conditional probabilities (3.15’),
where tn − tn−1, . . . , t1 − t0 are subintervals of the time span tn ≥ t ≥ t0

p (wn, tn;wn−1, tn−1; . . . ;w0, t0) =
n−1∏

i=0

p (wi+1, ti+1|wi, ti) p(w0, t0) .

Next we introduce new variables that are consistent with this partition:(
∆wi ≡ W(ti) − W(ti−1), ∆ti ≡ ti − ti−1

)
∀ i = 1, . . . , n. Since W(t) is a

Gaussian process the probability density of any partition is normally dis-
tributed and we express the conditional probabilities in terms of (3.46):

p (∆wn, ∆tn;∆wn−1, ∆tn−1; . . . ;w0, t0) =
n∏

i=i

exp
(
−∆w2

i

2∆ti

)

√
2π∆ti

p (w0, t0) .

The joint probability distribution is factorized into distributions from indi-
vidual intervals and provided the intervals don’t overlap the increments ∆wi
are stochastically independent random variables in the sense of section 1.6.3,
and they are independent of the initial condition W(t0). The independence
relation is readily cast in precise form

W(t) − W(s) is independent of {W(τ)}τ≤s for any 0 ≤ s ≤ t , (3.49)

which will be used in the forthcoming sections on stochastic differential equa-
tions (section 3.4).

Applying equation (3.47) to the probability distribution within a partition
we find for an the interval ∆tk = tk − tk−1 :

E
(
W(tk)−W(tk−1)

)
= E(∆wk) = wk−1 and σ2(∆wk) = tk − tk−1 ,

It is now straightforward to calculate the autocorrelation function, which is
defined by

〈W(t)W(s)|(w0, t0)〉 = E
(
W(t)W(s)|(w0, t0)

)
=

=

∫∫
dwtdws wtws p (wt, t;ws, s|w0, t0) .

(3.50)

Substraction and addition of W(s)2 inside the expectation value yields

E
(
W(t)W(s)|(w0, t0)

)
= E

((
W(t)−W(s)

)
W(s)

)
+ E

(
W(s)2

)
,
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where the first term vanishes because of independence of the increments and
the second term follows from (3.47):

E
(
W(t)W(s)|(w0, t0)

)
= min{t− t0, s− t0} + w2

0 , (3.51)

and simplifies to E
(
W(t)W(s)

)
= min{t, s} for w0 = 0 and t0 = 0. This

expectation value reproduces also the diagonal element, the variance σ, since
for s = t we find E

(
W(t)2

)
= t. In addition, several other useful relations

can be derived from the autocorrelation relation. We summarize:

E
(
W(t)−W(s)

)
= 0 , E

(
W(t)2

)
= t , E

(
W(t)W(s)

)
= min{t, s} ,

E
((
W(t)−W(s)

)2)
= E

(
W(t)2

)
− 2E

(
W(t)W(s)

)
+ E

(
W(t)2

)
=

= t − 2min{t, s} + s = |t− s| ,

and remark that these results are not independent of the càdlàg convention
for stochastic processes.

The Wiener process has the property of self-similarity: Assume thatW1(t)
is a Wiener process. Then, for every c > 0,

W2(t) = W(ct) =
√
cW1(t)

is also a Wiener process. Accordingly, we can change the scale at will and the
process remains a Wiener process. The power of the scaling factor is called
the Hurst factor H (see sections 3.2.3.8 and 3.2.4.3), and accordingly the
Wiener process has H = 1/2. In one and two dimensions the Wiener process
is recurrent implying that every trajectory will return to the origin. In three
and higher dimensions this is not the case and the process is called transient .
The three dimensional trajectory revisits the origin in 34% of the cases only,
and this value decreases further in higher dimensions. Joking one can say a
drunken sailor finds his way back home for sure, but a drunken pilot only in
one out of three trials.

The Wiener process is readily extended to higher dimension. For the mul-
tivariate Wiener process, defined as

~W(t) =
(
W1(t), . . . ,Wn(t)

)
(3.52)

satisfying the Fokker-Planck equation

∂p(w, t|w0, t0)

∂t
=

1

2

∑

i

∂2

∂w2
i

p(w, t|w0, t0) . (3.53)

The solution is a multivariate normal density

p(w, t|w0, t0) =
1√

2π (t− t0)
exp

(
− (w −w0)

2

2 (t− t0)

)
. (3.54)
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with mean E
(
~W(t)

)
= w0 and variance-covariance matrix

(
Σ
)
ij

= E
((
Wi(t)− w0i

)(
Wj(t)− w0j

))
= (t− t0) δij ,

where all off-diagonal elements – the covariances – are zero. Hence, Wiener
processes along different Cartesian coordinates are independent.

The Wiener process W =
(
W(t), t ≥ 0

)
is characterized by ten impor-

tant features and definitions:

(i) initial condition W(t0) =W(0) ≡ 0 ,
(ii) trajectories are continuous functions of t ∈ [0,∞[ ,
(iii) expectation value E

(
W(t)

)
≡ 0 ,

(iv) correlation function E
(
W(t)W(s)

)
= min{t, s} ,

(v) Gaussian property implies that for any (t1, . . . , tn) the random
vector

(
W(t1), . . . ,W(tn)

)
is a Gaussian process , ,

(vi) moments E
(
W(t)2

)
= t, E

(
W(t)−W(s)

)
= 0, and

E
((
W(t)−W(s)

)2)
= |t− s| ,

(vii) increments of the Wiener process on non-overlapping intervals are
independent, for (s1, t1) ∩ (s2, t2) = ∅ the random variables
W(t2)−W(s2) and W(t1)−W(s1) are independent ,

(viii) nondifferentiability of trajectories W(t) ,
(ix) self-similarity of the Wiener process W2(t) = W(γt) =

√
γW1(t) ,

and
(x) martingale property, for Ws

0 =W(u)∀ 0 ≤ u ≤ s} we have

E
(
W(t)|Ws

0

)
=W(s) and E

((
W(t)−W(s)

)2 ∣∣Ws
0

)
= t− s .

Out of these ten properties three will be most important for the goals
we will pursue here:(i) continuity of sample paths, (ii) nondifferentiability of
sample paths, and (iii) independence of increments.

3.2.3.3 Autocorrelation functions and spectra

Analysis of experimentally recorded or computer created trajectories is often
largely facilitated by the usage of additional tools complementing moments
and probability distributions since they can, in principle, be derived from
a single recording. These tools are autocorrelation functions and spectra of
random variables, which provide direct insight into the dynamics of the pro-
cess, since they are dealing with relations between sample points collected
at different times (for an extensive treatment of time series analysis see, for
example, [302]).
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The autocorrelation function of the random variable X (t) is a measure of
the influence the value of X recorded at time θ, x(θ) has on the measurement
of the same variable at time θ + τ

G(τ) = 〈X (θ)X (θ + τ)〉 = E
(
X (θ)X (θ + τ)

)
=

= lim
t→∞

1

t

∫ t

0

dθ x(θ)x(θ + τ) .
(3.55)

The autocorrelation function is the time average of the product of two values
recorded at different times. It is of high relevance in the analysis of experi-
mental data because technical devices called autocorrelators have been built
[232], which sample data and can record directly the autocorrelation function
of a process under investigation.

Another relevant quantity is the spectrum or the spectral density of the
quantity x(t). In order to derive the spectrum, we construct a new variable

y(ω) by means of the transformation y(ω) =
∫ t
0 dθ eı

.
ıωθ x(θ). The spectrum

is then obtained from y by performing the limit t→∞:

S(ω) = lim
t→∞

1

2πt
|y(ω)|2 = lim

t→∞
1

2πt

∣∣∣∣
∫ t

0

dθ eı
.
ıωθ x(θ)

∣∣∣∣
2

. (3.56)

The autocorrelation function and the spectrum are closely connected. By
some calculations one finds

S(ω) = lim
t→∞

(
1

π

∫ t

0

cos(ωτ) dτ
1

t

∫ t−τ

0

x(θ)x(θ + τ) dθ

)
.

Under certain assumptions, which insure the validity of the interchanges of
order, we may take the limit t→∞ and find

S(ω) =
1

π

∫ ∞

0

cos(ωτ)G(τ) dτ .

This result relates the Fourier transform of the autocorrelation function to
the spectrum and can be cast in an even prettier form by using

G(−τ) = lim
t→∞

1

t

∫ t−τ

−τ
dθ x(θ)x(θ + τ) = G(τ)

to yield the Wiener-Khinchin theorem named after Norbert Wiener and the
Russian mathematician Aleksandr Khinchin

S(ω) =
1

2π

∫ +∞

−∞
e−ı

.
ıωτ G(τ) dτ and G(τ) =

∫ +∞

−∞
eı
.
ıωτS(ω) dω . (3.57)

Spectrum and autocorrelation function are related to each other by the
Fourier transformation and its inversion.
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Equation (3.57) allows for a straightforward proof that the Wiener pro-

cess ~W(t) = W (t) gives rise to white noise (subsection 3.2.3.2). Let w be
a zero-mean random vector with the identity matrix as (auto)covariance or
autocorrelation matrix:

E(w) = µ = 0 and cov(W ,W) = E(ww′) = σ2 I ,

then the Wiener process W (t) fulfils the relations,

µW (t) = E
(
W(t)

)
= 0 and

GW (τ) = E
(
W(t)W(t+ τ)

)
= δ(τ) ,

defining it as a zero-mean process with infinite power at zero time shift. For
the spectral density of the Wiener process we obtain:

SW (ω) =
1

2π

∫ +∞

−∞
e−ı

.
ıωτ δ(τ) dτ =

1

2π
. (3.58)

The spectral density of the Wiener process is a constant and hence all fre-
quencies in the noise are represented with equal weight. All colors are mixed
with equal weight in light yields white light and this property of visible light
gave the name for white noise, in case of colored noise the noise frequencies
do not fulfil the uniform distribution. Pink or flicker noise, for example, has a
spectrum close to S(ω) ∝ ω−1 and red or Brownian noise fulfils S(ω) ∝ ω−2.

The time average of a signal as expressed by an autocorrelation function is
complemented by the ensemble average, 〈·〉, or expressed by the expectation
value of the corresponding random variable, E(·), which implies an (infinite)
number of repeats of the same measurement. In case the assumption of ergodic
behavior is true, the time average is equal to the ensemble average. Thus we
find for a fluctuating quantity X (t) in the ergodic limit

E
(
X (t),X (t + τ)

)
= 〈x(t)x(t + τ)〉 = G(τ) .

It is straightforward to consider dual quantities which are related by Fourier
transformation and get:

x(t) =
1

2π

∫
dω c(ω) eı

.
ıωt and c(ω) =

∫
dt x(t) e−ı

.
ıωt .

We use this relation to derive several important results. Measurements refer
to real quantities x(t) and this implies: c(ω) = c∗(−ω). From the condition
of stationarity, 〈x(t)x(t′)〉 = f(t − t′) and does not depend on t otherwise
follows
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Fig. 3.8 The Ornstein-Uhlenbeck process. Individual trajectories of the process

are simulated by Xi+1 = Xi e−k ϑ + µ(1−e−k ϑ) + σ
√

1−e−2k ϑ

2k
(R0,1−0.5), where

R0,1 is a random number drawn by a random number generator from the uniform
distribution on the interval [0, 1]. The figures shows several trajectories differing only
in the choice of seeds for Mersenne Twister as random number generator. The black
lines represent the expectation value E

(

X (t)
)

and the curves E
(

X (t)
)

± σ
(

X (t)
)

.
The area highlighted in grey is the confidence interval E ± σ. Choice of parameters:
X (0) = 3, µ = 1, k = 1, σ = 0.25, ϑ = 0.002 or total time tf = 10. Seeds: 491
(yellow), 919 (blue), 023 (green), 877 (red), and 733 (violet). For the simulation of
the Ornstein-Uhlenbeck model see [105, 284].

〈c(ω)c∗(ω′)〉 =
1

(2π)2

∫∫
dt dt′ e−ı

.
ıωt+iωt′ 〈x(t)x(t′)〉 =

=
δ(ω − ω′)

2π

∫
dτ eı

.
ıωτ G(τ) = δ(ω − ω′)S(ω) .

The last expression relates not only the mean square
〈
|c(ω)|2

〉
with the spec-

trum of the random variable, it shows also that stationarity alone implies
that c(ω) and c∗(ω′) are uncorrelated.

3.2.3.4 Ornstein-Uhlenbeck process and Fokker-Planck equation

The Ornstein-Uhlenbeck process is named after two Dutch physicists Leonard
Ornstein and George Uhlenbeck [281] and represents presumably the sim-
plest stochastic process that approaches a stationary state with a defined
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Fig. 3.9 The probability density of the Ornstein-Uhlenbeck process. Start-
ing from the initial condition p (x, t0) = δ(x − x0) (black) the probability density
(3.60) broadens and migrates until it reaches the stationary distribution (yellow).
The lower plot presents an illustration in 3D. Choice of parameters: x0 = 3, µ = 1,
k = 1, and σ = 0.25. Times: t = 0 (black), 0.12 (orange), 0.33 (violet), 0.67 (green),
1.5 (blue), and 8 (yellow).
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variance.18 It is a stationary Gaussian process and can be understood as the
continuous-time analogue of the discrete first-order autoregressive

(
AR(1)

)

process [116, 302]. The Ornstein-Uhlenbeck process found wide-spread appli-
cations, for example in economics for modeling irregular behavior of financial
markets [288]. In physics it is among other applications a model for the ve-
locity of a Brownian particle under the influence of friction. In essence, the
Ornstein-Uhlenbeck process describes exponential relaxation to a stationary
state or to an equilibrium superimposed by a Wiener process. Figure 3.8
presents several trajectories of the Ornstein-Uhlenbeck process, which show
nicely the drift and the diffusion component of the individual runs.

The Fokker-Planck equation of the Ornstein-Uhlenbeck process for the
probability density p (x, t) of the random variable X (t) with the initial con-
dition p (x, t0) = δ(x− x0) is of the form

∂p (x, t)

∂t
= k

∂

∂x

(
(x− µ) p (x, t)

)
+
σ2

2

∂2p (x, t)

∂x2
, (3.59)

with k is the rate parameter of the exponential decay, µ the expecta-
tion value of the random variable in the long-time or stationary limit,
µ = limt→∞E

(
X (t)

)
, and σ2/(2k) being the stationary variance. For the

initial condition p (x, 0) = δ(x − x0) the probability density can be obtained
by standard techniques

p (x, t) =

√

k

πσ2 (1− e−2k t)
exp

(

− k

σ2

(x− µ− (x0 − µ)e−kt)2

1− e−2kt

)

. (3.60)

This expression can be easily checked by performing the two limits t → 0
and t→∞. The first limit has to yield the initial conditions and it is indeed
recalling a common definition of the Dirac delta-function.

δα(x) = lim
α→0

1

α
√
π
e−x

2/α2

, (3.61)

Inserting α2 = σ2(1− e−2kt)/k leads to

lim
t→0

p (x, t) = δ(x− x0) .

The long time limit of the probability density is calculated straightforwardly:

lim
t→∞

p (x, t) =

√
k

πσ2
e−k (x−µ)

2/σ2

,

which is a normal density with expectation value µ and variance σ2/(2k). ⊓⊔

18 The variance of the Wiener process diverges in the limit, limt→∞ var
(

W(t)
)

=∞.
The same is true for the Poisson process and the random walk, which are discussed
in the next two sections.
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The evolution of probability density p (x, t) from the δ-function at t = 0 to
the stationary density limt→∞ p (x, t) is shown in Fig. 3.9.

The Ornstein-Uhlenbeck process can be modeled efficiently also by the
stochastic differential equation (SDE, see section 3.4.6.2):

dx(t) = k
(
µ− x(t)

)
dt + σ dW (t) . (3.62)

The individual trajectories shown in figure 3.8 [105, 284] were simulated by
means of the following equation

Xi+1 = Xi e−k ϑ + µ(1 − e−k ϑ) + σ

√
1− e−2k ϑ

2k
(R0,1 − 0.5) ,

where ϑ = ∆t/nst is the number of steps per time interval∆t. The probability
density can be derived, for example, from a sufficiently large ensemble of
simulated trajectories. Expectation value and variance of the random variable
X (t) can be calculated directly from the solution of the SDE (3.62) as shown
in section 3.4.6.2.

3.2.3.5 Poisson process

The three processes discussed so far in this section were all dealing with
continuous variables and their probability distributions. We continue by pre-
senting two examples of processes dealing with discrete variables and pure
jump processes according to equation (3.33c), which are modeled by mas-
ter equations: the Poisson process and the discrete, one-dimensional random
walk (see also section 3.2.5). To be stressed once more, master equations and
related techniques to model and analyze stochasticity at low particle numbers
are of particular importance in present day chemistry and biology.

The master equation (3.33c), rewritten for the discrete case by replacing
the integral by a summation, is of the form19

∂P (n, t)

∂t
=

∫
dx
(
W(n |x, t) p (x, t)−W(x |n, t) p (n, t)

)
= (3.33c’)

=

∞∑

x=0

(
W(n |x, t)Px(t)−W(x |n, t)Pn(t)

)
=

dPn(t)

dt
. (3.33c’)

where we are assuming sharp initial conditions (n0, t0) or Pn(t0) = δn,n0 .
20

The matrix W (m |n, t) is called the transition matrix that contains the prob-

19 Riemann-Stieltjes integration converts the integral into a sum and since we
are dealing with discrete events exclusively we use an index on the probability,
Pn(t),rather than apply an additional variable, P (n, t).
20 By δij we denote the Kronecker delta named after the German mathematician
Leopold Kronecker and means
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abilities attributed to jump of variables, and from both equations follows that
the diagonal elements,W (n |n, t), cancel. The domain of the random variable
is implicitly included in the domain of integration or summation, respectively.

The Poisson process is commonly applied to model certain classes of in-
dependent cumulative random events. These may be, for example, electrons
arriving at an anode, customers entering a shop, telephone calls arriving at a
switch board or e-mails being registered at an account. Aside from indepen-
dence the requirement is an unstructured time profile of events or, in other
words, the probability of occurrence of events i a constant. The cumulative
number of these events is denoted by the random variable N (t) ∈ N. In other
words N (t) is counting the number of arrivals and hence can only increase.
The probability of arrival is assumed to be α per unit time, or α ·∆t is the
expected number of events recorded in a time interval of length ∆t. The Pois-
son process can also be interpreted as a one-sided random walk in the sense
that the walker takes a step, for example to the right, with a probability α
within a unit time interval. The transition frequencies are of the form

W (m|n, t) =

{
α if m = n+ 1 ,

0 otherwise
, (3.63)

where the probability that two or more arrivals occur within the differential
time interval dt is of measure zero. According to (3.33c) the master equation
takes on the form

dPn(t)

dt
= α

(
Pn−1(t) − Pn(t)

)
(3.64)

with the initial condition Pn(t0) = δn,n0 . In other words, the number of
arrivals recorded before t = t0 is n0. The interpretation of (3.64) is straight-
forward: the increase in the probability to have n recorded events between
time t and t + dt is proportional to the difference in probabilities between
n− 1 and n recorded events, because the elementary single arrival processes,
(n−1→ n) and (n→ n+1), increase or decrease the probability of n events,
respectively.

The method of probability generating functions (section 2.2.1) is now ap-
plied for deriving solutions of the master equation (3.64). The probability
generating function for the Poisson process is

g(s, t) =

∞∑

n=0

Pn(t) s
n , |s| ≤ 1 with g(s, t0) = sn0 . (2.24’))

δij

{

1 if i = j

0 if i 6= j
.

It represents the discrete analogue of the Dirac delta-function.
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The time derivative of the generation function is obtained by insertion of
equation (3.64)

∂g(s, t)

∂t
=

∞∑

n=0

∂Pn(t)

∂t
sn = α

∞∑

n=0

(
Pn−1(t)− Pn(t)

)
sn ,

the first sums is readily evaluated

∞∑

n=0

∂Pn−1(t)

∂t
sn = s

∞∑

n=0

∂Pn−1(t)

∂t
sn−1 = s g(s, t)

and the second sum is identical to the definition of the generating function.
This yields the equation for the generating function

∂g(s, t)

∂t
= α (s− 1) g(s, t) . (3.65)

Since the equation does not contain a derivative with respect to the dummy
variable s we are dealing with an ODE and the solution by conventional
calculus is straightforward:

∫ ln g(s,t)

ln g(s,t0)

d ln g(s, t) =

∫ t

t0

α(s− 1) dt ,

which yields

g(s, t) = sn0 eα(s−1)(t−t0) or g(s, t) = eα(s−1)t for (n0 = 0, t0 = 0) (3.66)

with g(s, 0) = sn0 . The assumption (n0 = 0, t0 = 0) is meaningful, because
it implies that counting arrivals starts at time t = 0, and the expressions
become especially simple: g(0, t) = exp(−αt) and g(s, 0) = 1. The individ-
ual probabilities Pn(t) are obtained through expansion of the exponential
function and equating the coefficients for the powers of s:

exp
(
α(s− 1)t

)
= exp

(
α st

)
e−αt and

exp
(
α st

)
= 1 + s

αt

1!
+ s2

(αt)2

2!
+ s3

(αt)3

3!
+ . . . ,

and eventually we are obtaining the solution

Pn(t) = e−αt
(αt)n

n!
= e−λ

λn

n!
, (3.67)

which is the well-known Poisson distribution (2.30) with the expectation value
E
(
N (t)

)
= αt = λ and variance σ2(N (t)

)
= αt = λ. Since the standard devi-
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ation is σ
(
N (t)

)
=
√
αt and accordingly the Poisson process fulfils perfectly

the
√
N relation for fluctuations.

It is easily verified that expectation value and variance can be directly
obtained from the generating function through differentiation (2.25):

E
(

N (t)
)

=
∂g(s, t)

∂s

∣

∣

∣

s=1
= α t ,

σ2
(

N (t)
)

=
∂g(s, t)

∂s

∣

∣

∣

s=1
+
∂2g(s, t)

∂s2

∣

∣

∣

s=1
−
(

∂g(s, t)

∂s

∣

∣

∣

s=1

)2

= α t ,

(3.68)

We remark that equation (3.64) can be solved also by using the characteristic
function (section 2.2.3), which will be applied for the purpose of illustration
in solving the master equation of the one-dimensional random walk (sec-
tion 3.2.3.6).

The Poisson process can be viewed from a slightly different perspective
by considering the arrival times of individual independent events as random
variables T1, T2, · · · . We shall assume that they are positive and follow an
exponential density ̺(a, t) = a · e−a·t with a > 0 and

∫∞
0
̺(a, t) dt = 1, and

thus for each index j we have

P (Tj ≤ t) = 1− e−a t and thus P (Tj > t) = e−a t , t ≥ 0 .

Independence of the individual events implies the validity of

P (T1 > t1, . . . , Tn > tn) = P (T1 > t1) . . . P (Tn > tn) = e−a(t1+...+tn) ,

which determines the joint probability distribution of the arrival times Tj ’s.
The expectation value of the inter-arrival times, or times between consecu-
tive arrivals, is simply given by E(Tj) = a−1. Clearly, the smaller a is, the
longer will be the mean inter-arrival time, and thus a can be addressed as the
intensity of flow. In comparison to the previous derivation we have a ≡ α.
For S0 = 0 and n ≥ 1 we define by the cumulative random variable

Sn = T1 + . . . Tn =

n∑

j=1

Tj

the waiting time until the nth arrival. The event I = (Sn ≤ t) implies that
the nth arrival has occurred before time t. The connection between the arrival
times and the cumulative number of arrivals, N (t), is easily performed and
illustrates the usefulness of the dual point of view:

P (I) = P (Sn ≤ t) = P (N (t) ≥ n) .

More precisely, N (t) is determined by the whole sequence (Tj , j ≥ 1), and
depends on the elements ω of the sample space through the individual arrival
times Tj . In fact, we can compute the number of arrivals exactly by
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{N (t) = n} = {Sn ≤ t} − {Sn+1 ≤ t} = {Sn ≤ t ≤ Sn+1} .

We may interpret this equation directly: there are exactly n arrivals in [0, t] if
and only if the arrival n occurs before t and the arrival (n+1) occurs after t.
For each value of t the probability distribution of the random variable N (t)
is given by

P
(
N (t) = n

)
= P{Sn ≤ t} − P{Sn+1 ≤ t} , n ∈ N0 ,

where we used already the initial condition S0 = 0. As we have shown before
this distribution of N (t) is the Poisson distribution π(at) = π(αt) = π(λ).

3.2.3.6 Continuous time random walk in one dimension

The random walk in one dimension is a classical and famous problem of
probability theory, which we have used already to illustrate the properties
of a martingale in section 3.2.1.2, where we made the assumption of discrete
space and time: A walker moves along a line and takes steps to the left or to
the right with equal probability and length l, and regularly after a constant
waiting time τ . The location of the walker is thus n · l with n being an
integer, n ∈ Z. Here we keep the step size discrete but time is assumed to
be continuous – continuous time random walk (CTRW), a probability that
the walker takes a step is defined, and then the random walk can be readily
modeled by a master equation. In the next section 3.2.3.8 we shall consider a
random walk with probability distributions for the moves in space and time,
step sizes and waiting times.

For the master equation we require transition probabilities per unit time,
which are simply defined to be a constant, ϑ, for single steps and zero other-
wise:

W (m|n, t) =





ϑ if m = n+ 1 ,

ϑ if m = n− 1 ,

0 otherwise

. (3.69)

Hence, the master equation describing the evolution of the probability for the
walker to be in location n · l at time t is

dPn(t)

dt
= ϑ

(
Pn+1(t) + Pn−1(t) − 2Pn(t)

)
, (3.70)

provided he started at location n0 · l at time t0: Pn(t0) = δn,n0 .
The master equation (3.70) can be solved by means of the time dependent

characteristic function
(
see equations (2.28) and (2.28’)

)
:

φ(s, t) = E(eı
.
ıs n(t)) =

∑

n

Pn(t) exp(ı
.
ıs n) . (3.71)
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Fig. 3.10 Probability distribution of the random walk. The figure presents
the conditional probabilities Pn(t) of a random walker to be in location n ∈ Z at time
t for the initial condition to be at n = 0 at time t = t0 = 0. The upper part shows
the dependence on t for given values of n: n = 0 (black), n = 1 (red), n = 2 (yellow),
and n = 3 (green). The lower plot shows the probability distribution as a function of
n at a given time tk. Parameter choice: ϑ = 0.5; tk = 0 (black), 0.2 (red), 0.5 (green),
1 (blue), 2 (yellow), 5 (magenta), and 10 (cyan).

Combining (3.70) and (3.71) yields

∂φ(s, t)

∂t
= ϑ

(
eı
.
ıs + e−ı

.
ıs − 2

)
φ(s, t) = 2ϑ

(
cosh(ı

.
ı s)− 1

)
φ(s, t) .

Accordingly, the solution for the initial condition n0 = 0 at t0 = 0 is
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φ(s, t) = φ(s,0) exp
(

2ϑ t
(

cosh(ı
.
ı s)− 1

)

)

=

= exp
(

2ϑ t
(

cosh(ı
.
ı s)− 1

)

)

= e−2ϑt exp
(

2ϑ t
(

cosh(ı
.
ı s)− 1

)

)

.

(3.72)

Comparison of the coefficients for individual powers of s through insertion of

cosh(ı
.
ıs)− 1 =

(ı
.
ıs)2

2!
+

(ı
.
ıs)4

4!
+

(ı
.
ıs)6

6!
+ . . . = −s

2

2!
+
s4

4!
− s6

6!
+ . . .

yields the individual probabilities:

Pn(t) = In(2ϑt) e
−2ϑt , n ∈ Z . (3.73)

where the pre-exponential term is written in terms of modified Bessel func-
tions Ik(θ) with θ = 2ϑt (for details see [6, p. 208ff.]), which are defined
by

Ik(θ) =

∞∑

j=0

(θ/2)2j+k

j!(j + k)!
=

∞∑

j=0

(θ/2)2j+k

j!Γ (j + k + 1)
=

=

∞∑

j=0

(ϑt)2j+k

j!(j + k)!
=

∞∑

j=0

(ϑt)2j+k

j!Γ (j + k + 1)
.

(3.74)

The probability that the walker is found in his initial location, n0 l, for ex-
ample, is given by

P0(t) = I0(2ϑ t) e
−2ϑ t =

(
1 + (ϑ t)2 +

(ϑ t)4

4
+

(ϑ t)6

36
+ . . .

)
e−2ϑ t

Illustrative numerical examples are shown in figure 3.10. It is straightforward
to calculate first and second moments from the characteristic function φ(s, t)
by means of equation (2.29) and the result is:

E
(
N (t)

)
= n0 and σ2

(
N (t)

)
= 2ϑ (t− t0) . (3.75)

The expectation value is constant and coincides with the starting point of
the random walk and the variance increases linearly with time.

The density function Pn(t) allows for straightforward calculation of prac-
tically all interesting quantities. For example, we might like to know the
probability that the walker reaches a given point at distance n · l from the
origin within a predefined time span, which is simply obtained by Pn(t) with
Pn(t0) = δn,0 (figure 3.10). The probability distribution is symmetric because
of the symmetric initial condition Pn(t0) = δn,0 and hence Pn(t) = P−n(t).
For long times the probability density P (n, t) becomes flatter and flatter and
eventually converges to the uniform distribution over the spatial domain. In
case n ∈ Z all probabilities vanish: limt→∞ Pn(t) = 0 for all n.
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Fig. 3.11 Transition from random walk to diffusion. The figure presents the
conditional probabilities P (n, t|0, 0) during convergence from a discrete space random
walk to diffusion. The black curve is the normal distribution (2.36) resulting from the
solution of the stochastic diffusion equation (3.41’) with D = 2 liml→0(l2ϑ) = 2.
The yellow curve is the random walk approximation with l = 1 and ϑ = 1, the red
curve was calculated with l = 2 and ϑ = 0.25. Smaller step width of the random
walk, l ≤ 0.5, led to curves that are indistinguishable from the normal distribution.
In order to obtain comparable curves, the probability distributions were scaled by a
factor σ = l−1. Choice of other parameters: t = 5.

3.2.3.7 From random walks to diffusion

In order to derive the stochastic diffusion equation (3.41) we start from a
discrete time random walk of a single particle on an infinite one-dimensional
lattice where the lattice sites are denoted by i = . . . ,−1, 0, 1, . . . or i ∈
Z. Because of its general importance we present two derivations, (i) from
the discrete time and space random walk model presented and solved in
section 3.2.1.2, and (ii) from the continuous time discrete space random walk
(CTRW) discussed in the previous section 3.2.3.6.

The particle is assumed to be at position i at time t and within a discrete
time interval ∆t it is obliged to jump to one of the neighboring sites, i+1 or
i−1. This time elapsed between two jumps is called the waiting time. Spatial
isotropy demands that the probabilities to jump to the right or to the left
are the same and equal to one half. The probability to be at site ’i’ at time
t+∆t is given by21

21 It is worth to point at the difference between equations (3.70) and (3.8): The term
containing −Pi(t) is missing in the latter, because moving is obligatory in the discrete
time model.
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Pi(t+∆t) =
1

2
Pi−1(t) +

1

2
Pi+1(t) . (3.8’)

Next we make a Taylor expression in time and truncate after the linear term
in ∆t assuming t is a continuous variable:

Pi(t+∆t) = Pi(t)∆t
dPi(t)

dt
+ O

(
(∆t)2

)
.

Now we convert the site number into a continuous spatial variable, i ⇒ x
and Pi(t) ⇒ p(x, t) and find

Pi±1 = p(x, t) ± ∆x
∂p(x, t)

∂x
+

(∆x)2

2

∂2p(x, t)

∂x2
+ O

(
(∆x)3

)
.

Here we truncate after the quadratic term in ∆x because the terms with
the first derivatives cancels, and obtain by insertion into equation (3.8’) and
omitting residuals

∆t
∂p(x, t)

∂t
=

(∆x)2

2

∂2p(x, t)

∂x2
.

The next and final task is carrying out the limits to infinitesimal differences
in time and space:

lim
∆t→0,∆x→0

(∆x)2

∆t
= D , (3.76)

where D is called the diffusion coefficient. According to (3.76) the dimension
of D is [length2/time = cm2 × sec−1]. Eventually we obtain the stochastic
version of the diffusion equation

∂p (x, t)

∂t
=

D

2

∂2p(x, t)

∂x2
, (3.41’)

which is fundamental in physics and chemistry for the description of passive
transport by thermal motion (see also equation (3.42) in section 3.2.3.2).

It is also straightforward to consider the continuous time random walk in
the limit of continuous space. This is achieved by setting the distance traveled
to x = n · l and performing the limit l → 0. For that purpose we start from
the characteristic function of the distribution in x,

φ(s, t) = E
(
eı
.
ısx(t)

)
= Φ(ls, t) = exp

(
2ϑ t

(
cosh(ı

.
ı ls)− 1

))
,

make use of the series expansion of the function cosh,

cosh y =
∑∞

k=0

y2k

(2k)!
= 1 +

y2

2!
+
y4

4!
+
y6

6!
+ . . . ,

and take the limit of infinitesimally small steps, lim l→ 0,
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lim l→0 exp
(
2ϑ t

(
cosh(ı

.
ı ls)− 1

)
t
)

= lim l→0 exp
(
ϑ t (−l2s2 + . . .)

)
=

= lim l→0 exp(−s2 l2 ϑ t) = exp(−s2D t/2) ,

where we used the definition D = 2 lim l→0(l
2ϑ) for the diffusion coefficient

D (figure 3.11).22 Since this is the characteristic function of the normal dis-
tribution we obtain for the probability density (2.36):

p (x, t) =
1√
2πDt

exp
(
−x2/(2Dt)

)
(2.36)

for the sharp initial condition limt→0 p(x, t) = p(x, 0) = δ(x). We could also
have proceeded directly from equation (3.70) and expanded the right-hand
side as a function of x up to second order in l, which yields again the stochastic
diffusion equation

∂p (x, t)

∂t
=

D

2

∂2p (x, t)

∂x2
, (3.42)

where D stands for 2 lim l→0(l
2ϑ) as before.

The stochastic diffusion equation can be Fourier transformed in order to
yield an equation for the Fourier transformed probability density p̂ (|k|, t)
with |k| being the wave number with dimension [l−1 = cm−1]:

∂p̂(|k|, t)
∂t

= −D
2
|k|2 p̂ (|k|, t) . (3.77)

The solution of (3.77) after normalization is of the form

p̂ (|k|, t) =

√
Dt

2π
exp
(
−D

2
|k|2 t

)
(3.78)

and represents a relaxation equation of the mode with a fixed value |k| for
the wave number.

3.2.3.8 Universality class of the continuous time random walk

In order to facilitate the comparison of normal diffusion and anomalous dif-
fusion discussed in the next section 3.2.4 we present the one-dimensional
continuous time random walk (CTRW) from a slightly different perspective
[25, 213]. The random variable X (t) is the sum of all step increments:

X (t) =
n∑

j=1

ξj with t =
n∑

j=1

τj .

22 The most straightforward way to perform the limit is to introduce a scaling
assumption using a variable σ such that l = l0σ and ϑ = ϑ0/σ2. Then we have
l2ϑ = l20ϑ0 = D and taking the limit σ → 0 is trivial.
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Fig. 3.12 Continuous time random walk model. Both, the jump lengths, ξk,
and the waiting times, τk, are variable. The sketch indicates a case of high variability.

The model is built upon the concept that both, the jump lengths and the
length of the time between two jumps denoted as waiting time are variable
(figure 3.12),and have the joint density function

ψ(ξ, τ) = f(ξ)w(τ) with

w(τ) =

∫ +∞

−∞
dξ ψ(ξ, t) and f(ξ) =

∫ ∞

0

dτ ψ(ξ, τ)
(3.79)

being the two marginal distributions. This equation is based on the assump-
tion that waiting times and jump lengths are independent random variables.
In case they were coupled we had ψ(ξ, τ) = p(ξ|τ)w(τ) = p(τ |ξ)f(ξ). Cou-
pling could imply, for example, that it is impossible to jump a certain distance
within a time span shorter than a minimum time required.

For the classification of random walks two moments of the distributions
w(τ) and f(ξ) are important:
(i) the characteristic waiting time τ = τw =

∫∞
0

dτ τ w(τ), and

(ii) the variance of the jump length ξ2 = 2σ2 =
∫ +∞
−∞ dξ ξ2 f(ξ).23

In case of Brownian motion or normal diffusion both quantities, τ , and ξ2,
are finite since the probability densities are Poissonian and Gaussian, respec-

23 As in several previous examples we assume that the random walk is symmetric
and started at the origin. Then the expectation value of the location of the particle
stays at the origin and we have ξ = 0 and ξ 2 = 0, and var(ξ) = ξ2.
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tively:

w(τ) =
1

τw
exp

(
− τ

τw

)
and f(ξ) =

1√
4πσ2

exp

(
− ξ2

4σ2

)
.

The Laplace transform of w(τ) and the Fourier transform of f(ξ) are of the
asymptotic form

ŵ(u) =

∫ ∞

0

dτ w(τ) e−uτ = 1 − τw u + O(u2) and (3.80)

f̂(k) =

∫ +∞

−∞
dξ f(ξ) e−2πı

.
ı kξ = 1 − σ2 k2 + O(k4) . (3.81)

In both cases the transformed probability distributions are given in expres-
sions that allow for direct readout of the universality exponents, which are
α = 2 for the spatial density f̂(k) and ϑ = 1 for the temporal density.

As a matter of fact any pair of probability density functions with finite τw
and σ2 leads to the same asymptotic result and this is a beautiful manifes-
tation of the central limit theorem (section 2.3.6): In the inner part of the
transformed densities all representatives of the universality class of CTRWs
with finite mean waiting time and positional variance fulfil equations (3.80)
and (3.81) and the individuality of the densities comes into play only within
the higher order terms O(τ2) and O(k4).

Finally, we mention a feature that will be brought up again and generalized
in the next section 3.2.4: the Wiener process or Brownian motion are self
similar. A stochastic process is self-similar with Hurst index H , named after
the British hydrologist Harold Edwin Hurst, if the two processes

(Y(a t), t ≥ 0) and (aHY(t), t ≥ 0)

with the same initial condition Y(0) = 0 have the same finite-dimensional
distribution for all a ≥ 0. Expressed in popular language if you look on a
self-similar process with a magnifying glass it looks the same as without the
magnifier no matter how large the magnification factor is.

3.2.4 Lévy processes

Lévy processes were defined precisely in mathematical terms and analyzed
in detail by the famous French mathematician Paul Lévy. Many stochastic
processes from physics fall into this class, and Lévy processes are of partic-
ular importance in financial mathematics [5]. Examples of Lévy processes
are Brownian motion (section 3.2.3.2), the Poisson process (section 3.2.3.5),
the Cauchy process (section 3.2.1.4), and many others. In physics, Lévy pro-
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cesses are used for example in the mathematical theory of anomalous diffusion
[25, 213], in other forms of fractional kinetics, and Lévy flights were found
to occur in foraging strategies of animals. We are interested here in Lévy
processes, because they allow for a general analytic treatment combining all
three classes of processes in the dCKE, drift, diffusion, and jump, and they
can handle probability densities with heavy tails (section 2.4.6).

A Lévy process X = (X (t), t ≥ 0) is a stochastic process that satisfies the
following four properties:

(i) the random variable X (t) has independent increments as expressed by
the property that the variables Zk = X (tk)−X (tk−1) with k = 1, 2, . . .
are statistically independent,

(ii) the increments Zk of the random variable X (t) are stationary in the
sense that the probability distributions of the increments Zk depend
only on the length of the time interval tk − tk−1 but do not depend ex-
plicitly on time t, and increments on equal time intervals are identically
distributed,

(iii) the process starts at the origin, X0 = 0, with probability one, and
(iv) the trajectory of the random variable X (t) is at least piecewise stochas-

tically continuous in the sense that it fulfils the relation

limt→τ P (|X (t) −X (τ)| > a) = 0

for all a > 0 and for all τ ≥ 0.

The conditions (i), (ii), and (iii) are fulfilled by a dCKE with the parameters

A(x, t) → a , B(x, t) → 1

2
σ2 , and W (z|x, t) → w(z − x) , (3.82)

and for the initial condition (x0, t0) the dCKE has the form

∂p(x, t)

∂t
= − a

∂p(x, t)

∂x
+

1

2
σ2 ∂

2p(x, t)

∂x2
+

+ —

∫
dz w(z)

(
p(x− z, t)− p(x, t)

)
.

(3.83)

Lévy processes are thus fully characterized by the Lévy-Khinchin triplet
(a, σ2, w) that is named after Paul Lévy and the Russian mathematician
Aleksandr Khinchin. As follows from condition (ii) a Lévy process is a homo-
geneous Markov process.

As seen from equation (3.82) the choice of parameters for Lévy processes
replaces the functions A(x, t) and B(x, t) by the constants a and 1

2σ
2, and

time is eliminated from the jump probability W (z|x, t). In this sense the
differential Chapman-Kolmogorov equation becomes the analogue of a lin-
ear equation and indeed the corresponding Liouville equation becomes ex-
ceedingly simple. For a deeper understanding of Lévy processes the analogy
although superficial often becomes useful.
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3.2.4.1 Characteristic function of Lévy processes

The characteristic function of a Lévy process starting at t0 = 0 from p(x, 0) =
δ(x0) is defined as stated in section 2.2.3

φ(s, t) =

∫ +∞

−∞
dx eı

.
ı sx p(x, t) .

Insertion in equation (3.83) yields the differential equation [93, pp. 248-250]

∂φ(s, t)

∂t
=
(
ı
.
ı a s − 1

2
σ2s2 + —

∫ +∞

−∞
du
(
eı
.
ı su − 1

)
w(u)

)
φ(s, t) ,

which is readily solved to yield the expression

φ(s, t) =

∫ +∞

−∞
dx eı

.
ısx p(x, t|0, 0) =

= exp

((
ı
.
ı a s − 1

2
σ2s2 + —

∫ +∞

−∞
du (eı

.
ısu − 1)w(u)

)
t

)
.

(3.84)

A principle value integral is needed, because of the possibility of a singularity
limu→0 w(u) =∞, which we define as

w(u) ≈ |u|−α−1 as |u| → 0 , povided α < 2 .

For α ≤ 1 the process has finite intensity and there is no need for a principal
value integral since eı

.
ısu − 1 ≈ ı

.
ısu near u = 0. However, for 1 < α < 2 the

intensity is infinite and allowing for asymmetry we write the function w(u)
near u = 0 in the following way

w(u) =

{
ϑ− |u|−α−1 if u < 0 and

ϑ+ u
−α−1 if u > 0 .

Now the principal value integral is defined as

—

∫
duw(u)

(
eı
.
ısu − 1

)
≡

≡ lim
ǫ→0

(∫ −δ(ǫ)

−∞
duw(u)

(
eı
.
ısu − 1

)
+

∫ +∞

ǫ

duw(u)
(
eı
.
ısu − 1

)
)
.

(3.85)

and the function δ(ǫ) is given by

δ(ǫ)−α+1 =
ϑ+
ϑ−

ǫ−α+1 + κ (3.86)
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which excludes the case α = 1 that will be treated separately. We remark
that this procedure leads to a cancellation of the divergence at the upper
limit of the fist integral with that in the lower limit of the second integral for
any value of κ provided α < 2.

The precise definition and the evaluation of the principle value integral
impede the analytical work on Lévy processes and can be circumvent by the
Lévy-Khinchin formula that separates the principal value integral from the
rest of the expression:

—

∫ 1

−1

du ı
.
ı suw(u) ≡

lim
ǫ→0

(∫ −δ(ǫ)

−1

du ı
.
ı suw(u) +

∫ 1

ǫ

du ı
.
ı suw(u)

)
≡ ı

.
ı aS s .

(3.87a)

In this way aS can be incorporated into the drift constant and evaluated for
any special case together with the arbitrary constant κ:

A = a + aS . (3.87b)

The final expression of the Lévy-Khinchin formula is then of the form

φ(s, t) =

= exp

(

(

ı
.
ı A s− 1

2
σ2s2 +

∫ +∞

−∞
du
(

eı
.
ısu − 1− ı

.
ı s u 1]−1,1[(u)

)

w(u)
)

t

)

,
(3.87c)

where the indicator function is used to exclude the range of the principal
value integral

1]−1,1[(u) =

{
1 if |u| < 1 and

0 if |u| ≥ 1 .
(3.87d)

Although the characteristic function can be written down and solved for
any Lévy process the probability density need not be expressible in analytic
functions. The only three known exceptions for stable Lévy processes are the
normal distribution (section 2.3.3), the Cauchy distribution (section 2.4.6),
and the Lévy distribution (section 2.4.7). Next we need to define two basic
properties of distribution functions: (i) infinite divisibility and (ii) stability.

3.2.4.2 Infinite divisibility and stability

The property of infinite divisibility is defined for a probability density p (x)
and demands that the random variable X with the density p (x) can be par-
titioned into any arbitrary number n of independent random variables with
n ∈ N>0 such that the sum Sn = X1 + X2 + . . . + Xn has the probability
density p (x). In general the probability distributions of the individual parts
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Xk will be different and different from the density p (x). Lévy processes are
homogeneous Markov processes and they are infinitely divisible therefore.

A Lévy process, (Xt, t ≥ 0) is called stable if every random variable Xt
has a stable distribution [225]. The random variables of a stable distribution
fulfil the equation

aX1 + bX2
d
= cX + d , (3.88)

wherein a and b are positive constants, c is some positive number dependent
on a, b and the summation properties of X , d ∈ R, and the symbol ’d’
above the equals sign means equality in distribution. Stability or stability

in the broad sense is to be distinguished from strict stability or stability in

the narrow sense in which case the equality 3.88 holds with d = 0 for all
choices of a and b. A random variable is symmetric stable if it is stable and

symmetrically distributed around zero, X d
= −X .

We demonstrate stability of a distribution by means of the normal distri-
bution, and use the central limit theorem (CLT) for this purpose:

Sn =

n∑

i=1

Xi with E(Xi) = µ , var(Xi) = σ2 ∀ i = 1, . . . , n

E(Sn) = nµ and var(Sn) = (nσ)2 ∀ i = 1, . . . , n .

(3.89)

From the two equations (3.88) and (3.89) follow the conditions for the con-
stants a, b, c, and d:

µ(aX ) = a µ(X ) , µ(bX ) = b µ(X ) , µ(cX + d) = c µ(X ) + d ⇒
⇒ d = (a+ b− c)µ

var(aX ) = (aσ)2 , var(bX ) = (bσ)2 , var(cX + d) = (cσ)2 ⇒
⇒ c2 = a2 + b2 .

The two conditions d = (a+ b− c)µ and c =
√
a2 + b2 with d 6= 0 are readily

fulfilled for pairs of arbitrary positive constants a, b ∈ N>0 and accordingly,
the normal distribution N (µ, σ) is stable. Strict stability, on the other hand,
requires d = 0 and this can be fulfilled by zero-centered normal distributions
N (0, σ) only.

An other definition of stability [225] is presented here, because it introduces
four parameters that are required to fully characterize a stable distribution:

(i) characteristic exponent : α ∈ ] 0, 2 ] ,
(ii) skewness parameter : β ∈ [−1, 1 ] ,
(iii) scale parameter : γ ≥ 0 , and
(iv) location parameter : δ ∈ R .

The characteristic exponent α is also called index of stability and will turn
out as the parameter determining asymptotic behaviour in the sense of the
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Fig. 3.13 Normal and anomalous diffusion. The figure sketches continuous time
random walks (CTRW) as of the universality exponents of space, 0 < α ≤ 2, and
time, 0 < ϑ ≤ 1. Lévy flights, normal diffusion, and fractional Brownian motion are
limiting cases with the asymptotic behavior (0 < α < 2, ϑ = 1), (α = 2, ϑ = 1), and
(α = 2, 0 < ϑ < 1), respectively, of the general class of ambivalent processes.

spatial universality exponent. The parameters α and β together determine the
shape of the distribution and are called shape parameters therefore. A scale
parameter of γ = 0 is only meaningful as the limiting case of a degenerate
distribution, which is concentrated at δ. The three stable distributions with
analytical densities are:

(i) the normal distribution N (µ, σ2) with α = 2, β = 0, γ = σ√
2
, δ = µ ,

(ii) the Cauchy distribution C(δ, γ) with α = 1, β = 0, γ, δ and
(iii) the Lévy distribution L(δ, γ) with α = 1

2 , β = 1, γ, δ .

Easy access to extensive computing power, however, makes it possible to
work highly efficiently with non-analytical distributions too and, after all,
the characteristic functions (3.87c) are always available analytically.

3.2.4.3 Universality and self-similarity

Self-similarity and shapes of objects fitting fractal dimension – non-integer
– dimensions are the topics of Benôıt Mandelbrot’s seminal book [193]. Self-
similarity of stochastic processes has been mentioned already at the end of
section 3.2.3.8 in the context of continuous time random walks. Here we
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shall generalize the processes and discuss the properties of processes with the
universality exponents 0 < α ≤ 2 in space and 0 < ϑ ≤ 1 in time.

The continuous time random walk considered here is assumed to Lévy dis-
tributed step lengths and waiting times. The derivation is analogous to sec-
tion 3.2.3.8 and starts from the joint distribution ψ(ξ, τ) = f(ξ)w(τ) where
independence according to (3.79) is assumed. The spatial density f(ξ) is given
by a Lévy stable distribution that is defined in terms of its characteristic func-
tion, which we write here in form of the long distance (x) or short frequency
(k) limit

f̂(k; a, α) = E
(
exp(ı

.
ıkx)

)
= exp(−|ak|α) = 1− |ak|α +O(|k|2α) . (3.90)

The condition to obtain an acceptable probability density – being nonnega-
tive everywhere and normalizable – by inverse Fourier transform defines the
domain for the universality exponent: 0 < α ≤ 2. Thus we generalize now the
previous account, which was exclusively dealing with α = 2. In order to give
a second illustrative example24 we consider the Cauchy distribution

f(x) =
a

π(a2 + x2)
and f̂(k) = exp(−|ak|) = 1 − |ak| + O(|k|2) ,

and the universality exponent is α = 1.
The length of the CTRW is expressed by the width of the density f( xn ; a, α).

Stability of the distribution of the random variable requires that a linear
combination of independent copies of the variable has the same distribution
as the copy:

fn

(∑

i

xi; a, α
)

= f(x1; a, α) ◦ f(x2; a, α) ◦ . . . ◦ f(xn; a, α) ,

where ’◦’ stands for convolution. Transformation in Fourier space yields

f̂n(k) =

n∏

i=1

f̂(ki; a, α) = exp
(
−|a n 1

α k|α
)

Backtransformation into space and time yields a generalization of the center
limit theorem:

fn

(∑

i

xi; a, α
)

= fn

(
x

n
1
α

; a, α

)
. (3.91)

In the context of a random walk the width of the distribution is related
to the length of the walk. Equation (3.91) provides the answer for the ex-

ponential scaling of the walk lengths: x(n) = n
1
α . In normal diffusion the

length grows with
√
n, for Lévy stable distributions with α < 2 the walks

24 The case α = 2 dealing with the normal distribution is extensively treated in
section 3.2.3.8.
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become longer because of heavier tails compared to the normal distribution.
The corresponding trajectories are called Lévy flights and will be discussed
at the final paragraph of this section. In polymer theory the length of the
walk corresponds to the end-to-end distance of the polymer chain for which
probability densities are available [267].

For the density of the waiting times we proceed similarly only the Fourier
transform is replaced by a Laplace transform because time τ is limited to
the nonnegative part of the axis, τ ≥ 0 and obtain the same result as for the
random walk:

ŵ(u; τw, ϑ) =

∫ ∞

0

dτ w(τ)e−uτ =
1

1 + τwu
= 1− τwu+O(u2) ,

and the universality exponent in ϑ = 1.
The transformed joint distribution function can be obtained from the

Montroll-Weiss equation named after Elliot Montroll and George Weiss [220]:

ψ̂(k, u) =
1 − ŵ(u)

u

1

1 − ŵ(u) f̂(k)
≈ θ uϑ−1

θuϑ + λ|k|α . (3.92)

The expression can be easily checked by Laplace and Fourier transform of
the density of normal diffusion with α = 2, ϑ = 1, and λ = σ2/2:

ψ(x, t) =
1√

4Dπ t
exp
(
− x2

4D t

)
−→ ψ̂(k, u) ≈ 1

u + Dk2
,

where D = λθ = σ2/2θ is the diffusion constant.
The next step is to perform inverse Laplace and inverse Fourier transform

on the expression of the right hand side of equation (3.92) in order to yield
the joint space-time distribution

ψ(x, t) ≈
∫ ∞

0

du

∫ +∞

−∞
dk e−ı

.
ı|k|x+ut θ uϑ−1

θuϑ + λ|k|α =

=

∫ +∞

−∞
dk e−ı

.
ı|k|x Eϑ(−|k|α tϑ) .

(3.93)

Herein we made use of the Mittag-Leffler function Eϑ(−|k|α tϑ), which is
named after Magnus Gösta Mittag-Leffter, occurs in inverse Laplace trans-
forms of functions of the Laplace transform parameter pα(a+ bpβ) [198], and
has the form of an infinite series [216]:

Eα(z) =

∞∑

k=0

zk

Γ (1 + αk)
, α ∈ C,ℜ(α) > 0, z ∈ C ,
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which leads to quite involved expressions except in some simple cases, for
example E1(z) = exp(z) or E0(z) = 1/(1 − z) [123]. The evaluation of the
inverse Fourier transform (3.93) is even more complicated but we shall need
to consider only the form of the leading terms: The function of the form
ψ̂(tϑ|k|α)in the integrand becomes a function ψ(x

α

tϑ
) after the inverse Fourier

transform. If we express distance as a function of time we obtain eventually:
xα

tϑ = c→ x(t) ∝ t ϑ
α . The expression covers normal diffusion with α = 2 and

ϑ = 1 leading to the relation x(t) ∝
√
t and fractional diffusion with α = 2

and ϑ < 1 resulting in x(t) ∝ tϑ/2.
In figure 3.13 we summarize the results of this section. All continuous

time random walks are characterized by two universality exponents, 0 <
α ≤ 2 and 0 < ϑ ≤ 1, for scaling behavior in space and time. Normal
diffusion is the limiting case with α = 2 and ϑ = 1. The probability densities
of time steps or waiting times and jump length, the Poisson distribution
and the normal distribution, respectively, have both finite expectation values
and variances. Lévy stable distributions with α < 2 have heavy tails and
the variance of the jump length diverges. Heavy tails makes larger jump
increments more probable and the processes are characterized by longer walk
lengths, x(n) ∝ n1/α. Alternatively the variance of the step size is kept finite
in anomalous diffusion but the jumps are delayed and the waiting times
diverge. The inner part of the square is filled by so-called ambivalent processes

were the distributions of waiting times have diverging expectation values and
no finite variances of the jump sizes (for details see [25, 213]).

Lévy processes derived from jump distributions with diverging variances
and 0 < α < 2 are called Lévy flights by Benôıt Mandelbrot [193]. He distin-
guishes them from Rayleigh flights with α = 2, which are based on ordinary
Brownian motion. In the special class of Cauchy flights, α = 1, the step sizes
are drawn from a Cauchy distribution. Normal random walks create paths on
a sufficiently large space-time scale that look like Brownian motion. Dimen-
sion one and two are fully covered in the limit t→∞. In the plane the visited
zones have a comparable densities in the segments covered by the trajectory.
The paths of Lévy flights have a very different appearance: Small more or
less densely covered patches are separated by long jumps.

Prey foraging strategies of marine predators, for example those of sharks,
were found to come close to Lévy flights. An optimal strategy consists in
the combination of local searches by Brownian motion like movements and
long jumps into distant regions where the next local search can start. The
whole trajectory of such a combined search resembles the path of a Lévy
flight [137, 293].
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3.2.5 Master equations

Master equations have been applied for modelling two processes on discrete
spaces, X (t) ∈ N: occurrence of independent events (section 3.2.3.5) and ran-
dom walks (section 3.2.3.6). Because of their general importance in particular
in chemical kinetics and population dynamics in biology we shall present here
a more detailed discussion of properties and versions of master equations.

3.2.5.1 General master equations

The master equations we are considering here describe continuous time pro-
cesses. Then, the starting point is the dCKE for pure jump processes (3.33c’)
with the integral converted into a sum by Riemann-Stieltjes integration (sec-
tion 3.2.3.5)

dPn(t)

dt
=

∞∑

m=0

(
W (n |m, t)Pm(t)−W (m |n, t)Pn(t)

)
; n,m ∈ N , (3.94)

where we have implicitly assumed sharp initial conditions: Pn(t0) = δn,n0 .
The transition probabilities W (n |m, t) form a (eventually infinite) transi-
tion matrix W(t) with one special property: The diagonal elementsW (n |n, t)
cancel in the master equation and hence can be defined at will without chang-
ing the dynamics of the process. Two assumptions are common: (i) W is a
stochastic matrix (normalization),

∑

m

W (n |m, t) = 1 and W (n |n, t) = 1 −
∑

m,m 6=n
W (n |m, t) ,

or (ii) the diagonal elements vanish, W (n |n, t) = 0 (annihilation). A Markov
process in general, and a master equation is called time homogeneous if the
transition matrix W does not depend on time and in most cases we shall
be dealing with a finite sample or state space: m,n ∈ {0, 1, . . . , N} – this is
tantamount to saying we are always dealing with a finite numbers of molecules
in chemistry or to stating that population sizes in biology are finite.

In the derivation of the dCKE – and also of the master equation – the limit
of infinitesimal time steps, lim∆t→ 0, excludes the simultaneous occurrence
of two or more jumps, but the general master equation allows for jumps of all
sizes ∆n = n−m and this might seem quite unrealistic in most of the realistic
systems. In the next section we shall introduce a powerful simplification in
form of death-and-birth processes that restricts the size of jumps and thus
truncates the sum of the terms in the master equation.
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Fig. 3.14 Sketch of the transition probabilities in master equations. In
the general master equation steps of any size are admitted (upper drawing) whereas
in birth-and-death processes all jumps have the same size. The simplest and most
common case is dealing with the condition that the particles are born and die one at
a time (lower drawing).

3.2.5.2 Birth-and-death master equations

The concept of birth-and-death processes has been created in biology (sec-
tion 5.2.2) and is based on the assumption that only a finite number of
individuals are produced – born – or destroyed – die – in a single event.
Therefore the jump size is a matter of physics, chemistry or biology and has
to be known from empirical observations. In chemical kinetics the jump size
is determined by the stoichiometry of the process and in population biology
it is the litter size for birth25 and commonly one for death. The simplest
and the only case, we shall discuss here, occurs when births and deaths are
confined single individuals. Then,the processes are commonly called one step

25 The litter size is defined as the number of offspring produced by animal at one
birth.
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birth-and-death processes.26 In figure 3.14 the transitions in a general jump
process and a birth-and-death process are illustrated. Restriction to single
events is tantamount to the choice of a sufficiently small time interval of
recording, ∆t, such that the simultaneous occurrence of two events has a
probability of measure zero (see also section 4.7). This small time step is
often called the blind interval, because no information on things happening
within ∆t is available.

Now we can rewrite the transition probabilities in the form

W (n|m, t) = Wnm = w−
m δn,m+1 + w+

m δn,m−1 , or

Wnm =





w+
m if m = n− 1 ,

w−
m if m = n+ 1 ,

0 otherwise ,

(3.95)

as we are dealing with only two allowed processes per event with the transition
probabilities

w+
n for n → n+ 1 and (3.96)

w−
n for n → n− 1 , respectively. (3.97)

In section 3.2.3.5 we discussed the Poisson process which can be understood
as a birth-and-death process with zero death rate, or birth process, on n ∈
N≥0. The one-dimensional random walk (section 3.2.3.6) is a birth-and-death
process with equal birth and death probabilities when the spatial coordinate
is changed to a population variable and negative particle numbers are avoided.
Modeling of chemical reactions by birth-and-death processes turns out to be
a very useful approach for reaction mechanisms, which can be described by
changes in a single variable.

The stochastic process can now be described by a birth-and-death master
equation

dPn(t)

dt
= w+

n−1 Pn−1(t) + w−
n+1 Pn+1(t) − (w+

n + w−
n )Pn(t) . (3.98)

There is no general technique that allows to find the time-dependent solu-
tions of equation (3.98). Special cases, however, are important in chemistry
and biology and therefore we shall present several examples later on. In sec-
tion 5.2.2 we shall give also a detailed overview of the exactly solvable single
step birth-and-death processes [108]. Nevertheless, it is possible to analyze
the stationary case in full generality.

26 In addition, one commonly distinguishes between birth-and-death processes in one
variable and in many variables [93]. We shall restrict the analysis here to the simpler
single variable case here.
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Provided a stationary solution of equation (3.98), limt→∞ Pn(t) = P̄n,
exists, we can compute it in straightforward manner. We define a probability
current ϕ(n) for the n-th step in the series:

Particle number 0 ⇋ 1 ⇋ . . . ⇋ n− 1 ⇋ n ⇋ n+ 1 . . .
Reaction step 1 2 . . . n − 1 n n+ 1 . . . ,

which is of the form

ϕn = w−
n P̄n − w+

n−1 P̄n−1 . (3.99)

Now, the conditions for the stationary solution are given by

dPn(t)

dt
= 0 = ϕn+1 − ϕn , (3.100)

Restriction to positive particle numbers, n ∈ N≥0, implies w−
0 = 0 and

Pn(t) = 0 for n < 0, which in turn leads to ϕ0 = 0.
Now we add the vanishing flow terms according to equation (3.100) and

obtain from the telescopic sum:

0 =
n−1∑

j=0

ϕj+1 − ϕz = ϕn − ϕ0 .

Thus we find ϕn = 0 for arbitrary n which leads to

P̄n =
w+
n−1

w−
n

P̄n−1 and finally P̄n = P̄0

n∏

z=1

w+
j−1

w−
j

. (3.101)

The vanishing flux condition ϕn = 0 for every reaction step at equilibrium is
known in chemical kinetics as the principle of detailed balance, which has been
formulated first by the American mathematical physicist Richard Tolman
[278] (see also, for example, [93, pp.142-158]).
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3.3 Forward and backward equations

Time inversion in a conventional differential equation changes the direction
in which trajectories are passed and this changes the phase portrait of the
dynamical system: ω-limits become α-limits and vice versa, stable equilib-
rium points and limit cycles become unstable and so on, but the trajectories
– without the arrow of time – remain unchanged. This has the consequence
that integrating forward in time yields precisely the same results as integrat-
ing backward from the endpoint of the forward trajectory. The same is true, of
course, for a Liouville equation but it does not hold for a Wiener process or a
Langevin equation: Spreading of individual trajectories occurs likewise in the
forward and in the backward direction. Time reversal of diffusion processes
has been studied extensively in the nineteen eightieth [4, 60, 124] and it was
shown that under mild conditions the time reversed process is a diffusion pro-
cess as well. This fact is sketched in figure 3.15 where we observe trajectories
diverging in the backward direction. In other words, the commonly chosen
reference conditions are such that a forward process has the sharp initial con-
ditions at the beginning of the ordinary time scale – t0 for t progressing into
the future – whereas a backward process has sharp final conditions at the
end – τ0 for a virtual or computational time τ progressing backwards into the
past. Accordingly, the Chapman-Kolmogorov equation can be interpreted in
two different ways giving rise to forward and backward equations that are
equivalent to each other and basic difference concerns the set of variables,
which is held fixed. In case on the forward equation we hold (x0, t0) fixed,
and consequently solutions exist for t ≥ t0, so that p(x, t0|x0, t0) = δ(x−x0)
is an initial condition for the forward equation. The backward equation has
solutions for τ ≤ τ0 and hence it expresses development in τ . Accordingly,
p(y0, τ0|y, τ0) = δ(y0 − y) is an appropriate final condition (rather than an
initial condition).27

Näıvely we could expect to find symmetry between forward and backward
computation there is, however, one fundamental difference between calcu-
lations progressing in opposite directions, which will become evident when
we consider backward equations in detail: In addition to the two different
computational time scales for forward and backward equations – t and τ ,
respectively, in figure 3.15 – we have the real or physical time of the process,
which has the same direction as t, unless we use some scaling factor it is
even identical to t and we shall only distinguish the two time scales if nec-
essary. The basic difference breaking the symmetry between forward and the
backward equation thus concerns the arrow of time: The forward calculations
progress in the direction of real time whereas in the backward equations the
arrow of computational time is opposite to real time. The difference can also
be expressed by saying the forward equations make prediction of the future

27 In order to avoid confusion we shall reserve the variable y(τ) and y(0) = y0 for
backward computation.
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and the backward equations reconstruct the past. In the eyes of mathemati-
cians the backward equation is (somewhat) better defined than its forward
analogue (see [74] and [77, pp. 321ff.]).

3.3.1 Backward Chapman-Kolmogorov equations

The Chapman-Kolmogorov equations (3.23 and 3.24) are interpreted in two
different ways giving rise to the two formulations known as forward and back-
ward equation. In the forward equation the double (x3, t3) is considered to be
fixed and (x1, t1) expresses the variable in the sense of x1(t), where the time
t1 is progressing in the direction of positive real time (see figure 3.4). The
backward equation, in contrary, is exploring the past of a given situation:
Here, the double (x1, t1) is fixed and (x3, t3) is propagating backwards in
time. The fact that real time proceeds in the forward direction has the conse-
quence of somewhat different forms of forward and backward equations. Both
Chapman-Kolmogorov differential expressions, the forward and the backward
equation, are useful in their own rights. The forward equation gives directly
the values of measurable quantities as functions of the observed or real time.
Accordingly, it is preferentially used in describing actual processes and mod-
eling experimental systems, and it is suited for predictions of probabilities
in the future. The backward equation finds applications in the computation
of the evolution towards given events, for example first passage times or exit
problems , which are dealing with the search for the probability that a particle
leaves a region at a certain time.

Since the difference in the derivation of forward and backward equations is
essential for the interpretation of the results, we repeat here this derivation for
the backward case, which is similar to but not identical with the procedure for
the forward equation. The starting point again is the conditional probability
of a Markov process from a recording (y, τ) in the past to the final condition
(y0, τ0) at present: p (y0, τ0|y, τ) = δ(y0− y) for all values of τ . As the term
backward indicates we shall, however, assume that the computational time τ
progresses from τ0 into the past (τ = −t and ∂

∂τ = − ∂
∂t ; see figure 3.15).

In essence, we proceed in the same way as in section 3.2.2.2 and write
down the infinitesimal limit of the difference equation:

∂p (y0, τ0|y, τ)
∂τ

=

= lim
∆τ→0

1

∆τ

(
p (y0, τ0|y, τ+∆τ) − p (y0, τ0|y, τ)

)
=

= lim
∆τ→0

1

∆τ

∫

Ω

dz p (z, τ+∆τ |y, τ)
(
p (y0, τ0|z, τ+∆τ) − p (y0, τ0|y, τ+∆τ)

)
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Fig. 3.15 Illustration of forward and backward equations. The forward dif-
ferential Chapman-Kolmogorov equation is used in calculations of the future develop-
ment of ensembles or populations. The trajectories (blue) start from an initial condi-
tion (x0, t0) commonly corresponding to the sharp distribution p(x, t0) = δ(x− x0),
and the probability density unfolds with time, t ≥ t0. The backward equation is
commonly applied to the calculation of first passage times or the solution of exit
problems. In order to minimize the risk of confusion we choose in backward equations
the notation y and τ for the variable and the time, respectively, and we have the
apparent correspondence (y(τ), τ)⇔ (x(t), t). In backward equations the latest time
the corresponding value of the variable at this time, (y0, τ0), are held constantτ0
and a sharp initial condition – better called final condition in this case – is applied
p(y, t0|y, t) = δ(y − y0) and the time dependence of the probability density corre-
sponds to samples unfolding into the past, τ ≤ τ0 (trajectories in red). In the lower
part of the figure and alternative interpretation is given: The forward and the back-
ward process start at the same time into different time directions, computation of
the forward process makes predictions of the future whereas the backward process is
calculated for the reconstruction of the past.
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where we have applied the same two operations as used for the derivation of
equation (3.27): (i) resolution of unity,

1 =

∫

Ω

dz p (z, τ+∆τ |y, t) ,

and (ii) insertion of the Chapman-Kolmogorov equation in the second term
with z being the intermediate variable. In the second line of the equation we
fixed the error of time. Although the time difference ∆τ is vanishing in the
limit, the two terms are ordered by the minus sign, a memory on the order
remains at ∆τ = 0, and it determines the final result of the derivation. All
further steps in the derivation are similar as in the forward case:(i) separation
of the domain of integration into two parts with the integrals I1 and I2 with
‖z− y‖ < ǫ and ‖z− y‖ ≥ ǫ, respectively, (ii) expansion of I1 into a Taylor
series, (iii) neglect of higher order residual terms, and (iv) integration by
parts,n and eventually we obtain:

∂p (y0, τ0|y, τ)
∂τ

= +
∑

i

Ai(y, τ)
∂p (y0, τ0|y, τ)

∂yi
+ (3.102a)

+
1

2

∑

i,j

Bij(y, τ)
∂2p (y0, τ0|y, τ)

∂yi∂yj
+ (3.102b)

+

∫

dz W (z|y, τ)
(

p (y0, τ0|y, τ) − p (y0, τ0| z, τ)
)

.

(3.102c)

This equation is called the backward differential Chapman-Kolmogorov equa-

tion in contrast to the previously derived forward equation (3.33). The ap-
propriate finial condition (figures 3.4 and 3.15) is

p (y0, τ0|y, τ) = δ(y0 − y) for all τ ,

which expresses the fact that the probability density for finding the particle at
location y at time t if it is at y0 at the same time is δ(y0−y), or in other words
the (classical and non-quantum-mechanical) particle can be simultaneously
at y and y0 if and only if y = y0.

The Liouville equation (section 3.2.3.1) is a partial differential equation
whose physically relevant solutions coincide with the solution of an ordinary
differential equation, and therefore the trajectories are invariant under time
reversal – only the direction of the process is reversed: going backwards in
time changes the sign of the components of A and the particle travels in
opposite direction along the same trajectory, which is fixed by the initial or
final condition (x0, t0) or (y0, τ0).

The diffusion process described by equation (3.102b) spreads in opposite
direction as a consequence of the inverse arrow of time. The mathematics
of time reversal in diffusion has been studied extensively in the nineteen
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Fig. 3.16 Jumps in the single event master equations. The sketch on the left
hand side shows the four single steps in the forward birth-and-death master equations,
which are determined by the four transition probabilities w+

n , w+
n−1, w

−
n+1, and w−

n .
Transitions leading to a gain in probability Pn are indicated in blue, those reducing
Pn are shown in red. On the right hand side we show the situation in the backward
master equation: Only two transition probabilities, w+

n and w−
n enter the equations,

and the probabilities determining the amount of gain or loss in Pn are given at the
final jump destinations rather than the beginnings.

eighties [4, 60, 124, 263] and rigorous mathematical proofs were derived, which
confirmed that inversion of time leads to indeed to a diffusion process in the
direction of past time in the sense of the backward processes sketched in
figure 3.15. Starting from a sharp final condition the trajectories diverge in
the direction of τ = −t.

The third term (3.102c) describes the jump processes and will be handled
in the following section 3.3.2 on backward master equations. As in case of the
forward equation the limit to vanishing ∆τ is encapsulated in the transition
probabilities:

lim
∆τ→0

1

∆τ
p (z, τ +∆τ |y, τ) = W (z|y, τ) . (3.103)

Some care is needed in applications to problem solution, because the transi-
tion probabilities depend on the definition of the time axis.

3.3.2 Backward master equations

The backward master equation follows directly from the third term in the
backward dCKE (3.102c). Since the difference in the derivation of forward and
backward equations is essential for the interpretation of the results, we repeat
here the derivation of a backward equation by means of the master equation
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as an example. The starting point again is the conditional probability of a
Markov process from a recording (y, τ) in the past to the final condition
(y0, τ0) at present: p (y0, τ0|y, τ) = δ(y0− y) for all values of τ . As the term
backward indicates we shall, however, assume that the computational time τ
progresses from τ0 into the past.

Because of its general insight into the forward-backward asymmetry we
present here a brief derivation of the backward master equation. The jump
term (3.102c) is subjected to Riemann-Stieltjes integration,

∂p (y0, τ0| y, τ)
∂τ

=

∫

Ω

dz W (z| y, τ)
(
p (y0, τ0| y, τ) − p (y0, τ0| z, τ)

)
=

=

∞∑

z=0

W (z| y, τ)
(
p (y0, τ0| y, τ) − p (y0, τ0| z, τ)

)
,

and we introduce the notation for discrete particle numbers, y ⇔ n ∈ N≥0,
z ⇔ m ∈ N≥0, and y0 ⇔ n0 ∈ N≥0:

∂P (n0, τ0|n, τ)
∂τ

=

∞
∑

m=0

W (m|n, τ)
(

P (n0, τ0|n, τ) − P (n0, τ0|m, τ)
)

. (3.104)

As previously we assume now time independent transition rates and restrict
transitions to single births and deaths:

W (m|n, t) = Wmn = w+
n δn+1,n + w−

n δn−1,n , or

Wmn =





w+
n if m = n+ 1 ,

w−
n if m = n− 1 ,

0 otherwise ,

(3.95’)

Then, then master equation is of the form

∂P (n0, τ0|n, τ)
∂τ

= w+
n

(
P (n0, τ0|n, τ) − P (n0, τ0|n+ 1, τ)

)
+

+ w−
n

(
P (n0, τ0|n, τ) − P (n0, τ0|n− 1, τ)

)
=

= −w+
n P (n0, τ0|n+ 1, τ) − w−

n P (n0, τ0|n− 1, τ) +

+ (w+
n + w−

n )P (n0, τ0|n, τ) .

(3.105)

The different conditions for the jumps in the forward and the backward single
step master equations are compared in figure 3.16. The interpretation of the
forward jumps is straightforward the transition rates w±

k (k = n−1, n, n+1)
are multiplied by the probabilities to be in the state before the jump at the
instant of hopping. The different directions of real time and computational
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b+1b+1

a+1a+1

bb

aa

b-1b-1

a-1a-1

absorbing

reflecting absorbing

reflecting

Fig. 3.17 Boundaries in single-step birth-and-death master equations. The
figure on the l.h.s. sketches an interval, a ≤ n ≤ b (indicated by yellow background),
with a reflecting boundary at n = a and an absorbing boundary at n = b whereas
the interval on the r.h.s. has the absorbing boundary at n = a and the reflecting
boundary at n = b. The step-up transition probabilities w+

n are shown in blue, the
step-down transition probabilities w−

n in red, a reflecting boundary has a zero out-

going probability, w−
a or w+

b , and the incoming probabilities, w+
a−1 or w−

b+1, are
zero at an absorbing boundary. The incoming transition probabilities at the reflec-
tion boundaries are shown in light colors and play no role in the stochastic process
because the probabilities of the corresponding virtual states are zero by definition:
Pa−1(t) = Pb+1(t) = 0.

time in the backward process change the situation: The probabilities involved
in jumps of the backward process are the probabilities after the jump.

3.3.3 Mean first passage times

A first passage time is a random variable T that measures the instant when
a particle passes a predefined location or state the first time. Its expectation
value E(T ) is called mean first passage time. We need to stress first, because
in the majority of processes we are discussing here the variables may take
on certain values finitely or in infinite time processes even infinitely often.
In order to facilitate precise definition we introduce boundaries, which deter-
mine the behavior of the particle at the boundary of the accessible domain.
For master equations two classes of boundaries are commonly defined: (i)
absorbing boundaries and (ii) reflecting boundaries . When a particle reaches
an absorbing boundary it disappears whereas from a reflecting boundary it
automatically returns to the range of allowed values. Both boundaries are
readily incorporated into master equations.
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3.3.3.1 Boundaries in birth-and-death master equations

The implementation of boundary conditions for single-step birth-and-death
processes is straightforward. The process is, for example, assumed to be con-
fined to the interval a ≤ n ≤ b, n ∈ Z, and we only need to choose the
appropriate transition probabilities that forbid the exit from the interval in
case of a reflecting boundary or the return to the interval for an absorbing
boundary (figure 3.17). Confining the process to [a, b] we need two bound-
aries,28 a lower boundary at n = a and an upper one at n = b. Because of
symmetry it is sufficient to consider only the lower boundary.

The boundary at n = a is absorbing when the particle after it left the do-
main [a, b] cannot return to it in forthcoming jumps, which is easily achieved
by setting w+

a−1 = 0. A reflecting boundary results from the assumption

w−
a = 0: the particle cannot leave the domain. By symmetry we have w−

b+1 = 0

and w+
b = 0 for the absorbing and the reflecting upper boundary.

In the forward single-step birth and death master equation the flux across
the boundaries is only relevant for the equations of the states at the bound-
aries, n = a and n = b. According to equation (3.98) with the initial condition
Pn(t0) = δn,n0 the differential change in the probability density at the lower
boundary is

dPa(t)

dt
= w−

a+1 Pa+1(t) − w+
a Pa(t) + w+

a−1 Pa−1(t) − w−
a Pa(t) .

The two rightmost terms are effected by the boundary condition. In the case
of reflection at the boundary the condition is that nothing flows out of the
domain and this is fulfilled by w−

a = 0 (figure 3.17), if the reflecting boundary
is combined with no influx either w+

a−1 or Pa−1(t) (or both) must be zero.
In general the assumption Pa−1(t) = 0 is reasonable because it is not very
meaningful to assume a finite probability density outside the domain [a, b].
Nevertheless, an influx can be modeled readily under the assumption of a
virtual state n = a− 1. An alternative assumption is the equivalent to noflux
or Neumann boundary conditions in partial differential equations: The flux
at the boundary has to vanish and this implies

w+
a−1 Pa−1(t) = w−

a Pa(t) . (3.106)

Absorption at the lower boundary also allows for an alternative to setting
w+
a−1 = 0: Introducing a virtual state n = a− 1 and demanding Pa−1(t) = 0

yields the same effect. It is straightforward to show that the assumption of a
virtual state n = b + 1 and the two conditions, w+

b Pb(t) = w−
b+1Pb+1(t) = 0

28 Boundaries are also called barriers in the literature and both notions are used as
synonyms. We shall use here exclusively the word ’boundary’. The expression barrier
will be reserved for obstacles of motion inside the domain of the random variable.
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and Pb+1 = 0, do the same job for a reflecting or an absorbing upper barrier,
respectively.

Alternative conditions can be found also for the backward master equation
(3.105) on the interval [a, b]. At the lower boundary n = a we find:

dP (n0, t0|a, t)
dt

= w+
a P (n0, t0|a+ 1, t) − w+

a P (n0, t0|a, t)+

+w−
a P (n0, t0|a− 1, t) − w−

a P (n0, t0|a, t)

for n0 ∈ [a, b]. Again only the last two terms – the second line – are affected
by the boundary conditions, and setting

P (n0, t0|a− 1, t) = P (n0, t0|a, t) (3.107)

is equivalent to putting w−
a (t) = 0 in order to introduce a reflecting lower

boundary through equating the second line to zero. The introduction of an
absorbing lower boundary is a bit more tricky, since the transition rate w+

a−1

does not appear in the backward master equation. Clearly, the condition
P (n0, t0|n, t) = 0 with n0 ∈ [a, b] and n < a will have the same effect as
w+
a−1 = 0. In single-step birth-and-death processes only the term with the

largest value of n will be relevant for the process confined to the domain
[a, b] and hence P (n0, t0|a− 1, t) = 0 is sufficient. At the upper boundary the
corresponding two equations having the same effect as w+

b = 0 and w−
b+1 = 0

are: P (n0, t0|b+1, t) = P (n0, t0|b, t) and P (n0, t0|b+1, t) = 0 for the reflecting
and the absorbing boundary, respectively.

In this context it should be mentioned that in case of the chemical master
equation equation we shall encounter natural boundaries where reaction ki-
netics itself takes care of reflecting or absorbing boundaries. If we are dealing
with a reversible chemical reaction approaching a thermodynamic equilib-
rium in a system with a total number of N molecules the states nK = 0
and nK = N are reflecting for each molecular species K, whereas in an ir-
reversible reaction the state nK = 0 is absorbing when the reactant K is at
shortfall. Similarly, in absence of migration the state of extinction nS = 0 is
an absorbing boundary for species S.

3.3.3.2 First passage time in birth-and-death master equations

The calculation of a mean first passage time is illustrated by means of a
simple example: The escape of a particle from a domain [a, b] with a reflecting
boundary at n = a and an absorbing boundary at n = b [191, pp. 90-92]. We
make use of the backward master equation (3.105) and according to last
section 3.3.3.1 we adopt the following conditions for the boundaries

P (n0, t0|a− 1, t) = P (n0, t0|a, t) and P (n0, t0|b+ 1, t) = 0 .
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The probability that the particle is still in the interval [a, b] is calculated by
summation over all states in the accessible domain:

In(t) =

b∑

m=a

P (m, t|n, 0) , m ∈ Z . (3.108)

Insertion of the individual terms from the backward master equation (3.105)
yields for the time derivative:

− dIn(t)

dt
=

b∑

m=a

dP (m, t|n, 0)
dt

=

= w+
n

(
In(t) − In+1(t)

)
+ w−

n

(
In(t) − In−1(t)

)
(3.109)

with the conditions Ia−1(t) = Ia(t) for the reflecting boundary at n = a and
Ib+1(t) = 0 for the absorbing boundary at n = b. The minus sign expresses
the decrease in probability to be still within the interval [a, b] in real time and
is a consequence of the two time scales in backward processes, dt = −dτ .

The probability of leaving the interval [a, b] – the probability of absorption
– within an infinitesimal interval of time [t, t+ dt] is calculated to be

In(t) − In(t+∆t) = − ∂In
∂t

dt ,

and we can now obtain the mean first passage time for the escape from state
n, 〈Tn〉 by integration

〈Tn〉 = −
∫ ∞

0

t
∂In
∂t

dt =

∫ ∞

0

In dt , (3.110)

where the last expression results from integration by parts. Integration of
equation (3.109) yields

∫ ∞

0

− ∂In(t)
∂t

dt = 1

for the l.h.s. since absorption of the particle or escape from the domain is
certain. Integration of the r.h.s. yields mean passage times, and finally we
obtain

1 = w+
n

(
〈Tn〉 − 〈Tn+1〉

)
+ w−

n

(
〈Tn〉 − 〈Tn−1〉

)
(3.111)

the equation for the calculation of 〈Tn〉. The boundary conditions are:
〈Ta−1〉 = 〈Ta〉 and 〈Tb+1〉 = 0.

The solution of equation (3.111) for 〈Tn〉 is facilitated by the introduction
of new variables Sn and auxiliary functions ϕn:
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Fig. 3.18 Mean first passage times of a single-step birth-and-death pro-
cess. Mean first passage times are computed from equation(3.113). In order to be
able to compare the results for different sizes of the interval [a, b] the interval is are
normalized: a = 0 and b = 1, or ν = (n − a)/(b − a). Computed mean first passage
times are scaled by a factor (N2κ)−1 with N = b − a + 1. The values for N chosen
in the computations and the color code are: 4 (blue), 6 (violet), 10 (red), 20 (yellow),
50 (green), and 1000 (black).

Sn =
〈Tn+1〉 − 〈Tn〉

ϕn
, n ∈ [a, b] and

ϕn =

n∏

m=a+1

w−
m

w+
m
, n ∈ [a+ 1, b] with ϕa = 1 ,

and in the new variables equation (3.111) takes on the form

−1 = w+
n φn

(
Sn − Sn−1

)
,

which allows for deriving a solution for the new variables

Sk = −
k∑

m=a

1

w+
m ϕm

.

From ϕkSk = 〈Tk+1〉 − 〈Tk〉 we obtain by means of the telescopic sum from
k = n to k = b
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b
∑

k=n

〈Tk+1〉 − 〈Tk〉 = 〈Tn+1〉 − 〈Tn〉 + 〈Tn+2〉 − 〈Tn+1〉 + . . . + 〈Tb+1〉 − 〈Tb〉 =

= −〈Tn〉 ,

because of the boundary condition 〈Tb+1〉 = 0, and we obtain the desired
result

〈Tn〉 =

b∑

k=n

ϕk

k∑

m=a

1

w+
m ϕm

=

b∑

k=n

1

w+
k P̄k

k∑

m=a

P̄m , (3.112)

where we have used the stationary probabilities P̄ (3.101) instead of the
functions ϕ to calculate the mean passage times.

For the purpose of illustration we choose a example that yields simple
analytical expressions for the mean first passage times. The simplification is
made with the transition probabilities:

w+
k = w−

k = κ ∀ k = 1, . . . , N and w+
0 = κ , w−

0 = 0 , w−
b+1 = 0 .

The number of states n in the interval [a, b] with a, b, n ∈ Z is N = b− a+1.
Since P̄n = P̄0 follow from (3.101) we obtain by means of the normaliza-
tion condition

∑
n P̄n = 1 the same probability P̄n = 1/N ∀n. Insertion in

equation(3.112) yields the expression

〈Tn〉 =
1

2κ
(b+ n− 2a+ 2)(b− n+ 1) , (3.113)

which has the leading term−n2 in n. Numerical results are given in figure 3.18
and indeed the curves approach a negative quadratic function for large N .

Mean first passage times find widespread applications in chemistry and bi-
ology. Important study cases are the escape from potential traps, for example
classical motion in the double well potential, fixation of alleles in population,
and extinction times.
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3.4 Stochastic differential equations

The Chapman-Kolmogorov equation had been conceived in order to be able
to model the propagation of probabilities in sample space. An alternative
modeling approach starts out from a deterministic description by means of
a difference or differential equation and superimposes a fluctuating random
element. The idea of introducing stochasticity into deterministic modeling of
processes goes back to the beginning of the twentieth century: In 1900 the
French mathematician Louis Bachelier conceived and analyzed in his thesis
the stochastic difference equation

X (tn+1) = X (tn) + µ∆t + σ
√
∆t Wn+1

in order to model the fluctuating prices in the Paris stock exchange. Herein
µ(Xt, t) is a function related to the foreseeable development, σ(Xt, t) describes
the amplitude of the random fluctuations and the Wn’s are independent nor-
mal variables with mean zero and variance one in the sense of Brownian incre-
ments [10]. Remarkable is the fact that Bachelier’s thesis preceded Einstein’s
and von Smoluchowski’s famous works by five and six years, respectively.

The concept of stochastic differential equations is commonly attributed to
the French mathematician Paul Langevin who proposed an equation named
after him that allows for the introduction of random fluctuations into conven-
tional differential equations [173]. The idea was to find a sufficiently simple
approach to model successfully Brownian motion. In its original form the
Langevin equation was written as

m
d2r

dt2
= − γ dr

dt
+ ξ(t) or

dp(t)

dt
= − γ

m
p(t) + ξ(t) . (3.114)

It describes the motion of a Brownian particle of mass m where r(t) and
dr/ dt = v(t) are location and velocity of the particle, respectively. The term
on the l.h.s. is the Newtonian gain in linear momentum p due to the force,
dp/ dt, the first term on the r.h.s. is the loss of momentum due to friction, and
the second term, ξ(t), represents the irregularly fluctuating Brownian random

force. The Langevin equation can be written in terms of the momentum p

and then it takes on the more familiar form. The parameter γ = 6π η r is
the friction coefficient according to Stokes law with η being the viscosity
coefficient of the medium and r the size of the particle. The analogy of (3.114)
to Newton’s equation of motion is evident: The deterministic force, f(x) =
−(∂V/∂x) with V (x) being the potential energy, is replaced by ξ(t).

In figure 3.1 stochastic differential equations were shown as an alterna-
tive to the Chapman-Kolmogorov equation in modeling Markov processes.
As said, the basic difference between the Chapman-Kolmogorov and the
Langevin approach is the object whose time dependence is investigated: The
Langevin equation 3.114 considers a single instant of a particle moving in
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physical 3d-space that is exposed to thermal motion and the integration
yields a single stochastic trajectory. The Chapman-Kolmogorov equation of
continuous motion leads to a Fokker-Planck equation 3.34, which describes
the migration of a probability density in the same 3d-space where the tra-
jectory is defined. Equivalence of both approaches expresses the fact that
sampling of trajectories of a Langevin equation converges in distribution to
the (time dependent) Fokker-Planck probability density in the limit of (in-
finitely) large samples. The equivalence of the Langevin and the Chapman-
Kolmogorov approach is discussed in more detail in section 3.4.5. In case
an analytical solution to the stochastic differential equation is available, the
solution can be used to calculate moments of the probability distribution of
X (t) and their time-dependence (section 3.4.6), especially mean and variance,
which in practice are often sufficient for the description of a process.

In the literature one can find an enormous variety of detailed treatises
of stochastic differential equations. We mention here the monograph [7] and
two books that are available on the internet: [206, 229]. The forthcoming
presentation of stochastic differential equations follows in essence the line of
thought chosen by Crispin Gardiner [93, pp.77-96].

3.4.1 Mathematics of stochastic differential equations

Generalization of equation (3.114) from Brownian motion to an arbitrary
stochastic process yields

dx

dt
= a(x, t) + b(x, t) ξ(t) , (3.115)

where x is the variable under consideration and ξ(t) is an irregularly fluctu-
ating term often called noise. The two functions a(x, t) and b(x, t) are defined
by the process to be investigated and the letters are chosen in order to point
at the analogy to Fokker-Planck equations (3.34). If the fluctuating term is
independent of x, one speaks of additive noise.

From the mathematical point of view we require statistical independence
for ξ(t1) and ξ(t2) if and only if t1 6= t2. Furthermore we assume 〈ξ(t)〉 = 0
without loosing generality since any drift term can be absorbed in a(x, t),
and encapsulate all requirements in an irregularity condition

〈ξ(t1) ξ(t2)〉 = δ(t1 − t2) . (3.116)

The Dirac δ-function diverges as |t1 − t2| → 0 this has the consequence that

〈ξ(t) ξ(t)〉 and the variance σ2
(
ξ(t)

)
= 〈ξ(t) ξ(t)〉 − 〈ξ(t)〉2 are infinite for

t1 = t2 = t.
In order to be able to work with the differential equation (3.115) we require

existence of an integral of the form
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ω(t) =

∫ t

0

ξ(τ) dτ .

If ω(t) is a continuous function of time it has the Markov property, which
can be proven by partitioning the integral

ω(t2) =

∫ t1

0

ξ(τ1) dτ1 +

∫ t2

t1

ξ(τ2) dτ2 =

= lim
ε→0

(∫ t1−ε

0

ξ(τ1) dτ1

)
+

∫ t2

t1

ξ(τ2) dτ2

and hence for every ε > 0 the ξ(τ1) in the first integral is independent of
the ξ(τ2) in the second integral. By continuity ω(t1) and ω(t2) − ω(t1) are
statistically independent in the limit ε → 0, and further ω(t2) − ω(t1) is
independent of all ω(t̂) with t̂ < t1. In other words, ω(t2) is completely
determined in probabilistic terms by the value ω(t1) and no information on
any past values is required: ω(t) is Markovian. ⊓⊔

Recalling now the differential Chapman-Kolmogorov equation (3.33) and
because of the continuity of ω(t), we postulate the existence a Fokker-Planck
equation that describes ω(t). Computation of the drift and diffusion term is
straightforward [93, pp. 78,79] and yields A(t) = 0 and B(t) = 1. This is the
Fokker-Planck equation of the Wiener process (3.41) and we identify

∫ t

0

ξ(τ) dτ = ω(t) = W (t) .

Considering rigorously the consequences of equation (3.41) we have the para-
doxical situation that the integral of ξ(t) is W (t), which is continuous but
nowhere differentiable and therefore neither the Langevin equation (3.114)
nor the stochastic differential equation (3.115) exist in strict mathematical
terms. Only the integral equation,

x(t) − x(0) =

∫ t

0

a
(
x(τ), τ

)
dτ +

∫ t

0

b
(
x(τ), τ

)
ξ(τ) dτ , (3.117)

can be accessed by consistent interpretation. The relation to the Wiener pro-
cess becomes more visible by writing

ξ(t) dt = dW (t) ≡ W (t+ dt) − W (t) ,

which eventually yields:

x(t) − x(0) =

∫ t

0

a
(
x(τ), τ

)
dτ +

∫ t

0

b
(
x(τ), τ

)
dW (τ) . (3.117’)
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The second integral is a stochastic Stieltjes integral the evaluation of which
will be discussed in the next section 3.4.2. In differential form we find now
for the correctly formulated stochastic differential equation

dx = a
(
x(t), t

)
dt + b

(
x(t), t

)
dW (t) . (3.117”)

There are several different ways to make the Langevin equation (3.115) com-
patible with standard mathematics. We followed here the approach of Crispin
Gardiner, assumed continuity of ω(t) and got the answer that ξ(t) follows
the normal distribution. The inverse sequel of arguments starting out from
assumption of the Gaussian nature of the probability density ξ(t) is equally
justifiable and it is definitely a matter of taste, which assumption is preferred.

3.4.2 Stochastic integration

A stochastic integral requires additional definitions compared to ordinary
Riemann integration. We shall explain this rather unexpected fact and give
some practical recipes for integration (for more details see [246]). Let G(t)
be an arbitrary function of time and W (t) the Wiener process, then the
stochastic integral I(t, t0) is defined as a Riemann-Stieltjes integral (1.49) of
the form

I(t, t0) =

∫ t

t0

G(τ) dW (τ) . (3.118)

The integral is partitioned into n subintervals, which are separated by the
points ti: t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn−1 ≤ t (figure 3.19). Intermediate points
τi are defined within each of the subintervals ti−1 ≤ τi ≤ ti and they will
be used for the evaluation of the function G(τi) and the value of the integral
depends on the position chosen for τi within the subintervals.

The stochastic integral
∫ t
0 G(τ) dW (τ) is defined as the limit of the partial

sums

Sn =

n∑

i=1

G(τi)
(
W (ti)−W (ti−1)

)

and it is not difficult to recognize that the integral is different for different
choices of the intermediate point τi. As a particular important example we
consider the case G(t) =W (t):
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Fig. 3.19 Stochastic integral. The time interval [t0, t] is partitioned into n seg-
ments and an intermediate point τi is defined in each segment: ti−1 ≤ τi ≤ ti.

〈Sn〉 =

〈
n∑

i=1

W (τi)
(
W (ti)−W (ti−1)

)〉
=

=

n∑

i=1

〈W (τi)W (ti)〉 −
n∑

i=1

〈W (τi)W (ti−1)〉 =

=
n∑

i=1

(
min(τi, ti) − min(τi, ti−1)

)
=

n∑

i=1

(τi − ti−1) .

Next we choose the same intermediate position τ for all subintervals ’i’

τi = α ti + (1 − α) ti−1 with 0 ≤ α ≤ 1 (3.119)

and obtain for the telescopic sum29

〈Sn〉 =
n∑

i=1

(ti − ti−1)α = (t− t0)α .

Accordingly, the mean value of the integral may adopt any value between
zero and (t− t0) depending on the choice of the position of the intermediate
points as expressed by the parameter α. Out of different possible choices two
are popular leading to the Itō and the Stratonovich stochastic integral.

29 In a telescopic sum all terms except the first and the last summand cancel.
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3.4.2.1 Itō stochastic integral

The most frequently used definition of the stochastic integral is due to
the Japanese mathematician Kiyoshi Itō [140, 141]. Semimartingales (sec-
tion 3.2.1.2), in particular local martingales, are the most common stochastic
processes that allow for straightforward application of Itō’s formulation of
stochastic calculus.

The choice α = 0 or τi = ti−1 defines the Itō stochastic integral of a
function G(t):

∫ t

t0

G(τ) dW (τ) = lim
n→∞

n∑

i=1

G(ti−1)
(
W (ti) − W (ti−1)

)
, (3.120)

where the limit is taken as the mean square limit (1.43). As an example we

compute the previously discussed integral
∫ t
t0
W (τ) dW (τ) and find for the

sum Sn:

Sn =

n∑

i=1

W (ti−1)
(
W (ti) − W (ti−1)

)
≡

n∑

i=1

W (ti−1)∆W (ti) =

=
1

2

n∑

i=1

((
W (ti−1) +∆W (ti)

)2 − W (ti−1)
2 − ∆W (ti)

2
)

=

=
1

2

(
W (t)2 − W (t0)

2
)
− 1

2

n∑

i=1

∆W (t2i ) ,

where the second line results from: 2
∑
ab =

∑
(a+ b)2 −∑ a2 −∑ b2. It is

now necessary to calculate the mean square limit of the second term in the
last line of the equation. For a finite sum we have the expectation values
〈

n
∑

i=1

∆W (ti)
2

〉

=
∑

i

〈

(

W (ti)−W (ti−1)
)2
〉

=
∑

i

(ti−ti−1) = t− t0 , (3.121)

where the second equality results from the Gaussian nature of the probability
density (3.46):30

〈(

W (ti)−W (tj)
)2〉 =

〈

W (ti)
2
〉

−
〈

W (tj)
2
〉

= σ2
(

W (ti)
)

− σ2
(

W (tj)
)

= ti − tj .

Next we calculate the expectation of the mean square deviation in (3.121):

30 For the derivation of this relation we used the fact that the stochastic variables
of the Wiener process at different times are uncorrelated, 〈W (ti)W (tj)〉 = 0 and the
variance is σ2

(

W (ti)
)

= 〈W (ti)2〉 − 〈W (ti)〉2 = 〈W (ti)2〉 − µ2.
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〈

(

n
∑

i=1

(

W (ti)−W (ti−1)
)2 − (t− t0)

)2
〉

=

=

〈

∑

i

(

W (ti)−W (ti−1)
)4

+ 2
∑

i<j

(

W (ti)−W (ti−1)
)2(

W (tj)−W (tj−1)
)2−

− 2(t− t0)
∑

i

(

W (ti)−W (ti−1)
)2 + (t− t0)

2

〉

.

We start the evaluation of the individual terms in the second line: According
to (2.44) the fourth moment of a Gaussian variable can be expressed in terms
of the variance

〈

(

W (ti)−W (ti−1)
)4
〉

= 3
〈

(

W (ti)−W (ti−1)
)2
〉2

= 3 (ti − ti−1)
2

Making use again of the independence of Gaussian variables we find
〈

(

W (ti)−W (ti−1)
)2(

W (tj)−W (tj−1)
)2
〉

= (ti − ti−1)(tj − tj−1) .

Insertion into the expectation value eventually yields:
〈

(

n
∑

i=1

(

W (ti)−W (ti−1)
)2 − (t− t0)

)2

〉

=

= 2
∑

i

(ti − ti−1)
2 +

(

∑

i

(ti − ti−1)− (t− t0)

)(

∑

j

(tj − tj−1)− (t− t0)

)

=

= 2
∑

i

(ti − ti−1)
2 → 0 as n→∞ .

Accordingly, limn→∞
∑
i

(
W (ti) − W (ti−1)

)2
= t − t0 in the mean square

limit. ⊓⊔
Eventually, we obtain for the Itō stochastic integral of the Wiener process:

∫ t

t0

W (τ) dW (τ) =
1

2

(
W (t)2 −W (t0)

2 − (t− t0)
)
. (3.122)

We remark that the Itō integral differs from the conventional Riemann-
Stieltjes integral where the term t− t0 is absent. An illustrative explanation
for this unusual behavior of the limit of the sum Sn is the fact that the quan-
tity |W (t+∆t)−W (t)| is almost always of the order

√
t and hence – unlike

in ordinary integration – the terms of second order in ∆W (t) do not vanish
on taking the limit.

It is also worth noticing that the expectation value of the integral (3.122)
vanishes,

〈∫ t

t0

W (τ) dW (τ)

〉
=

1

2

(〈
W (t)2

〉
−
〈
W (t0)

2
〉
− (t− t0)

)
= 0 , (3.123)
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since the intermediate terms 〈W (ti−1)∆W (ti)〉 vanish because ∆W (ti) and
W (ti−1) are statistically independent.

3.4.2.2 Nonanticipating functions

The concept of a nonanticipating or adapted process has been mentioned in
section 3.2.1.2: A stochastic process X (t) is adapted if and only if for every
trajectory and for every time t, X (t) is known at time t and not before, in
other words, a nonanticipating or adapted process ’does not look into the
future’, in other words, a function G(t) is nonanticipating or adapted to the
process dW (t) if the value of G(t) at time t depends only on the random
increments dW (τ) for t ≤ τ . Here we shall require this property in order
to be able to solve certain classes of Itō stochastic integrals, which can be
expressed as functions or functionals31 of the Wiener process W (t) by means
of a stochastic differential or integral equation of the form

x(t) − x(t0) =

∫ t

t0

a
(
x(τ), τ

)
dτ +

∫ t

t0

b
(
x(τ), τ

)
dW (τ) . (3.117’)

A function G(t) is nonanticipating with respect to t if G(t) is probabilistically
independent of

(
W (s)−W (t)

)
for all s and t with s > t. In other words, G(t)

is independent of the behavior of the Wiener process in the future s > t.
This is a natural and physically reasonable requirement for a solution of
equation (3.117”) because it boils down to the condition that x(t) involves
W (τ) only for τ ≤ t. Examples of important nonanticipating functions are

(i) W (t) ,

(ii)
∫ t
t0
F
(
W (τ)

)
dτ ,

(iii)
∫ t
t0
F
(
W (τ)

)
dW (τ) ,

(iv)
∫ t
t0
G(τ) dτ , when G(t) itself is nonanticipating, and

(v)
∫ t
t0
G(τ) dW (τ), when G(t) itself is nonanticipating.

The items (iii) and (v) depend on the fact that in Itō’s version the stochastic
integral is defined as the limit of a sequence in which G(τ) and W (τ) are
involved exclusively for τ < t.

Three reasons for the specific discussion of nonanticipating functions are
important:
1. Many results can be derived that are only valid for nonanticipating func-
tions.
2. Nonanticipating function occur naturally in situations, in which causal-

ity can be expected in the sense that the future cannot affect the presence.
3. The definition of stochastic differential equations requires nonanticipating

31 A function assigns a value to the argument of the function, x0 → f(x0) whereas a
functional relates a function to the value of a function, f → f(x0).
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functions.
In conventional calculus we never encounter situations in which the future
acts back on the presence or even on the past.

Several relations are useful and required in Itō calculus:

dW (t)2 = dt , (3.124a)

dW (t)2+n = 0 for n > 0 , (3.124b)

dW (t) dt = 0 , (3.124c)

∫ t

t0

W (τ)n dW (τ) =
1

n+ 1

(

W (t)n+1 −W (t0)
n+1

)

− n

2

∫ t

t0

W (τ)n−1 dτ ,

(3.124d)

df
(

W (t), t
)

=

(

∂f

∂t
+

1

2

∂2f

∂W 2

)

dt +
∂f

∂W
dW (t) , (3.124e)

〈∫

t

t0

G(τ) dW (τ)

〉

= 0 , and (3.124f)

〈∫

t

t0

G(τ) dW (τ)

∫

t

t0

H(τ) dW (τ)

〉

=

∫

t

t0

〈G(τ)H(τ)〉 dτ . (3.124g)

The expressions are easier to memorize when we assign a dimension
[t1/2] to W (t) and discard all terms of order t1+n with n > 0.

3.4.2.3 Stratonovich stochastic integral

As said already, the value of a stochastic integral depends on the particular
choice of the intermediate points, τi. The Russian physicist and engineer Rus-
lan Leontevich Stratonovich [269] and the American mathematician Donald
LeRoy Fisk [86] developed simultaneously an alternative approach to Itō’s
stochastic integration, which is commonly called Stratonovich integration:32

S

∫ t

t0

G(τ) dW (τ)

The intermediate points are chosen such that the unconventional term (t−t0)
does not appear any more. The integrand as a function of W (t) is evaluated
precisely in the middle, namely at the value τi = (ti−ti−1)/2 and it is straight-

32 In order to distinguish the two versions of stochastic integrals we use the symbol
∫ t
t0

for the Itō integral and s
∫ t
t0

for the Stratonovich integral [144, p. 86]. The distinction

from ordinary integrals is automatically provided by the differential dW .
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forward to show that the mean square limit converges to the expression for
the integral over W (t)

S

∫ t

t0

W (τ) dW (τ) = lim
n→∞

n
∑

i=1

W (ti) +W (ti−1)

2

(

W (ti)−W (ti−1)
)

=

=
1

2

(

W (t)2 −W (t0)
2
)

.

(3.125)

Stratonovich integration in contrast to the Itō integral obeys the rules of
conventional calculus but the Stratonovich integral is not nonanticipating.

We compare here the derivation of the Stratonovich and the Itō integral
[144, pp. 85-89], because additional insights into the nature of stochastic pro-
cesses are gained. The starting point is the general Itō difference equation

∆x = F (x, t)∆t + G(x, t)∆W , (3.126)

choosing xk = x(tk), tk = k∆t, and ∆W0 as the first random increment we
obtain xk = xk−1 +∆xk−1 with

∆xk−1 = F (xk−1, tk−1)∆t + G(xk−1, tk−1)∆W (tk−1)

for k = 1, . . . , n with equal intervals as shown in figure 3.19. We choose the
starting point t0 = 0 and x(0) = x0, and find the general solution of the
difference equation at t = tn:

xn = x(tn) = x0 +
n−1∑

k=0

F (xk, tk)∆t +
n−1∑

k=0

G(xk, tk)∆W (tk) . (3.127)

Equation (3.127) represents also the explicit formula for the Cauchy-Euler
integration (figure 3.20) and is used in numerical SDE integration. We apply
it here for definition the Itō integral

∫ t

0

G(x, t) dW ≡ lim
n→∞

n−1∑

k=0

G(xk, tk)∆W (tk) , (3.120’)

and the Stratonovich integral

S

∫ t

0

G
(
x, t) dW ≡ lim

n→∞

n−1∑

k=0

G
(xk+1 + xk

2
, tk

)
∆W (tk) , (3.128)

and use it for a calculation of the relationship between them.
First we expand the function G(x, t) in the Stratonovich analogue of the

noise term in equation (3.127)

G
(xk+1 + xk

2
, tk

)
∆W (tk) = G

(
xk +

∆xk
2

, tk

)
∆W (tk) ,
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in a power series around the point (xn, tn). For the expansion we simplify the
notation by defining Fn ≡ F (xn, tn) and Gn ≡ G(xn, tn),

G
(
xk +

∆xk
2

, tk

)
= Gn +

∆xn
2

∂Gn
∂x

+
(∆xn

2

)2 1

2

∂2Gn
∂x2

+ . . . ,

insert ∆xn = Fn∆t + Gn∆W (tn), and by considering that ∆W (t)2 = ∆t
we find by omitting the higher order terms, because they will not contribute
since all differences with higher powers, (∆t)γ with γ > 1 and

(
∆W (t)

)α
with

α > 2 (3.124), vanish in the continuum limits ∆t→ dt and ∆W → dW (t)

G
(
xk +

∆xk
2

, tk

)
= Gn +

(
Fn
2

∂Gn
∂x

+
G2
n

4

∂2Gn
∂x2

)
∆t+

Gn
2

∂Gn
∂x

∆W (tn) .

Next we insert this result into the discrete sum for the Stratonovich inte-
gral (3.128), omit the term with ∆t∆W since ∆t∆W → dt dW (t) = 0, and
find

n−1∑

k=0

G
(
xk +

∆xk
2

, tk

)
∆W (tk) =

n−1∑

k=0

Gk∆W (tk) +

n−1∑

k=0

Gk
2

∂Gk
∂x

∆t .

Taking the continuum limit we obtain the desired relation between Itō and
Stratonovich integrals

S

∫ t

0

G(x, t) dW (t) =

∫ t

0

G(x, t) dW (t) +
1

2

∫ t

0

∂G(x, t)

∂x
G(x, t) dt . (3.129)

The Stratonovich integral is equal to the Itō integral plus an additional con-
tribution, which can be assimilated into the drift term.

In summary we derived two integration methods for the stochastic differ-
ential equation

dx = F (x, t) dt + G(x, t) dW (t) : (3.130)

(i) the Itō method yielding

x(t) = x(0) +

∫ t

0

F (x, t) dt +

∫ t

0

G(x, t) dW (t) and

(ii) the Stratonovich method resulting in a different solution, which we denote
by z(t) for the purpose of distinction

z(t) = z(0) +

∫ t

0

F (z, t) dt + S

∫ t

0

G(z, t) dW (t) =

= z(0) +

∫ t

0

(
F (z, t) +

G(z, t)

2

∂G(z, t)

∂z

)
dt +

∫ t

0

G(z, t) dW (t) .
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On the other hand we would obtain the same solution z(t) if we applied the
Itō calculus to the stochastic differential equation

dz =

(
F (z, t) +

G(z, t)

2

∂G(z, t)

∂z

)
dt + G(z, t) dW (t) . (3.131)

Since the Stratonovich calculus is much more involved than the Itō calcu-
lus, we can readily see a strategy for obtaining Stratonovich solutions: Use
equation (3.131) and derive the solution by means of Itō calculus. It is worth
mentioning that a stand-alone Stratonovich integral has no relationship to a
stand-alone Itō integral or, in other words, there is no connection between the
two classes of integrals for an arbitrary function G(t). When the stochastic
differential equation is known to which the two integrals refer, a formula can
be derived – as we did here – that relates the Itō integral to the Stratonovich
integral.

At the end of this section we are left with the dilemma that the Itō inte-
gral is mathematically and technically most satisfactory but the more natural
choice would be the Stratonovich integral that enables the usage of conven-
tional calculus. In addition, the noise term ξ(t) in the Stratonovich inter-
pretation can be real noise with finite correlation time whereas the idealized
white noise assumed as reference in Itō’s formalism gives rise to divergence
of variances and correlations. The Stratonovich and not the Itō calculus, for
example, is adequate for dealing with multiplicative noise in physical systems.

3.4.3 Integration of stochastic differential equations

A stochastic variable x(t) is consistent with an Itō stochastic differential
equation (SDE)

dx(t) = a
(
x(t), t

)
dt + b

(
x(t), t

)
dW (t) (3.115’)

if for all t and t0 the integral equation (3.117’) is fulfilled. Time is ordered,

t0 < t1 < t2 < · · · < tn = t ,

and the time axis may be assumed to be split into (equal or unequal) incre-
ments, ∆ti = ti+1 − ti. We visualize a particular solution curve of the SDE
for the initial condition x(t0) = x0 by means of a discretized version

xi+1 = xi + a(xi, ti)∆ti + b(xi, ti)∆W (ti) , (3.117”)

wherein xi = x(ti), ∆ti = ti+1 − ti, and ∆W (ti) = W (ti+1) −W (ti). Fig-
ure 3.20 illustrates the partitioning of the stochastic process into a deter-
ministic drift component, which is the discretized solution curve of the ODE
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Fig. 3.20 Stochastic integration. The figure illustrates the Cauchy-Euler proce-
dure for the construction of an approximate solution of the stochastic differential
equation (3.115’). The stochastic process consists of two different components: (i) the
drift term, which is the solution of the ODE in absence of diffusion (red; b(xi, ti) = 0)
and (ii) the diffusion term representing a Wiener process W (t) (blue; a(xi, ti) = 0).
The superposition of the two terms gives the stochastic process (black). The two
lower plots show the two components in separation. The increments of the Wiener
process ∆W (ti) are independent or uncorrelated. An approximation to a particular
solution of the stochastic process is constructed by letting the mesh size approach
zero, lim∆t→ 0.

obtained by setting b
(
x(t), t

)
= 0 in equation (3.117”), and a stochastic diffu-

sion component, which is a Wiener process W (t) that is obtained by setting
a
(
x(t), t

)
= 0 in the SDE. The increment of the Wiener process, ∆W (ti), is

independent of xi provided (i) x0 is independent of allW (t)−W (t0) for t > t0
and (ii) a(x, t) is a nonanticipating function of t for any fixed x. Condition
(i) is tantamount to the requirement that any random initial condition must
be nonanticipating.

A particular solution to equation (3.117”) is constructed by letting the
mesh size go to zero, limn → ∞ implying ∆t → 0. In the construction of
an approximate solution xi is always independent of ∆W (tj) for j ≥ i as
we verify easily that by inspection of (3.117”). Uniqueness of solutions refers
to individual trajectories in the sense that a particular solution is uniquely
obtained for a given sample function W(t) of the Wiener Process W (t). The
existence of a solution is defined for the whole ensemble of sample functions:
A solution of equation (3.117”) exists if – with probability one – a particular
solution exists for any choice of sample function W(t) of the Wiener process.
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Existence and uniqueness of solutions to Itō stochastic differential equa-
tions can be proven for two conditions [7, pp.100-115]: (i) the Lipschitz con-
dition and (ii) the growth condition. Existence and uniqueness of a nonan-
ticipating solution x(t) of an Itō SDE within the time interval [t0, t] require:

(i) Lipschitz condition: there exists a κ such that

|a(x, τ) − a(y, τ)| + |b(x, τ) − b(y, τ)| ≤ κ |x− y|

for all x and y and τ ∈ [t0, t], and
(ii) growth condition: a κ exists such that for all τ ∈ [t0, t]

|a(x, τ)|2 + |b(x, τ)|2 ≤ κ2 (1 + |x|2) .

The Lipschitz condition is almost always fulfilled for stochastic differential
equations in practice, because in essence it is a smoothness condition. The
growth condition, however, may often be violated in abstract model equa-
tions, for example, when a solution explodes and progresses to infinity at
finite time. In other words, the value of x may become infinite at some finite
time. We shall encounter such situations in the applied chapter 5. As a matter
of fact this is a typical model behavior since no population or spatial variable
can approach infinity at finite times in a finite world.

Several other properties known to apply to solutions of ordinary differential
equations can be shown without major modifications to apply to SDE’s too:
Continuity in the dependence on parameters and boundary conditions as well
as the Markov property (for proofs we refer to [7]).

3.4.4 Changing variables in Itō calculus

Changing variables is a technical issue but important for applications and
boring when one makes errors. Since Itō calculus is different from ordinary
calculus, we expect differences also in the rules of substituting variables. In
order to see the general effect of substitutions in Itō’s stochastic differen-
tial equations we consider an arbitrary function, x(t) ⇒ f

(
x(t)

)
, and calcu-

late dx(t) ⇒ df
(
x(t)

)
. The major difference compared to ordinary calculus

comes from the necessity to extend all expansions up to second order because
dW (t)2 = dt and hence ∆W (t)2 does not approach zero faster than ∆t in
the limit ∆t → dt. We start with the simpler case of a single variable and
afterwards introduce the multidimensional situation.
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3.4.4.1 Single variable case

Starting out from the SDE dx = a(x, t) dt + b(x, t)dW (t) and making use of
our previous results on nonanticipating functions we expand df

(
x(t)

)
up to

second order but retain only the term in dW (t), because by the Itō rules we
have dt2 = 0 and dW (t) dt = 0 (and write x instead x(t)):

df(x) = f
(

x+ dx) − f
(

x
)

=

=
∂f(x)

∂x
dx +

1

2

∂2f(x)

∂x2
dx2 + · · · =

=
∂f(x)

∂x

(

a(x, t) dt + b(x, t) dW (t)
)

+
1

2

∂2f(x)

∂x2
b(x, t)2 dW (t)2 ,

(3.132)

where all terms higher than second order have been neglected. According
to Itō calculus (3.124) we introduce dW (t)2 = dt into the last line of this
equation and obtain Itō’s formula:

df
(
x(t)

)
=
(
a
(
x(t), t

) ∂f
(
x(t)

)

∂x
+

1

2
b
(
x(t), t

)2 ∂2f
(
x(t)

∂x2

)
dt+

+ b
(
x(t), t

) ∂
(
x(t)

)

∂x
dW (t) .

(3.133)

It is worth noticing that Itō’s formula and ordinary calculus lead to different

results unless f(x) is linear in x(t) and accordingly ∂2f(x)
∂x2 vanishes.

As an exercise we suggest to calculate the substitution by the function
f(x) = x2. The result is

d(x2) =
(
2xa(x, t) + b(x, t)2

)
dt + 2 b(x, t) dW (t) ,

which is, for example, useful to calculate the time derivative of the variance:
d var

(
x(t)

)
/ dt = d

〈
x2
〉
/ dt + 2 〈x〉 d 〈x〉/ dt.

3.4.4.2 Multiple variable case

The application of Itō’s formalism to many dimensions, in general, becomes
very complicated. The most straightforward simplification is the extension of
Itō calculus to the multivariate case by making use of the rule that dW (t) is
an infinitesimal of order t1/2. Then we can show that the following relations
hold for an n-dimensional Wiener processW(t) =

(
W1(t),W2(t), . . . ,Wn(t)

)
:
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dWi(t) dWj(t) = δij dt , (3.134a)

dWi(t)
2+N = 0 , (N > 0) , (3.134b)

dWi(t) dt = 0 , (3.134c)

dt1+N = 0 , (N > 0) . (3.134d)

The first relation is a consequence of the independence of increments of
Wiener processes along different coordinate axes, dWi(t) and dWj(t). Making
use of the drift vector A(x, t) and the diffusion matrix B(x, t) the multidi-
mensional stochastic differential equation

dx = A(x, t) dt + B(x, t) dW(t) . (3.135)

Following Itō’s procedure we obtain for an arbitrary well-behaved function
f
(
x(t)

)
the result

df(x) =

(∑

i

Ai(x, t)
∂

∂xi
f(x)+

+
1

2

∑

i,j

(
B(x, t) · B′(x, t)

)
ij

∂2

∂xi∂xj
f(x)

)
dt+

+
∑

i,j

Bij
∂

∂xi
f(x) dWj(t) .

(3.136)

Again we observe the additional term introduced through the definition of
the Itō integral.

3.4.5 Fokker-Planck equations and SDEs

The expectation value of an arbitrary function f
(
x(t)

)
can be calculated by

means of Itō’s formula. We begin with a single variable:

〈
df
(
x(t)

)〉

dt
=

〈
df
(
x(t)

)

dt

〉
=

d

dt

〈
f
(
x(t)

)〉
=

=

〈
a
(
x(t), t

)∂f
(
x(t)

)

∂x
+

1

2
b
(
x(t), t

)∂2f
(
x(t)

)

∂x2

〉
.

The stochastic variableX (t) has the conditional probability density p(x, t|x0, t0)
and hence we can compute the expectation value by integration – again we
simplify notation f(x) ≡ f

(
x(t)

)
and p (x, t) ≡ p (x, t|x0, t0):
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d

dt
〈f(x)〉 =

∫
dx f(x)

∂

∂t
p(x, t) =

=

∫
dx

(
a(x, t)

∂f(x)

∂x
+

1

2
b(x, t)2

∂2f(x)

∂x2

)
p(x, t)

The further derivation follows the procedure that is used in the of the differ-
ential Chapman-Kolmogorov equation [93, 48-51] – in particular integration
by parts and neglect of surface terms – and we obtain

∫

dx f(x)
∂

∂t
p(x, t) =

∫

dx f(x)

(

− ∂

∂x

(

A(x, t) p(x, t)
)

+
1

2

∂2

∂x2

(

B(x, t)2 p(x, t)
)

)

.

Since the choice of a function f(x) has been arbitrary we can drop it now
and finally obtain a Fokker-Planck equation

∂p(x, t|x0, t0)
∂t

= − ∂

∂x

(
A(x, t) p(x, t|x0, t0)

)
+

+
1

2

∂2

∂x2

(
B(x, t)2 p(x, t|x0, t0)

)
.

(3.137)

The probability density p(x, t) thus obeys an equation that is completely
equivalent to the equation for a diffusion process characterized by a drift co-
efficient a(x, t) ≡ A(x, t) and a diffusion coefficient b(x, t) ≡ B(x, t) as derived
from the Chapman-Kolmogorov equation. Hence, Itō’s stochastic differential
equation provides indeed a local approximation to a drift and diffusion pro-
cess in probability space. The extension to the multidimensional case based
on Itō’s formula is straightforward, and we obtain for the conditional proba-
bility density p(x, t|x0, t0) ≡ p the following Fokker-Planck equation:

∂p

∂t
= −

∑

i

∂

∂xi

(

Ai(x, t) p
)

+
1

2

∑

i,j

∂

∂xi

∂

∂xj

(

(

B(x, t) · B′(x, t)
)

i,j
p

)

. (3.138)

Here, we derive one additional property, which is relevant in practice. The
stochastic differential equation,

dx = A(x, t) dt + B(x, t) dW(t) , (3.135’)

is mapped into a Fokker-Planck equation that depends only on the matrix
product B ·B′ and accordingly, the same Fokker-Planck equation arises from
all matrices B that give rise to the same product B · B′. Thus, the Fokker-
Planck equation is invariant to a replacement B⇒ B ·S when S is an orthog-
onal matrix: S · S′ = I. If S fulfils the orthogonality relation it may depend
on x(t), but for the stochastic handling it has to be nonanticipating.

Eventually we proof the redundancy directly from the SDE and define a
transformed Wiener process

dV(t) = S(t) dW(t) .
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The random vector V(t) is a normalized linear combination of Gaussian vari-
ables dWi(t) and S(t) in nonanticipating, and accordingly, dV(t) is itself
Gaussian with the same correlation matrix. Averages dWi(t) to various pow-
ers and taken at different times factorize and the same is true for the dVi(t).
Accordingly, the infinitesimal elements dV(t) are increments of a Wiener
process: The orthogonal transformation mixes trajectories without, however,
changing the stochastic nature of the process, and equation (3.135) can be
rewritten and yields

dx = A(x, t) dt + B(x, t) S′(t) · S(t) dW(t) =

= A(x, t) dt + B(x, t) S′(t) · dV(t) =

= A(x, t) dt + B(x, t) S′(t) · dW(t) ,

since V(t) is as good a Wiener process as W(t) is, and both SDEs give rise
to the same Fokker-Planck equation. ⊓⊔

3.4.6 Examples of stochastic differential equations

In order to show how stochastic differential equations can be handled in prac-
tice we show how to calculate first the expectation value and the variance of
stochastic differential equations and then consider two cases: (i) the Ornstein-
Uhlenbeck process that has been discussed as an example of a process that
can be handled easily with a Fokker-Planck equation in section 3.2.3.4, and
(ii) the general linear stochastic differential equations.

3.4.6.1 Low moments of stochastic differential equations

In many cases it is sufficient to know the expectation value and the variance
of the stochastic variable of a process as a function of time. These low mo-
ments33 can be calculated without solving the stochastic equations explicitly.
We consider the general SDE

dx = a(x, t) dt + b(x, t) dW (t)

and compute the mean value by taking the average and recall that the second
term on the r.h.s. vanishes because 〈dW (t)〉 = 0:

d 〈x〉 = 〈dx〉 = 〈a(x, t)〉 dt or
d〈x〉
dt

= 〈a(x, t)〉 . (3.139)

33 Expectation value and variance are considered as low moments.
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Thus, the calculation of the expectation value boils down to solving an ODE.
For a derivation of an expression for the second moment and the variance we
have to calculate the differential of the square of the variable. By means of
equation (3.133) we find:

d(x2) =
(
2xa(x, t) + b(x, t)2

)
dt + 2 b(x, t) dW (t) ,

and forming the average yields

〈
d(x2)

〉
= d

〈
x2
〉

=
〈
2xa(x, t) + b(x, t)2

〉
dt ,

where we made use of the relation 〈dW (t)〉 = 0. Provided we knew the
expectation values, a differential equation for the variance would be given by

d var(x)

dt
=

d
〈
x2
〉

dt
− d〈x〉2

dt
=

d
〈
x2
〉

dt
− 2 〈x〉 d〈x〉

dt
.

The continuation of the calculations requires knowledge of the functions
a(x, t) and b(x, t).

As an example we consider the simple linear SDE with a(x, t) = αx and
b(x, t) = βx,

dx = αxdt + β xdW (t) = x
(
α dt + β dW (t)

)
,

and find for the expectation value

〈x(t)〉 = 〈x(0)〉 eαt = x0 e
αt for p (x, 0) = δ(x− x0) (3.140a)

and for the variance

var
(
x(t)

)
=
〈
x(t)2

〉
− 〈x(t)〉2 =

=
〈
x(0)2

〉
e(2α+β

2)t − 〈x(0)〉2 e2αt =

= x20

(
e(2α+β

2)t − e2αt
)

for p (x, 0) = δ(x− x0) .

(3.140b)

The expressions are easily generalized to time dependent coefficients α(t) and
β(t) as we shall see in section 3.4.6.3.

3.4.6.2 The Ornstein-Uhlenbeck process

The general SDE for the Ornstein-Uhlenbeck process has been given in (3.62).
Without loosing generality but simplifying the solution we shift the long-time
expectation value to the origin, µ = 0:

dx = −k xdt + σ dW (t) . (3.62’)
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The solution of the deterministic equation is simply and exponential decay
or relaxation to the long-time value limt→∞ x(t) = 0,

dx = −k x dt and x(t) = x(0) e−kt ,

and we make a substitution that compensates for the exponential decay

x(t) = y(t) e−kt and y(t) = x(t) ekt with y(0) = x(0) .

Now we expand dy up to second order

dy = dx ekt+xd(ekt)+(dx)2+dxd(ekt)+
(
d(ekt)

)2
with d

(
ekt
)
= kekt dt .

All second order terms vanish because the expansion contains no term with
dW (t)2 and we find by integration,

dy = σ ekt dW (t) and y(t) = y(0) + σ

∫ t

0

ekτ dW (τ) ,

and resubstitution yields the solution

x(t) = x(0) e−kt + σ

∫ t

0

e−k(t−τ) dW (τ) . (3.141)

The calculation of expectation value and variance is straightforward:

〈x(t)〉 =

〈
x(0) e−kt + σ

∫ t

0

e−k(t−τ) dW (τ)

〉
= 〈x(0)〉 e−kt , (3.142a)

and with

〈
x(t)2

〉
=

〈(
x(0) e−kt + σ

∫ t

0

e−k(t−τ) dW (τ)
)2〉

=

=
〈
x(0)2

〉
e−2kt +

σ2

2k

(
1− e−2kt

)

we obtain

var
(
x(t)

)
=

(
var
(
x(0)

)
− σ2

2k

)
e−2kt +

σ2

2k
, (3.142b)

and with sharp initial conditions, p(x, 0) = δ(x− x0), we find

var
(
x(t)

)
=

(
1

2k

(
1− e−2kt

))
. (3.142c)
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Finally we mention that the analysis of the Ornstein-Uhlenbeck process can
be readily extended to many dimensions and time dependent parameters,
k(t) and σ(t) [93].

3.4.6.3 The linear stochastic differential equations

As last example we consider again the linear SDE but allow time dependent
parameters

dx = α(t)xdt + β(t)xdW (t) = x
(
α(t) dt + β(t) dW (t)

)
.

Now we make the substitution y = ln x, expand up to second order

dy =
dx

x
− dx2

x2
= α(t) dt + β(t) dW (t) − 1

2
β(t)2 dt

and find the solution by integration and resubstitution

x(t) = x(0) exp

(∫ t

0

(
α(τ) − 1

2
β(τ)2

)
dτ +

∫ t

0

β(τ) dW (τ)

)
. (3.143)

We make use of the relation 〈ez〉 = exp
(
1
2

〈
z2
〉)
, which is fulfilled by all

Gaussian variables,34 and find for the n-th raw moment [93, p. 109]:

〈x(t)n〉 = 〈x(t)n〉
〈

exp

(

n

∫ t

0

(

α(τ) − 1

2
β(τ)2

)

dτ + n

∫ t

0

β(τ) dW (τ)

)〉

= 〈x(t)n〉 exp

(

n

∫

t

0

α(τ) dτ +
1

2
n(n − 1)

∫

t

0

β(τ)2 dτ

)

.

(3.144)

All moments can be calculated from this expression and for the low moments
we find:

〈x(t)〉 = 〈x(0)〉 exp
(∫ t

0

α(τ) dτ

)
(3.145a)

var
(
x(t)

)
= var

(
x(0)

)
exp

(
2

∫ t

0

α(τ) dτ

)
+

+
〈
x(0)2

〉
exp

(∫ t

0

β(τ)2 dτ

)
. (3.145b)

Analytical solutions have been derived also for the inhomogeneous case,
a(x, t) = α0 + α1x and b(x, t) = β0 + β1x and the raw moments are readily
calculated [93, p. 109].

34 In order to proof the conjecture one makes use of the fact that all cumulants κn

with n > 2 vanish (see section 2.3.3). The reader encouraged to complete the proof.
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In this last part we have shown that analytical expressions derived from
stochastic differential equations can be used successfully to compute the most
important quantities of stochastic processes and in this sense are also equiv-
alent to Fokker-Planck equations in practice.





Chapter 4

Applications in chemistry

There is nothing so practical as a good theory.
Kurt Lewin, 1952.

Abstract In chemistry the master equation is the best suited and most com-
monly used tool to model stochasticity in chemical reactions. We review the
common elementary reaction in mass action kinetics and discuss Michaelis-
Menten as kinetics as an example of combining several elementary steps into
an over-all reaction. Reaction networks are considered and a formal mathe-
matical theory that allows for the derivation of general properties of networks
is presented. After a formal introduction of the chemical master equation we
digress into the origin of rate parameters. Then, a selection of simple reactions
is presented for which the master equation can be solved exactly. The exact
solutions are also used to illustrate the relation between the mathematical ap-
proach and the recorded data. A separate chapter is dealing with correlation
functions, fluctuation spectroscopy, single molecule data and their stochastic
modeling. Deterministic and stochastic parts of solutions can be separated
by means of size expansions.Most reaction mechanisms are not accessible to
the analytical approach and therefore we present a numerical approach that
is exact within the concept of the chemical master equation is presented and
applied to some selected examples of chemical reactions.

Conventional chemical reaction kinetics commonly does not require a
stochastic approach because the numbers of particles are very large. There are
exceptions when the particle numbers of certain species become very small
during reactions – oscillations of species may serve as examples. Such cases
will be mentioned and discussed in this and in the next chapter but even
more important is the requirement of a stochastic approach for direct mea-
surements of fluctuations, which became possible because of the progress in
spectroscopy leading to spectacular increases in sensitivities. Single molecule
techniques are another not completely unrelated and also rapidly develop-
ing field where a stochastic approach is indispensable. On the other hand,
if one wants to resolve reaction dynamics at the molecular level the situ-
ation is different, because conventional statistical mechanics is blurring the
details of interest. Molecules are involved in large numbers of collisions, which

257
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considered individually in the vapor phase could be calculated by means of
advanced quantum mechanics – at least in principle, although we have to ad-
mit that the situation in solution where molecules are densely packed would
be helpless.

Stochastic chemical kinetics is based on the assumption that knowledge
on the transformation of molecules in chemical reactions is not accessible in
full atomistic detail or if it would, the information would be overwhelming
and obscuring the essential features. Thus, it is assumed that chemical reac-
tions have a probabilistic element and can be modeled properly by means of
stochastic processes. The random processes are caused by thermal noise as
well as by random encounters of molecules in collisions. Fluctuations, there-
fore, play an important role and they are responsible for the limitations in
the reproduction of experiments. This concept is not substantially different
from the ideas underlying equilibrium statistical mechanics although statis-
tics applied to thermodynamic equilibrium is on saver grounds than statistics
applied to chemical reaction kinetics. On the other hand, the current theory
of chemical reaction rates is around for more than fifty years and so far it has
not yet been replaced by some better founded and applicable theory.

Particle numbers change necessarily in jumps requiring a discrete stochas-
tic description, for example, by means of a master equation. Other descrip-
tions are branching processes and other special cases of stochastic processes,
which we will shall discuss in the next chapter 5, because they are more fre-
quently addressed in biology. Commonly different approaches do not exclude
each other as, for example, birth-and-death processes are frequently solved
by application of precisely the same techniques as used for master equations.
Birth-and-death master equations were already discussed in section 3.2.5.2.
Continuous descriptions play a role in the case of the population size expan-
sions, which allow for the separation of a deterministic part of the solution
from a diffusion term.

Conventional chemical reaction kinetics is dealing, in essence, with two
classes of problems: (i) forward problems, which deal with the determination
of time dependent concentrations as solutions of kinetic model equations,
where the kinetic parameters are assumed to be known (for an introduction
in to traditional chemical kinetics see [171], a modern textbook is [136]), and
(ii) inverse problems, which aim at the determination of parameters from mea-
sured data, where the kinetic model is commonly assumed to be known [275].
The first problem boils down to deriving the solution curves or performing
qualitatively analysis of a kinetic ODE, or a PDE in case the spatial distri-
bution is nonhomogeneous. The inverse task is often addressed as parameter
identification problem. Qualitative analysis allows for a reconstruction of bi-
furcation patterns of dynamical systems, and there exists an inverse problem
too: The determination of the regions in parameter space from where pa-
rameter combinations give rise to a certain dynamic behavior. In order to
distinguish from simple or level one parameter identification the inversion
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of the determination of bifurcation diagrams has been as a typical level two
inverse problem [61].

The chapter starts with an introduction into chemical kinetics (sec-
tion 4.1) consisting of short reviews of elementary step kinetics (section 4.1.1),
Michaelis-Menten kinetics, which is discussed as an example of a reaction
mechanism merging single elementary steps into one over-all reaction (sec-
tion 4.1.2), and a formal theory of reaction networks conceived for the qualita-
tive analysis of multidimensional kinetic differential equations (section 4.1.3).
Stochasticity in chemical reactions is introduced in terms of the chemical mas-
ter equation and we shall ask the question how the parameters are derived,
which are required for modeling stochastic chemical kinetics (section 4.2).
Then, examples of exactly solvable chemical master equations are presented:
(i) the equilibration of particle numbers or concentrations in the flow reactor,
(ii) irreversible and reversible monomolecular reactions, and (iii) bimolecular
reactions that can be still solved exactly but where the solutions become so
complicated that practical work with them has to rely on numerical compu-
tation (section 4.3). A separate chapter is dealing with correlation functions,
fluctuation spectroscopy, single molecule techniques and their implications
for stochastic modeling (section 4.5). The next section deals with the transi-
tion from microscopic to macroscopic systems by means of the size expansion
technique. Size expansion is particularly useful if the particle numbers are
sufficiently large (section 4.6). Most reaction mechanisms involve many re-
actions steps and commonly analytical solutions are neither available for the
conventional deterministic approach nor for stochastic methods. Stochastic
methods applied to reaction networks are discussed in section 4.4. The last
sections handle a numerical approach to stochastic chemical kinetics in which
probability distribution are obtained by sampling a sufficiently large number
of numerically calculated individual trajectories (section 4.7).

4.1 A glance on chemical reaction kinetics

Chemical reactions will be modeled as Markov processes and analyzed in form
of the corresponding master equations. In a few cases Fokker-Planck equa-
tions will be applied. As an appropriate criterium for classification of single
elementary steps we shall use the molecularity of reactions1 and the complex-
ity of the dynamical behavior. With respect to reaction dynamics we shall
consider reactions and reaction networks with (i) linear behavior, (ii) nonlin-

1 The molecularity of a reaction is the number of molecules that are involved in
the reaction, for example two in a reactive collision between molecules or one in a
conformational change. An elementary step is a reaction at the molecular level that
cannot be resolved further in mass action kinetics (section 4.1.1). We shall distinguish
elementary steps and elementary processes: the latter are more general and need not
be referring to the level of molecules.
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ear behavior with simple dynamics in the sense of a monotonous approach
to thermodynamic equilibrium or towards a unique stationary state, and
(iii) complex behavior as exhibited by dynamical systems showing multiple
stable stationary states, oscillations or deterministic chaos.

The stochastic approach to chemical reaction kinetics has some tradition,
which began in the late fifties from two different initiatives: (i) approxima-
tion of the complex vibrational relaxation in small molecules [15, 218, 264]
and its application to chemical reactions, and (ii) direct simulation of chem-
ical reactions as stochastic processes [12, 13, 14]. The latter approach can
be viewed in the sense of initially mentioned limited information on reac-
tion details and has been taken up and developed further by several groups
[47, 139, 161, 202, 205]. The major part of these works has been summarized
in an early review [203], which is recommended here for further reading. An-
thony Bartholomay’s studies are also highly relevant for biological models of
evolution, because he investigated reproduction as a linear birth-and-death
process. Exact solutions to master or Fokker-Planck equations can be found
only for particularly simple special cases. Often approximations are used or
the analysis has been restricted to expectation values and variances of the
variables. Later on computer assisted approximation techniques and numer-
ical simulation methods were developed, which allow for handling stochastic
phenomena in chemical kinetics on a general level [93, 106, 286].
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4.1.1 Elementary steps of chemical reactions

Chemical reactions at the level of mass action kinetics are defined by mecha-
nisms, which can be decomposed into elementary steps. An elementary step
describes the transformation of zero, one or two molecules into products.
Common elementary steps written as stoichiometric equations are:2

⋆ −−−−→ A (4.1a)

A −−−−→ ⊘ (4.1b)

A −−−−→ B (4.1c)

A −−−−→ 2B (4.1d)

A −−−−→ B + C (4.1e)

A + B −−−−→ C (4.1f)

A + B −−−−→ 2A (4.1g)

A + B −−−−→ C + B (4.1h)

A + B −−−−→ C + D (4.1i)

2A −−−−→ B (4.1j)

2A −−−−→ 2B (4.1k)

2A −−−−→ B + C (4.1l)

The molecularity of a reaction is defined by the number of – different or iden-
tical – molecules on the reactant side of the stoichiometric equation and we
distinguish zero-, mono-, bi-, or termolecular, reactions and so on. The list
shown above contains one zero-molecular reaction, (4.1a), four monomolec-
ular reactions, (4.1b) - (4.1e), and seven bimolecular reactions, (4.1f) - (4.1l).
Nonreactive events, which occur in open systems, for example in flow reac-
tors, like the creation of a molecules through influx (4.1a) or the annihilation
of a molecule through outflux (4.1b) are included in the list. Molecularities of
three and higher are not included in the list, because simultaneous encoun-
ters of three and more molecules are extremely improbable and therefore,
elementary steps involving three or more molecules are not considered in
conventional chemical kinetics.3

2 Stoichiometry deals with the relative quantities of reactants and products in chemi-
cal reactions. Reaction stoichiometry, in particular, determines the molar ratios of the
reactants, which are converted into products, and the products that are formed. For
example, in the reaction 2H2+O2 → 2H2O the stoichiometric ratios of H2 : O2 : H2O
are 2 : 1 : 2 (see also the stoichiometric matrix in section 4.7.2).
3 Exceptions are reactions involving surfaces as third partner, which are important in
gas phase kinetics and, for example, biochemical reactions involving macromolecules.
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The elementary step shown in equation (4.1g) is an example of an auto-

catalytic elementary process. In practice, autocatalytic reactions commonly
involve many elementary steps and are the results of complex reaction mech-
anisms (see, e.g., the review [252]). In order to study basic features of au-
tocatalysis or chemical self-enhancement, single step autocatalytic reactions
rather than autocatalytic multistep reaction networks are used as model sys-
tems. One particular termolecular autocatalytic process,

2A + B −−−−→ 3A , (4.2)

became very famous [224] despite its termolecular nature, which makes it un-
likely to occur in real systems. The elementary step (4.2) is the essential step
in the so-called Brusselator model, it can be straightforwardly addresses by
analytical mathematical techniques, and it gives rise to complex dynamical
phenomena in space and time which are otherwise rarely observed in chem-
ical reaction systems. Among other features such special phenomena are: (i)
multiple stationary states, (ii) chemical hysteresis, (iii) oscillations in concen-
trations, (iv) deterministic chaos, and (v) spontaneous formation of spatial
structures. The last example is known as Turing instability [280] and is fre-
quently used as a model for pattern formation or morphogenesis in biology
[207]. The formal kinetics of reproduction involves autocatalysis, and because
of its fundamental importance of in biology we shall discuss autocatalysis in
section 5.1 within the chapter dealing with applications in biology.

Although chemists were intuitively familiar with mass action throughout
the nineteenth century, the precise formulation of a law of mass action is
due to two Norwegians, the mathematician and chemist Cato Maximilian
Guldberg and the chemist Peter Waage [299]. For reaction (4.1f), for example,
mass action rate law (κma) yields

d[A]

dt
=

d[B]

dt
= − d[C]

dt
= k [A] · [B] ,

the rate of the reaction is proportional to the particle numbers or concentra-
tions of both reactants, [A] and [B].

Precisely, the law of mass action states that the rate of any given chemical
reaction is proportional to the product of the concentrations or activities
of the reactants.4 In particular, the numbers of identical molecules that are
consumed in a reaction step – called the stoichiometric coefficients5 νA and

4 Several idealized regularities hold only in the limit of vanishing concentrations,
lim c→ 0. The idealized laws are retained through replacing concentrations by activ-
ities, aX = [X] = fXcX . Unless stated otherwise we shall approximate activities by
concentrations here and for the sake of simplicity use lower case letters to indicate
the species: fX ≈ 1 and [X] = x. The units used for concentrations are [mole×dm−3].
5 The stoichiometric coefficients of the reactants in the reaction Rj will be denoted
by νAj , νBj , . . ., for the products we shall use ν′

Aj , ν
′
Bj , . . . and the elements of the

stoichiometric matrix are S = {sij = ν′
ij − νij} (see sections 4.1.3.1 and 4.7.2).
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νB – appear as exponents of concentrations, v is the reaction rate, and k is
a reaction rate parameter:

νA A + νB B
k

−−−−→ products =⇒

=⇒ reaction rate = v = − 1

νA

da

dt
= − 1

νB

db

dt
= k a νA b νB .

(4.3)

In a reversible reaction,6 which is an acceptable chemical reaction in both
directions and can be understood as a special combination of two elementary
steps compensating each other, the reverse reaction is accounted for by a
minus sign:7

νA A + νB B
k

−−−−→←−−−−
h

νC C + νD D =⇒

=⇒ v = − 1

νA

da

dt
= − 1

νB

db

dt
=

1

νC

dc

dt
=

1

νD

dd

dt
=

= k a νA b νB − h c νC d νD .

(4.4)

The condition of zero net reaction rate yields an expression for the equilibrium
parameter commonly denoted as equilibrium constant as in the formulation
of mass action at equilibrium by Guldberg and Waage:

K =
k

h
=

c νC d νD

a νA b νB
. (4.5)

Later derivations of mass action are using the chemical potentials of reactants
and products as introduced by JosiahWillard Gibbs around nineteen hundred
[98] (see also [99, pp. 56, 64, 65]).

Strictly speaking, the notion of elementary steps implies the application
of mass action kinetics, and this means that on the level of molecules – not
necessarily molecular states – no further resolution is possible. The advances
in spectroscopy made it possible to distinguish between different states of
molecules – the ground state and various excited states in quantum molecular
physics or the minimum free energy structures and suboptimal conformations

6 The notions reversible and irreversible for chemical reactions are used differently
from thermodynamics: In chemical kinetics a reaction is irreversible if the occurrence
of the reaction in opposite direction is not observable on realistic time scales and
hence can be neglected. Strict chemical irreversibility causes an instability in thermo-
dynamics. All chemical reactions that proceed with nonzero velocity are irreversible
in the sense of thermodynamics as reversibility requires infinitely slow progress of
processes and chemical reactions are no exception.
7 We shall be dealing with multistep reaction networks of reversible reactions and
apply a notation that allows for straightforward identification of reaction steps by
choosing km and hm as reaction parameters for reaction m.
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in biopolymers – and then the ultimate resolution has to be pushed further
down to individual states in order to be able to adequately describe processes.

Elementary step resolution and mass action kinetics often lead to complex
reaction networks with a great number of variables, which are hard to analyze
and which yield results that are difficult to interpret. It is sometimes useful
to reduce the number of variables and to introduce a simpler higher level

kinetics . The difference between mass action and higher level kinetics and
is illustrated by means of an old and well studied example, the Michaelis-
Menten reaction kinetics of enzyme catalyzed reactions in biochemistry.

4.1.2 Michaelis-Menten kinetics

Chemical kinetics became relevant for biology already at the end of the nine-
teenth century since biochemical processes gained a quantitative perspective.
In particular, enzyme catalyzed reaction were studied and biochemical kinet-
ics was initiated by the path-breaking work of Leonor Michaelis and Maud
Menten [214]. General enzyme catalysis is modeled by three elementary steps,
which at first are assumed to be reversible:

S + E ⇋ S · E ⇋ E · P ⇋ E + P , (4.6)

(i) binding of the substrate S to the enzyme E, (ii) conversion of substrate
into product, both being bound to the enzyme, and (iii) the release of the
product P through dissociation of the enzyme-product complex. Then, the
full mechanism of the simplest enzyme catalyzed reaction comprises six ele-
mentary steps, which in mass action kinetics (κma) are of the form

S + E
k1

−−−−→ S · E , (4.7a)

S · E
h1

−−−−→ S + E , (4.7b)

S · E
k2

−−−−→ E · P , (4.7c)

E · P
h2

−−−−→ S · E , (4.7d)

E · P
k3

−−−−→ P + E , (4.7e)

P + E
h3

−−−−→ E · P . (4.7f)

For an efficient enzyme reaction it is essential that the steps (4.7d) and (4.7f)
are negligibly slow. The latter reaction (4.7f), in particular at high concen-
trations of the product P, can lead to product inhibition. It is useful for the
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catalytic efficiency if reaction (4.7b) is slow too. In section single molecule
techniques we shall come back to full Michaelis-Menten kinetics when we
discuss the reaction in a system containing a single enzyme molecule [247].

In the genuine Michaelis-Menten mechanism step (i) is considered as re-
versible binding whereas (ii) is thought to be an irreversible chemical reaction.
Step (iii) follows the irreversible reaction step (ii) and hence need not be con-
sidered explicitly. Michaelis-Menten enzyme kinetics deals with four molec-
ular species, S, E, S · E, and P being substrate, enzyme,substrate-enzyme
complex, enzyme-product complex and product, respectively – the enzyme-
product complex, E·P is not considered explicitly, and the concentration of
the product is interpreted best as total concentration: p ≈ p0 = [P] + [E · P].
Again we denote concentrations by small letters, [S] = s, [E] = e, [P] = p,
and for the complexes we use [S · E] = cS = c and [E · P] = cP = c, respec-
tively. Total concentrations will be denoted by: e0 = e + c + cp, s0 = s + c
and p0 as said above. In Michaelis-Menten kinetics (κMM) the stoichiometric
equations kinetic and the equation take on the form:

S + E ⇋ S · E → E + P =⇒ reaction rate =
d[P]
dt

=
vmax · s
KM + s

.

The parameters vmax and KM denote the maximal reaction rate and the
Michaelis-Menten constant, respectively. The Michaelis-Menten constant is
the free substrate concentration s at the half maximal reaction rate, vmax/2.
For more than half a century after the pioneering works of Michaelis and
Menten, the Michaelis-Menten constant KM has been the most important
quantitative parameter of enzymes, and it has been used, for example, to
determine the purity of enzyme preparations. Biochemical kinetics became a
discipline in its own right and recently led to the ambitious goal of systems
biology consisting in biochemical modeling of all processes on the levels of
cells and whole organisms. Beginning in the nineteen sixties new spectroscopic
and kinetic techniques were developed that allowed for resolution of reaction
kinetics into individual reaction steps.

In order to derive the Michaelis-Menten equation we start from the mech-
anism given above and assign rate parameters to individual reaction steps

S + E
k1

−−−−→←−−−−
h1

S · E
k2

−−−−→ E + P . (4.8)

The differential equation for the enzyme substrate complex is of the form

dc

dt
= k1 e s − (h1 + k2) c
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Fig. 4.1 The Michaelis-Menten mechanism for enzyme catalyzed reaction.
The reaction rate v = dp/dt = k2(s0 − s− p) = k2(e0 − e) is determined form a plot
of v against s: v reaches a plateau value after an initial nonlinear increase, and this
plateau value may be estimated from the maximum v|dv/ds=0. The maximal rate
is approximated by vmax = k2(e0 − e) ≈ e0 because all enzyme E is converted into
complex S ·E at high substrate concentration, s≫ e0. Choice of parameters: k1 = 1,
h1 = k2 = 0.1, e0 = 0.01, and hence KM = 0.2. The black curve v(s) is compared
with the plot of v against s0 (red).

and we obtain for the steady state:8

dc

dt
= 0 =⇒ (h1 + k2) ĉ = k1 ê ŝ

Now we define the Michaelis-Menten constant and introduce e0 = e + c as
the total enzyme concentration in order to eliminate the free enzyme concen-
tration variable e:

h1 + k2
k1

= KM =
(e0 − ĉ) ŝ

ĉ
=⇒ ĉ =

e0 · ŝ
KM + ŝ

.

The rate of product formation is obtained through multiplication by the rate
constant of the irreversible reaction

v =
dp

dt
= k2

e0 · s
KM + s

=
vmax · s
KM + s

with vmax = k2 e0 , (4.9)

and the result is the equation reported above. ⊓⊔

8 To indicate a true equilibrium state we would use the symbol ·̄, e.g., c̄. Since the as-
sumption for the derivation of the Michaelis-Menten equation will be that the enzyme
catalyzed reaction is sufficiently slow in order to keep the system in an approximate
equilibrium state we are using ĉ, ŝ, etc., instead.
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Often it is quite demanding to measure the free substrate concentration s and
in the initial phase of the reaction or for s0 ≫ e0, [S] can be approximated by
the total substrate concentration s ≈ s0. An exact calculation is possible if
the rate of reaction is zero and substrate binding is at equilibrium, k2 ≪ h1:

s̄ =
1

2

(
(s0 − e0 −H) + (s0 − e0 +H)

√
1 +

4 e0H

(s0 − e0 +H)2

)
, (4.10)

withH = h1/k1 being the dissociation constant of the enzyme-substrate com-
plex, S · E. Equation (4.10) has a very simple solution under two conditions:
(i) substrate S in large excess over enzyme E, e0 ≪ s0 (and e0 ≪ H), and
(ii) fast dissociation of the complex h1 ≫ k1 or limH →∞

s̄ ≈ s0 − e0 ≈ s0 .

Without the equilibrium approximation Michaelis-Menten enzyme kinetics is
described by two ODEs. The total concentrations of substrate and enzyme
are according to stoichiometry

s(0) = s0 = s + c + p , e(0) = e0 = e + c , and c = e0 − e , (4.11)

where we have assumed that initially there was not product in the reaction
mixture, p(0) = p0 = 0:

dp

dt
= k2 (s0 − s − p) and

ds

dt
= − k1 s · (e0 − s0 + s + p) + h1 (s0 − s − p) .

(4.12)

Results from computer integration of equation (4.12) are shown in figure 4.1.
The Michaelis-Menten constant is obtained straightforwardly from the sub-
strate concentration s at half-maximal reaction rate vmax/2. It is also worth
noticing how small the differences between s and s0 are in this particular
case.

The most important results of the Michaelis-Menten analysis of enzyme
catalyzed reactions are: (i) A small value of the Michaelis-Menten constant
KM means that the enzyme reaches its maximal turnover already at small
substrate concentrations, (ii) a large value of KM implies the opposite – the
maximal reaction rate is achieved only at high substrate concentrations, and
(iii) the Michaelis-Menten constantKM is proportional to the sum h1+k2 and
therefore largeKM does not necessarily imply a high catalytic rate parameter
k2 = kcat, it can also indicate weak binding of the substrate.
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4.1.3 Reaction network theory

So far we have considered only single step processes of chemical reactions.9

Almost all interesting chemical systems, however, consist of networks of re-
actions that are characterized by a variety of interacting molecular species,
and this leads to dynamical systems of more than one variable, often many
variables, for which analytical solutions are available very rarely only.

In the second half of last century, when chemists and physicists began to
consider kinetic differential equations as dynamical systems and started to
apply qualitative analysis, new questions in addition to forward and inverse
problems became relevant. The new questions are concerned with general
properties of reaction networks, for example, to prove (i) whether or not a
network can sustain multiple steady states in the positive orthant of con-
centration space, (ii) whether or not undamped oscillations resulting from
a stable limit cycle are possible or (iii) whether of not a specific reaction
network can display deterministic chaos. A general recent technique that can
be applied for finding answers to these questions consists in the inversion of
qualitative analysis [188, 187]: Inverse bifurcation analysis aims at an explo-
ration of the domains in parameter space that give rise to certain forms of
complex dynamics.

A formal deterministic theory of chemical reaction networks has been de-
veloped already in the nineteen seventieth by Fritz Horn, Roy Jackson, and
Martin Feinberg [69, 134] in order to complement conventional chemical ki-
netics by tools that allow for the derivation of general results for entire classes
of reaction networks. The theoretical approach became really popular only
recently when chemical reaction kinetics has been applied in systems biology
and it was realized that stochastic modeling of extended chemical reaction
networks is required for any deeper understanding of regulation and control
of cellular dynamics and cellular metabolism [37, 114]. Before we consider
modeling of stochastic chemical reaction networks (SCRNs) in section 4.7 we
present a brief introduction to the Feinberg-Horn-Jackson-theory, which al-
lows for straightforward answers to other wise difficult to predict properties of
chemical reaction networks, for example, the nonexistence of multiple steady
states or the absence of oscillating concentrations in reaction networks. The
theory is not aiming at deducing the properties of networks for given sets
of rate parameters but derives tools for studying features of whole classes of
networks irrespectively of the particular choice of parameters.

9 Two trivial exceptions were the influx and outflux of a compound A in the flow
reactor and the reversible reaction A⇋B. In both cases, however, we were dealing
with a single stochastic variable counting the numbers of molecules A.
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Fig. 4.2 Stoichiometric subspace and compatibility class. The figure on the
r.h.s. sketches the stoichiometric subspace, S = spanj{sj}, of the irreversible reaction

A+B→ C. The concentration space X = {a, b, c} ∈ R3 is three dimensional, two inde-
pendent conservation relations, a(t) = a0+c0−c(t) and b(t) = b0+c0−c(t), introduce
linear dependencies and hence the stoichiometric subspace is one-dimensional. The
stoichiometric compatibility class is formed by adding a constant vector c ∈ RM ,
for example the initial conditions x0 = (a0, b0, c0) to the stoichiometric subspace:
x0 + S. The two initial conditions applied here are: x0 = (a0, b0 = a0, 0) and
x0 = (a0, b0 < a0, 0).

4.1.3.1 Formal stoichiometry

For the forthcoming discussions it is of advantage to formalize the concept
of stoichiometry by means of linear algebra. For this goal we assume a set
of M chemical species S = {S1,S2, . . . ,SM}, which are interconverted by
K chemical reactions, R1,R2 . . . ,RK . It is useful to define a row vector of

species:
−→
S = (S1,S2, . . . ,SM ). Each individual chemical reaction Rj

M∑

i=1

νij Si →
M∑

i=1

ν′ij Si (4.13)

is characterized by two column vectors containing the stoichiometric coef-

ficients νj =
(
ν1j , ν2j , . . . , νMj

)t
and ν ′

j =
(
ν′1j , ν

′
2j , . . . , ν

′
Mj

)t
of reactants

and products, respectively.10 Now we can write the stoichiometric equation
of reaction Rj (4.13) in compact form

10 We introduce here temporarily primed stoichiometric coefficients for reaction prod-
ucts.
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Rj :
−→
S · νj →

−→
S · ν ′

j and
−→
S · (ν ′

j − νj) =
−→
S · sj . (4.13’)

The linear combination of species as defined by the stoichiometry of a chem-

ical reaction is called a reaction complex (section 4.1.3.2):11 Cj =
−→
S · νj or

Cj′ =
−→
S ·ν ′

j being the reactant complex and the product complex of reaction
Rj , respectively. The stoichiometric coefficients of all N complexes appearing
in a chemical reaction network together form theM ×N matrix of complexes

C =
(−→

S · ν1

−→
S · ν2 . . .

−→
S · νN

)
.

As indicated already in equation (4.13’) we combine the stoichiometric vec-
tors belonging to the reactants and the products of the same reaction whereby
we count reactant coefficients as being negative in order to provide a measure
of the change introduced by the reaction. The stoichiometry of the entire re-
action network is properly encapsulated in theM ×K stoichiometric matrix :

S = (s1, s2, . . . , sK) = {sij ; i = 1, . . . ,M ; j = 1, . . . ,K} (4.14)

The stoichiometric matrix allows for a compact written form of the kinetic
differential equations and their solutions

dx(t)

dt
= S · v and x(t) − x0 =

K∑

j=1

(∫ t

0

vj
(
x(τ)

)
dτ

)
sj , (4.15)

where v =
(
v1
(
x(t)

)
, v2
(
x(t)

)
, . . . , vK

(
x(t)

))t
is the vector of reaction rates,

here mass action rates κma according to equation (4.4), the variables are
concentrations described by a vector x(t) =

(
x1(t), x2(t), . . . , xM (t)

)
∈ RM ,

and x0 =
(
x1(0), x2(0), . . . , xM (0)

)
are the initial conditions.

A number of restrictions apply to chemical kinetics: (i) concentrations are
positive real numbers, xj(t) ∈ R>0 ∀ j = 1, . . . ,M ,12 (ii) the solutions have
to fulfil the stoichiometric relations for all reactions Rj ( j = 1, . . . ,K) and
this is encapsulated in the restriction to stoichiometric compatibility classes .
We define the stoichiometric subspace of a reaction system by

S = span{sj | j = 1, . . . ,K} ⊂ RM and R := dim(S) . (4.16)

11 The notion of reaction complex needs affirmation, since it is different from an asso-
ciation complex like the enzyme-substrate complex in the Michaelis-Menten reaction:
A reaction complex is a combination of molecules in the correct stoichiometric ratio
as it appears at the reactant side or at the product side of a stoichiometric equation.
12 In chemistry concentrations of molecular species are commonly required to be
positive quantities, whereas extinction corresponding to concentration zero is often
an important issue than positive has to be replaced by nonnegative, R>0 → R≥0.
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The stoichiometric compatibility class contains the stoichiometric subspace
shifted by some constant vector, c+S, and we restrict the variables to positive
values of the concentrations is of the form

D = (c + span{sj | j = 1, . . . ,K}) ∩ RM>0 = (c + S) ∩ RM>0 . (4.17)

Figure 4.2 shows a simple example of a one-dimensional compatibility call
embedded in a three-dimensional concentration space. Since the linear span
is built from all reaction vectors sj , linear dependencies will occur in most
cases. The number of independent vectors in spanj(sj), the dimension or
the rank R of the stoichiometric subspace, is the number of independent
concentration variables or the number of degrees of freedom in the kinetic
reaction system. For small systems, like the examples in section 4.1.3.4, it
is useful and illustrative to reduce the degrees of freedom by means of easy
to find conservation relations, but for larger system with several hundred
variables and more, a stable numerical procedure is commonly to be preferred:
The rank R of the stochastic matrix represents the number of degrees of
freedom of the kinetic system and is computed straightforwardly by routine
software.

4.1.3.2 Chemical reaction networks

The notion of a chemical reaction network stands in the center of the reaction
network theory. Each network consists of three commonly finite sets of objects

(i) a set of M molecular species, S = {S1,S2, . . . ,SM}, which interact
through a finite number of chemical reactions,

(ii) a set of N complexes, C = {C1,C2, . . . ,CN}, which are linear combina-

tions of species, Cj =
∑M

i=1 νijSi with νij ∈ N>0, and
(iii) a set of K molecular reactions, R = {R1,R2, . . . ,RK}, with R ⊂ C×C

in the sense of individual elements being directed combinations of two
complexes, (CR,CP) ∈ R is written as CR → CP where R and P stand
for reactants or products , respectively.

Restrictions are imposed on the sets S and C: Each element of S has to
be found in at least one reaction complex or, in other words, there are no
superfluous species. Condition (iii) is supplemented by two exclusions: No
complex may react into itself, CR 6= CP, and isolated complexes are not
allowed, in the sense that every element of C must be the reactant or the
product complex of some reaction. It is worth reminding that a reversible
reaction (see e.g. section 4.3.2.2) is represented by two reactions: CR → CP

and CP → CR.
The mentioned restriction can be cast in a somewhat different form that

is presented here for making the definitions clearer. Complexes and species
are related through
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(a) C ⊂ RS where RS stands for a vector space spanned by unit vectors repre-
senting individual species. Commonly, the coefficients in the linear com-
binations of species called complexes are natural numbers, sij ∈ N> 0,

(b)
⋃

supp, Cj∈C
Cj = S the union of the species in all complexes is the species

set and no species can exist in S, which does not appear in at least one
complex.13

Species Si and reactions Rj are directly related by the stoichiometric matrix
S = {sij}. The columns of S refer to reactions and the rows to species. We
shall make use of S also in section 4.7 for the implementation of a simulation
tool for chemical master equations.

The fourth components of a reaction system is the kinetics of the reac-
tions, K. Mass action kinetics (κma) has been discussed in section 4.1.1 and
Michaelis-Menten kinetics (κMM) as an example of higher-level kinetics in
section 4.1.2. In the majority of the examples discussed here mass action we
be applied. We repeat the basic equation (4.3) for reaction Rj :

s1j S1 + s2j S2 + . . . =⇒ vj = kj [S1]
s1j · [S2]

s2j · · · . (4.18)

In mass action kinetics κma we need one reaction parameter kj for every
elementary step and hence the number of rate parameters is equal to R,
the number of reactions. Eventually, a reaction system consists of the four
components {S, C,R,K} and the evolution in time of the reaction system can
be encapsulated in an ODE or in a master equation in case of a stochastic
description.

4.1.3.3 Reaction graphs

Some general properties of reaction networks can be predicted directly from
the reaction graph (figure 4.3), which is a directed graph with complexes,
Ck ∈ C , (k = 1, . . . , N), being the nodes and three symbols indicating forward
(→), backward (←) and reversible reaction (⇋) for the edges. A reaction
graph may have several components called linkage classes . Two properties
are important for reaction graphs: (i) A complex appears only once as a node
of the graph and (ii) different linkage classes to not share complexes.

The network in figure 4.3 has two linkage classes since the two clusters
don’t share a single complex. The information on the number of complexes
and the number of linkage classes is contained in the reaction graph. The
same is true for the classification of a network as reversible, weak reversible or
not reversible. A (strongly) reversible network contains exclusively reversible
reactions in the strict thermodynamic sense. Weak reversibility relaxes the
condition of (strong) reversibility: A network is weakly reversible when for

13 The notion ’supp’ stands for the support of a vector which is the subset of unit
vectors for which the vector has nonzero coefficients.
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A B2

A C                              D+

B E+

k2

k3k4

k1

h2

h1

C1 C2

C3 C4

C5

Fig. 4.3 The graph corresponding to the chemical reaction network (4.21a).
Each node of the graph (l.h.s.) corresponds to a reaction complex, three different
symbols characterize the directed edges: →, ←, and ⇋ for forward, backward, and
reversible reaction, respectively. This graph consists of L = 2 linkage classes. On the
r.h.s. we show the Feinberg mechanism, which is an implementation of the reaction
graph on the l.h.s. The mechanism differs from the graph by additional information:
(i) the molecular realization of the reaction complexes and the rate parameters.

every pair of complexes there exist a directed arc leading from one complex to
the other. The network in figure 4.3 fulfils the condition of weak reversibility,
it would be (strongly) reversible if it would be complemented by the arrows
C3 → C5 and C5 → C4. For the determination of linkage classes only the exis-
tence or absence of arrows between complexes matters. Clearly, the direction
of arrows is is required too for the classification of reversibility.

A reaction graph differs from a reaction mechanism in three aspects: The
reaction complexes are not defined in terms of chemical compounds and there-
fore the reaction graph does not consider stoichiometry, it does not specify
the algebraic relations of reaction rates in the form of mass action, Michaelis-
Menten or other kinetic functions, and it does not contain weighting factors of
edges in the sense of rate parameters. The reaction graph represents nothing
more than the topology of a reaction network and general properties derived
from the graph are valid for a large number of concrete cases irrespective of
stoichiometries, kinetic functions, and rate constants.

4.1.3.4 Examples

We illustrate chemical reaction network theory by means of examples.

The irreversible addition reaction: A + B → C. The first example is the
irreversible addition reaction (4.1f):

A + B
k

−−−−→ C . (4.19a)

For the three sets of the chemical reaction network we have
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S = {A,B,C} , (4.19c)

C = {C1 = A + B,C2 = C} , and (4.19d)

R = {R1 = C1 → C2} . (4.19e)

The stoichiometric matrix S is of dimension 3× 1:

S =



−1
−1
+1


 . (4.19f)

In deterministic mass action kinetics, κma, the variables are the concentra-
tions of the molecular species, [A] = a(t), [B] = b(t), and [C] = c(t). In
order to solve the kinetic differential equation we require a rate parameters
k and three initial conditions a(0) = a0, b(0) = b0, and c(0) = c0. The
three variables are stoichiometrically related by two conservation relations
derived from equation (4.19a), which can be used to eliminate two variables,
b(t) and c(t) for example, yielding the remaining single degree of freedom as
da
dt = db

dt = −dc
dt corresponding to R = 1 (see figure 4.2):

a(t) + c(t) = a0 + c0 = ϑ
(ac)
0 ,

b(t) + c(t) = b0 + c0 = ϑ
(bc)
0 , and

b(t) − a(t) = b0 − a0 = ϑ
(b)
0 .

One out of these three conditions is dependent, since the second line minus
the first line yields the third line. Eventually one finds:

da

dt
= − k a b = − k a (ϑ(b)0 − a) . (4.19g)

The ODE is solved by standard techniques and we obtain the solutions

a(t) =
a0 ϑ

(b)
0 exp(−ϑ(b)0 kt)

ϑ0 + a0
(
1− exp(−ϑ(b)0 kt)

) for ϑ
(b)
0 > 0 , b0 > a0 ,

a(t) =
a0 |ϑ(b)0 |

a0 − (a0 − |ϑ(b)0 |)
(
1− exp(−|ϑ(b)0 | kt)

)

for ϑ
(b)
0 < 0 , b0 < a0 , and

a(t) =
a0

1 + a0 kt
for ϑ

(b)
0 = 0 , b0 = a0 .

(4.19h)
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by direct integration. The three cases differ in the long-time behavior:

limt→∞ a(t) = 0 for ϑ
(b)
0 ≥ 0, b0 > a0 and limt→∞ a(t) = b0− a0 for ϑ

(b)
0 < 0,

b0 > a0.

The reversible bimolecular conversion reaction: A + B→ C + D. The second
case simply consists of a reversible bimolecular conversion reaction that is
decomposed into two elementary reactions of type (4.1i):

A + B
k

−−−−→ C + D and (4.20a)

C + D
h

−−−−→ A + B . (4.20b)

For the three sets of the chemical reaction network we have

S = {A,B,C,D} , (4.20c)

C = {C1 = A + B,C2 = C + D} , and (4.20d)

R = {R1 = C1 → C2,R2 = C2 → C1} . (4.20e)

The stoichiometric matrix S is of dimension 4× 2:

S =




−1 +1

−1 +1

+1 −1
+1 −1


 . (4.20f)

In deterministic mass action kinetics, κma, the variables are the concen-
trations of the molecular species, [A] = a(t), [B] = b(t), [C] = c(t), and
[D] = d(t). In order to solve the kinetic differential equation we require two
rate parameters, k and h, and four initial conditions: a(0) = a0, b(0) = b0,
c(0) = c0, and d(0) = d0. The four variables are stoichiometrically related by
three conservation relations in (4.20a) and (4.20b)

a(t) + b(t) + c(t) + d(t) = a0 + b0 + c0 + d0 ,

a(t) − b(t) = a0 − b0 , and

c(t) − d(t) = c0 − d0 ,

and only one degree of freedom – corresponding to the rank R = 1 of the
stoichiometric matrix – remains: da/ dt = db/ dt = −dc/ dt = −dd/ dt. Ac-
cordingly, we can substitute b(t) = b0 − a0 + a(t), c(t) = c0 + a0 − a(t), and
d(t) = d0 + a0 − a(t) and the ODE for the last remaining variable a(t) takes
on the form:

da

dt
= − k a b + h c d = − k a (ϑ

(b)
0 + a) + h (ϑ

(c)
0 − a)(ϑ

(d)
0 − a) =

= (h− k) a2 − (kϑ
(b)
0 + hϑ

(c)
0 + hϑ

(d)
0 )a + hϑ

(c)
0 ϑ

(d)
0 ,

(4.20g)
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where the initial conditions are contained in the quantities ϑ
(b)
0 = b0 − a0,

ϑ
(c)
0 = c0 + a0, and ϑ

(d)
0 = d0 + a0.

Equation (4.20g) can be integrated by standard methods to yield an im-
plicit solution of the form t = f(a) but the expression is so clumsy that we
dispense here from listing it. The analytical solution for the irreversible for-
ward reaction are identical with the solutions of the addition reaction (4.19h)
treated in the previous example, since the kinetic ODEs of an irreversible re-
action do not depend on the concentrations on the product side. Clearly, the
expressions are also valid for the irreversible backward reaction by replacing
a↔ c, b↔ d, and k↔ h.

The Feinberg mechanism shown in figure 4.3. Our third example is taken
directly from Martin Feinberg [69, 71] and deals with six elementary reactions
involving five chemical species in the following mechanism:

A
k1

−−−−→ 2B ,

2B
h1

−−−−→ A ,

A + C
k2

−−−−→ D ,

D
h2

−−−−→ A + C ,

D
k3

−−−−→ B + E, and

B + E
k4

−−−−→ A + C .

(4.21a)

The three sets defining the chemical reaction network are:

S = {A,B,C,D,E} , (4.21c)

C = {C1 = A,C2 = 2B,C3 = A + C,C4 = D,C5 = B + E} , and (4.21d)

R = {R1 = C1 → C2,R2 = C2 → C1,R3 = C3 → C4,

R4 = C4 → C3,R5 = C4 → C5,R6 = C5 → C3} . (4.21e)

The stoichiometric matrix S for the mechanism (4.21a) is readily obtained:

S =




−1 +1 −1 +1 +1 0

+2 −2 0 0 −1 +1

0 0 −1 +1 +1 0

0 0 +1 −1 0 −1
0 0 0 0 −1 +1




, (4.21f)
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it has the dimension 5 × 6 and its rank is R = 3. The reaction graph corre-
sponding to this mechanism is found in figure 4.3. The comparison of both
graphs is a nice illustration of one already mentioned property of reaction
graphs: The graph visualizes only the interconversions between reaction com-
plexes and contains no information about the molecular realization of the ki-
netic reaction network, whereas the graphical representation of the reaction
network in contains the full information except the specific initial conditions.
Analytical solutions for the reaction network (4.21a) are not available but
numerical integration for given initial conditions is easily achieved. Some
qualitative properties will be derived in the next two sections (4.1.3.5) and
(4.1.3.6).

4.1.3.5 Definition of deficiency

First, the basic definitions reaction of chemical reaction network theory are
repeated and we point out how the relevant properties are obtained:

(i) a linkage class is a subset of complexes that are linked be reactions
and the number of linkage classes is denoted by L,

(ii) a reaction network is weakly reversible if and only if a directed arc
leads from every complex to every complex of the network,

(iii) the reaction vectors combine reactants and products in the stoichio-

metric way, ~R = −CR + CP, and
(iv) the rank of a reaction network, R is the largest linearly independent

set that can be found among its reaction vectors.

The linkage classes of a reaction network are obtained straightforwardly:
Each complex is displayed exactly once in the sketch of the network, the
complexes are joined by introducing the reaction arrows into the sketch, and
linkage classes comprise all complexes joined together. The network in fig-
ure 4.3, for example, has L = 2 linkage classes.

Strong and weak reversibility are directly seen in the reaction graph: In a
strongly reversible network all reactions R ∈ R are reversible,

(Cj → Ck ∈ R) =⇒ (Ck → Cj ∈ R) ∀ (Cj ,Ck) ∈ C . (4.22)

Weak reversibility relaxes the condition for strong reversibility in the sense
that it is sufficient to be able to reach every species from every species by a
sequence of reactions. The network in figure 4.3 is weakly reversible.

The rank of a chemical reaction network is defined as

R := rank{CP − CR ∈ RS : CR → CP ∈ R} . (4.23)
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We illustrate by means of a simple example: The six reaction vectors of the
network (4.21a),

{2B − A,A− 2B,D− (A + C), (A + C)− D, (B + E)− D, (A + C)− (B + E)},

can be contracted to the linearly independent subset of dimension three

{2B − A, (A + C)− D, (B + E)− D} .

Although the network (4.21a) consists of six reactions, only three of them are
linearly independent and accordingly it has rank R = 3. It is straightforward
to see that every reversible reaction consists of two reactions but only one of
them can be linearly independent. The determination of the rank R in small
systems is properly done by means of the conservation relations but for larger
systems a computation of the rank of the stochastic variables is usually much
faster.

The most important quantity of reaction network theory is the deficiency

of a reaction system, which is defined in the following equation:

Deficiency δ := N − L − R , (4.24)

with N being the number of complexes, L the number of linkage classes,
and R the number of degrees of freedom or the rank of the reaction
kinetics.

The deficiency of a chemical reaction network is a nonnegative quantity [70]
and it determines essential features of the reaction system like the existence
of unique equilibria and stationary states.
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4.1.3.6 The deficiency zero theorem

The deficiency zero theorem holds for all chemical reaction networks {S, C,R}
of deficiency zero and makes three statements [70]:

(i) If the network is not weakly reversible then the ODEs for the reac-
tion system {S, C,R,K} with any arbitrary kinetics K cannot admit
a positive equilibrium, i.e., a stationary point in RM+ ,

(ii) if the network is not weakly reversible then the ODEs for the reac-
tion system {S, C,R,K} with any arbitrary kinetics K cannot admit
a cyclic trajectory containing a positive composition, i.e., a point in
RM+ , and

(iii) if the network is weakly reversible (or reversible) then, for any
mass action kinetics κ ∈ RR+, the ODEs for the mass action sys-
tem {S, C,R, κ} have the following properties: Within each positive
stoichiometric compatibility class there exists exactly one equilib-
rium, this equilibrium is asymptotically stable, and there cannot
exist a nontrivial cyclic trajectory in RM+ .

The third property is a highly important extension of equilibrium thermody-
namics because existence and uniqueness of a stable equilibrium in the interior
of the positive orthant of concentration space is extended from strictly re-
versible to weakly reversible systems, from closed systems to closed and open
systems of deficiency zero. It is worth stressing again that the statements
hold for arbitrary finite dimensions of the reaction system irrespectively of
the particular choice of rate parameters – provided they are nonnegative.

4.1.3.7 The deficiency one theorem

The results of the deficiency zero theorem hold for a much wider class of net-
works than those with deficiency zero. The extension of the range of validity
is encapsulated in the deficiency one theorem. For the formulation of the the-
orem it is important to extend the notion of deficiency to individual linkage
classes, which are denoted as L = {L1,L2, . . . ,LL}. The number of complexes
in linkage class Lj is denoted by Nj and since a complex can appear only in

one linkage class we have
∑L
j=1Nj = N . The number of independent degrees

of freedom of the ODE or the rank of a linkage class Lj is denoted by Rj ,

Rj := rank{CP − CR ∈ RS : CR → CP ∈ R ∧ CR ∈ Lj}

and we define:
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Deficiency of class Lj : δj = Nj − 1 − Rj . (4.25)

The class deficiency δj is a nonnegative integer like δ. The ranks of the

subsystems need not be additive but they fulfil
∑L

j=1 Rj ≥ R and this yields
for the deficiency of the total network

δ ≥
L∑

j=1

δj = N − L −
L∑

j=1

Rj . (4.24’)

It is illustrative to consider zero deficiency networks because they are precisely
those networks that fulfil both of the conditions:

δj = 0 ∀ j = 1, 2, . . . , L , and δ =
∑L

j=1 δj = 0.

Now are in a position to introduce the deficiency one theorem [70].

Let {S, C,R} be a reaction network with L linkage classes, let δ = N −
L−R denote the deficiency of the network, δj = Nj−1−Rj; j = 1, . . . , L
denote the deficiencies of the individual linkage classes, and assume that
the two following conditions are fulfilled:

δj ≤ 1 ∀ j = 1, 2, . . . , L , and δ =
∑L

j=1 δj (= 0).

If the network is weakly reversible, in particular if it is strongly re-
versible, then for any mass action kinetics κ ∈ R> 0R the ODEs for
the mass action system {S, C,R, κ} sustains precisely one equilibrium
in each positive stoichiometric compatibility class.

Thus deficiency one theorem is a powerful tool for the recognition of re-
action system lacking multiple stationary states. In later works the existence
of multiple stationary states came in focus [43, 72] and these studies make a
bridge between applications in chemistry and in biology. We shall come back
to reaction systems with multiple steady states and complex dynamics in the
next chapter 5.
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4.2 Stochasticity in chemical reactions

Provided particle numbers are assigned to the variables describing the progress
of chemical reactions, the stochastic variable N (t) with the probability
Pn(t) = P (N (t) = n) can take only nonnegative integer values, n ∈ N0.
In addition we introduce a few simplifications and some conventions in our
notation. We shall use the forward equation unless stated differently and as-
sume an infinitely sharp initial density: P (n, 0|n0, 0) = δn,n0 with n0 = n(0).
Then, we can simplify the full notation by P (n, t|n0, 0) ⇒ Pn(t) with the
implicit assumption of the initial condition specified above. Other sharp ini-
tial values or for initial extended probability densities will be given explicitly.
In addition the notation Pn(t) implies already that t is a continuous variable
whereas n is discrete. The expectation value of the stochastic variable N (t)
will be denoted by

E
(
N (t)

)
= 〈n(t)〉 =

∞∑

n=0

n · Pn(t) . (4.26)

Its stationary value, provided it exists, will be expressed as

n̄ = lim
t→∞

〈n(t)〉 . (4.27)

Almost always the stationary expectation value n̄ will be identical with the
long time value of the corresponding deterministic variable. The running in-
dex of integers will be denoted by m.14

4.2.1 The chemical master equation

The chemical master equation is of the form

∂Pn(t)

∂t
=
∑

m

(
W (n|m, t)Pm(t) − W (m|n, t)Pn(t)

)
. (4.28)

We have accounted here for the fact that transition probabilities may be time
dependent in certain cases. Most frequently we shall assume, however, that
they are not and useW (n|m). The probabilitiesW (n|m, t) can be understood
as the elements of a transition matrix W := {Wnm;n,m ∈ N0}. Diagonal
elements Wnn cancel in the master equation (4.28) and hence, in principle,
need not be defined. According to their nature as transition probabilities,
all Wnm with n 6= m have to be nonnegative. Two definitions of diagonal
elements are nevertheless common (i) normalization

14 In cases were more than one running index are required we shall use n′, m′, etc.
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Wnn = 1 −
∑

m 6=n
Wmn with

∑

m

Wmn = 1

as used for example in the mutation selection problem [55], or (ii) annihi-
lation, where the definition

∑
mWmn = 0 is used, which implies Wnn =

−∑m 6=nWmn and then insertion into (4.28) leads to a compact form of the
master equation master equation

∂Pn(t)

∂t
=
∑

m

WnmPm(t) . (4.28’)

Introducing vector notation, P(t)
′
= (P1(t), . . . , Pn(t), . . .), we obtain

∂P(t)

∂t
= W ×P(t) . (4.28”)

With the initial condition Pn(0) = δn,n0 stated above we can solve equa-
tion (4.28”) in formal terms for each n0 by applying linear algebra and obtain

P (n, t|n0, 0) =
(
exp(W t)

)
n,n0

,

where the element (n, n0) of the matrix exp(Wt) is the probability to have n
particles at time t, N (t) = n, when there were n0 particles at time t0 = 0.
The evaluation of this equation boils down to diagonalize the matrix W which
can be done analytically in rather few low-dimensional cases only.

For the forthcoming considerations of stochastic processes it is often con-
venient to express changes in particle numbers in terms of the so-called jump

moments

αp(n) =
∞∑

m=0

(m− n)pW (m|n) ; p = 1, 2, . . . . (4.29)

The usefulness of the first two jump moments (p = 1, 2) is easily demon-
strated: We multiply equation (4.28) by n and obtain through summation:

d

dt
〈n〉 =

∞∑

n=0

∞∑

m=0

(
mW (n|m)Pm(t) − nW (m|n)Pn(t)

)
=

=

∞∑

n=0

∞∑

m=0

(m− n)W (m|n)Pn(t) = 〈α 1(n)〉 .

Only in case α 1(n) is a linear function of n, formation of moment and expec-
tation value may be interchanged and we have the simple equation

d

dt
〈n〉 = α 1(〈n〉) .
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Otherwise this is only a zeroth order approximation which can be improved
through expansion of α 1(n) in (n−〈n〉). Break off after the second derivative
yields

d

dt
〈n〉 = α 1(〈n〉) +

1

2
σ 2
n

d2

dn2
α 1(〈n〉) . (4.29’)

In order to obtain a consistent approximation one may apply a similar ap-
proximation to the time development of the variance and finds [286]:

d

dt
σ 2
n = α 2(〈n〉) + 2 σ 2

n

d

dn
α 1(〈n〉) . (4.29”)

These expressions will be simplified in case of the forthcoming examples. We
proceed now by discussing first some important special cases where exact
solutions are derivable and then present a general and systematic approx-
imation scheme which allows to solve the master equation for sufficiently
large systems [93, 286]. This scheme is based on a power series expansion
in some extensive physical parameter Ω, for example the size of the system
or the total number of particles. It will turn out that Ω−1/2 is the appro-
priate quantity for the expansion and thus the approximation is based on
the smallness of fluctuations. This implies that we shall encounter the limits
of reliability of the technique at small population sizes or in situations of
self-enhancing fluctuations, for example at instabilities or phase transitions.

Eventually, we consider the stochastic description of our previous exam-
ple (4.20). The four random variables are NA(t), NB(t), NC(t), and ND(t),
but only one variable is independent, and we choose againNA(t) with Pn(t) =
P (NA = n). In order to simplify the initial conditions by assuming that only
A and B are present at time t = 0 and they have sharp values: n0 molecules
A, Pn(0) = δn,n0 , and b0 molecules B, P

(
NB(0) = b

)
= δb,b0 , and we have

NB(t) = ϑ0 + NA(t) with ϑ0 = b0 − n0, and NC(t) = ND(t) = n0 − NA(t).
Under these conditions the master equation becomes

∂Pn(t)

∂t
= k (n+ 1)(ϑ0 + n+ 1)Pn+1(t) + h (n0 − n+ 1)2 Pn−1−

−
(

k n (ϑ0 + n+ 1) + h (n0 − n)2
)

Pn(t) .

(4.30)

The master equation for the irreversible reaction (4.20a) has been solved and
will be discussed in section 4.3.3.1, the full reversible reaction is rather very
hard to solve and we dispense from further analysis because size expansion
and numerical simulation are to be preferred for practical purposes.

The chemical master equation has been shown to be based on a rigor-
ous microscopic concept of chemical reactions in the vapor phase within the
frame of classical collision theory [104]. The two general requirements that
have to be fulfilled are: (i) a homogeneous mixture as it is assumed to exits
through well stirring and (ii) thermal equilibrium implying that the veloci-
ties of molecules follow a Maxwell-Boltzmann distribution. Daniel Gillespie’s
approach focusses on chemical reactions rather than molecular species and
is well suited to handle reaction networks. In addition the algorithm can be
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easily implemented for computer simulation. We shall discuss the Gillespie
formalism together with the computer program in section 4.7.

The macroscopic rate equations are readily derived from the master equa-
tion through computation of the expectation value:

∂

∂t
E
(
n(t)

)
=

∂

∂t

( ∞∑

n=0

nPn(t)

)
=

=

∞∑

n=0

n
(
w+
n−1 Pn−1(t) − w+

n Pn(t)
)
+

+
∞∑

n=0

n
(
w−
n+1 Pn+1(t) − w−

n )Pn(t)
)

=

=

∞∑

n=0

(
(n+ 1)w+

n − nw+
n + (n− 1)w−

n − nw−(n)
)
Pn(t) =

=

∞∑

n=0

w+
n Pn(t) −

∞∑

n=0

w−
n Pn(t) = E

(
w+
n

)
− E

(
w−
n

)
.

Neglect of fluctuations yields the deterministic rate equation of the birth-
and-death process

d〈n〉
dt

= w+
〈n〉 − w−

〈n〉 . (4.31)

From the condition of stationary n̄ = limt→∞ 〈n(t)〉 we derive w+
n̄ = w−

n̄ .
Compared to this results we note that the maximum value of the stationary
probability density, max{P̄n, n ∈ N0}, is defined by P̄n+1 − P̄n ≈ −(P̄n −
P̄n−1) or P̄n+1 ≈ P̄n−1, which coincide with the deterministic value for large
n.

4.2.2 Conventional and probabilistic rate parameters

The formulation of a chemical master equation for a population variable X (t)
requires knowledge of some probabilistic features of chemical reactions. In
particular we need expressions for the probabilities π(t, dt) that a reactant
molecule or a combination of reactant molecules for reaction R randomly
selected at time t will react to yield products within the next infinitesimal
time interval [t, t+ dt[. Under two assumptions, (i) spatial homogeneity as-
sumed to be achieved by fast mixing, and (ii) thermal equilibrium, virtually
all chemical reactions fulfil the condition

π(t, dt) = γ dt , (4.32)
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v v v= B A-

r rA B+

|v| dt = v dt

(S , )A Ar

Fig. 4.4 Sketch of a molecular collision in dilute gases. A spherical molecule
SA with radius rA moves with a velocity v = vB− vA relative to a spherical molecule
SB with radius rB. The upper part of the figure shows the geometry of a typical
elastic collision, for which linear angular momentum, p = m · v, and kinetic energy
Ekin = m · v2/2 are conserved: pB + pA = p′

A + p′
B and mA · |vA|2 + mB · |vB|2 =

mA · |v′
A|2+mA · |v′

B|2. The lower part of the figure shows the geometry of the collision
as seen within the coordinate system of one collision partner. If the two molecules
are to collide within the next infinitesimal time interval dt, the center of SB has to
lie inside a cylinder of radius r = rA + rB and height |v|dt = v dt. The upper and
lower surface of the cylinder are deformed into identically oriented hemispheres of
radius r and therefore the volume of the deformed cylinder is identical with that of
the non-deformed one.

where the reaction specific probabilistic rate parameter15 γ is independent
of t, and then π is simply proportional to dt. The two basic conditions (i)
and (ii) are fulfilled likewise for chemical reactions in the vapor phase and in
dilute aqueous solutions.

In contrast to most other probabilistic concepts the rate parameters of
chemical kinetics, in essence, can be deduced from first principles in quantum
mechanics and therefore we make here a brief excursion into the theory of
reaction rates which dates back to the beginnings of applications of quantum
mechanics to chemistry [68, 172] in order to show how a stochastic treatment
may results from an underlying deterministic concept. Molecules or atoms
have to come together before they can react and molecular collisions play a
key role in the theory of chemical reactions [32] and therefore we begin with
a short account on molecular collisions (For an excellent introduction into
statistical physics of molecular reactions see [16, pp.803-1018]).

15 Thus γ is the probabilistic pendant of the deterministic reaction rate parameter k.
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4.2.2.1 Molecular collisions

Here, we consider first the rate parameter for a general bimolecular reac-
tion by means of classical collision theory (figure4.4, and then extend briefly
to mono- and termolecular reactions. Apart from the quantum mechanical
approach the theory of collisions in dilute gases is the best developed micro-
scopic model for chemical reactions and well suited for the rigorous derivation
of a probabilistic description of chemical reactions from molecular motion and
events in form of a the master equation. First we consider a reaction mix-
ture in the vapor phase for which the Maxwell-Boltzmann theory is valid.
This concept is dealing with molecular motions in gases and centers around
the assumption that molecules are obeying the laws of Newtonian mechanics
and therefore it is also called classical collision theory of chemical reactions.
Molecules change their motions, their internal states, and their natures in
collisions that are classified as elastic, inelastic and reactive, respectively.
In an elastic collision the collision partners exchange linear momentum and
energy related to it, and as a consequences the directions and the absolute
values of the velocities of both collision partners before and after the collision
are different (figure 4.4). In an inelastic collision internal energy, rotational
and/or vibrational and in exceptional cases also electronic energy is trans-
ferred between the reaction partners. Finally, in a reactive collision a chemical
reaction takes place between the reaction partners and the molecular species
are different before and after the collision.

In order to be able to handle the properties of individual molecules, we
must be able to distinguish a molecular species and an individual molecule,
e.g. A and SA. In the latter case knowledge of the detailed molecular state ΛA

is required, for example, SΛA
A with ΛA = (NA, ΣA, nA, JA;mA, rA,vA) where

(NA, ΣA, nA, JA) stands for a complete set of molecular quantum numbers
characterizing electronic and spin state (NA, ΣA), vibrational state (nA), and
rotational state JA) of molecule SA. The mass of the molecule is mA, position
(rA) and velocity coordinates (vA) are commonly measured in a Cartesian
(labor) coordinate system: rA(t) = (xA, yA, zA) and vA(t) =

(
vA
x , v

A
y , v

A
z

)
. In

the spirit of classical mechanics, apart from spontaneous changes in collisions
the position vector is a linear function of time, r(t) = r0+v·t, and the velocity
is constant, v = v0, or in other words the molecules travel on a straight line
with constant speed between collisions. On this basis we can easily identify
the different classes of bimolecular collisions, A+B→, by means of examples
where ‘′’ is used to indicate the state after the collision:

(1) Elastic collisions: SA+SB → SA+SB withmAvA+mBvB = mAv
′
A+mBv

′
B

and 1
2 (mA|vA|2 + mB|vB|2) = 1

2 (mA|v′
A|2 + mB|v′

B|2) corresponding to
conservation of linear momentum and kinetic energy. The set of internal
quantum numbers remains unchanged in both molecules.

(2) Inelastic collisions: SΛA
A + SΛA

B → S
Λ′

A
A + S

Λ′
B

B where the set of quantum
numbers for internal motions has been changed in the collision.
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(3) Reactive collisions: SA + SB → · · · where the two molecules undergo a
chemical reaction in which the nature of at least one molecule is changed.

The correct description of translational motion in a macroscopic reaction
vessel does not require quantum mechanical treatment and hence elastic
collisions are just an exercise in Newtonian mechanics. Internal energy of
molecules is converted into translational energy in inelastic collisions, and a
quantum mechanical approach is needed for detailed modeling. The same is
true for reactive collisions in case one is interested in reactions of molecules in
specific states, otherwise the reaction can described by a mean reaction prob-
ability that averages over a Boltzmann ensemble (for the theory of molecular
collisions see, e.g., [32]).

The two conditions, (i) perfect mixture and (ii) thermal equilibrium, can
now be cast into precise physical meanings. Premise (i), spatial homogeneity,
requires that the probability of finding the center of an arbitrarily chosen
molecule inside a container subregion with a volume ∆V is equal to ∆V/V .
The system is spatially homogeneous on macroscopic scales but it allows
for random fluctuations from homogeneity. Formally, requirement (i) asserts
that the position of a randomly selected molecule is described by a random
variable, which is uniformly distributed over the interior of the container.
Premise (ii), thermal equilibrium, implies that the velocity of a randomly
chosen molecule of mass m will follow a Maxwell-Boltzmann distribution.
The Maxwell-Boltzmann density

fMB(v) dv
3 =

(
m

2πkBT

)3/2

e−mv
2/(2kBT ) dv3 ,

describes the probability that the velocity of the molecule is found to lie
within an infinitesimal region dv3 around the velocity v where the velocity
vector is denoted in Cartesian coordinates by v = (vx, vy, vz), the infinitesi-
mal volume element is given by dv3 = dvx dvy dvz , the square of the velocity
is v2 = v2x + v2y + v2z , and kB is Boltzmann’s constant. Formally it states that
each Cartesian velocity component of a randomly selected molecule of mass
m is represented by a random variable, which is normally distributed with
mean 0 and variance kBT/m:

fMB(vi) dvi =

(
m

2πkBT

)1/2

e−mv
2/(2kBT ) dvi with i = x, y, z . (4.33)

Here, premises (i) and (ii) assert that the distribution of molecular velocities
is isotropic and only a function of mass m and temperature T . Implicitly,
the two conditions guarantee also that the molecular position and velocity
components are all statistically independent of each other. For practical pur-
poses, we expect the two premises to be valid for any dilute gas system at
constant temperature in which nonreactive molecular collisions occur much
more frequently than reactive molecular collisions.
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4.2.2.2 Bimolecular reactions

The occurrence of a bimolecular reaction

SA + SB −−−−→ SC + . . . (4.34)

has to be preceded by an encounter of a molecule SA with a molecule SB,
and first we shall calculate the probability of such a collision in the reaction
volume V . For simplicity molecular species are regarded as spheres with spe-
cific masses and radii, for example mA and rA for SA, and mB and rB for
SB, respectively. A collision occurs whenever rAB, the center-to-center dis-
tance of the two molecules, becomes as small as the sum of the two radii,
(rAB)min = rA + rB. Next we define the probability that a randomly selected
pair of Rµ reactant molecules – µ = (SA,SB) – at time t will collide within
the next infinitesimal time interval [t, t + dt[ by π∗

µ(t, dt) and calculate it
from the Maxwell-Boltzmann distribution of molecular velocities according
to the geometry shown in figure 4.4.

The probability that a randomly selected pair of reactant molecules Rµ,
one molecule SA and one molecule SB, has a relative velocity v̂ = vB − vA
lying in an infinitesimal volume element dv̂3 around v̂ at time t is denoted
by f

(
v̂(t),Rµ

)
and can be readily obtained from kinetic theory of gases:

f
(
v̂(t),Rµ

)
=

(
m̂

2π kBT

)3/2

exp
(
−m̂v̂2/(2kBT )

)
dv̂3 .

Herein v̂ = |v̂| = |vB − vA| =
√
v̂2x + v̂2y + v̂2z is the absolute value of the

relative velocity and m̂ = mAmB/(mA +mB) is the reduced mass of the two
Rµ molecules. Two properties of the probabilities f

(
v̂(t),Rµ

)
for different

velocities v̂ are important:
(i) The elements in the set of all combinations of velocities, {Ev̂(t),Rµ

} are
mutually exclusive, and
(ii) they are collectively exhaustive since v̂ is varied over the entire three
dimensional velocity space,−∞ < (v̂x, v̂y, v̂z) < +∞.
Now we relate the probability f

(
v̂(t),Rµ

)
to a collision event Ecol by calculat-

ing the conditional probability P
(
Ecol(t+dt)|Ev̂(t),Rµ

)
. In figure 4.4 we sketch

the geometry of the collision event between to randomly selected spherical
molecules SA and SB that is assumed to occur with an infinitesimal time in-
terval dt:16 A randomly selected molecule SA moves along the vector v̂ of the
relative velocity vB−vA between SA and an also randomly selected molecule
SB. A collision between the molecules will take place in the interval [t, t+ dt
if and only if the center of molecule SB is inside the spherically distorted
cylinder (figure 4.4) at time t. Thus P

(
Ecol(t+ dt)|Ev̂(t),Rµ

)
is the probabil-

16 The absolute time t comes into play because the positions of the molecules, rA and
rB, and their velocities, vA and vB, depend on t.
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ity that the center of a randomly selected SB molecule moving with velocity
v̂(t) relative to the randomly selected SA molecule will be situated at time t
within a certain subregion of V that has a volume Vcol = v̂ dt · π(rA + rB)

2,
and by scaling with the total volume V we obtain:17

P
(
Ecol(t+ dt)|Ev̂(t),Rµ

)
=

v̂(t) dt · π(rA + rB)
2

V
. (4.35)

By substitution and integration over the entire velocity space we can calculate
the desired probability

π∗
µ(t, dt) =

∫∫∫

v

(
m̂

2π kBT

)3/2

e−m̂v̂
2/(2kBT ) · v̂(t) dt · π(rA + rB)

2

V
dv̂3 .

Evaluation of the integral is straightforward and yields

π∗
µ(t, dt) =

(
8 kBT

πV 2

)1/2
π(rA + rB)

2

√
m̂

dt . (4.36)

The first factor contains only constants and the macroscopic quantities, vol-
ume V and temperature T , whereas the molecular parameters, the radii rA

and rB and the reduced mass m̂ appear in the second factor.
A collision is a necessary but not a sufficient condition for a reaction to take

place and therefore we introduce a collision-conditioned reaction probability

pµ that is the probability that a randomly selected pair of colliding Rµ

reactant molecules will indeed react according to Rµ. By multiplication of
independent probabilities we have

πµ(t, dt) = pµ π
∗
µ(t, dt) ,

and with respect to equation (4.32) we find

γµ = pµ

(
8 kBT

V

)1/2
π(rA + rB)

2

√
m̂

. (4.37)

As said before, it is crucial for the forthcoming analysis that γµ is independent
of dt and this will be the case if and only if reaction probability pµ does not
depend on dt. This is highly plausible for the above given definition, and an
illustrative check through the detailed examination of bimolecular reactions
can be found in [104, pp.413-417].

The results of collision theory for reactive bimolecular encounters can be
summarized in a commonly used form for the probabilistic rate parameter
and its temperature dependence

17 Implicitly in the derivation we made use of the infinitesimally small size of dt. Only
if the distance v̂ dt is vanishingly small, the possibility of collisional interference of a
third molecule can be neglected.
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γµ(T ) = ζ ρ exp

(
− εact
kBT

)
. (4.38)

Equation (4.38) was proposed for the temperature dependence of the deter-
ministic rate parameter already in 1884 by the Swedish physicist and chemist
Svante Arrhenius.18 Herein ζ is the collision frequency as calculated above

ζ = σAB

√
8 kBT

πm̂
with σAB = (rA + rB)

2 π.

The factor ρ is a denoted as steric factor and εact is called the activation
energy of the reaction that is measured here as energy per molecule. Often
particle numbers are used instead of concentrations and this implies multipli-
cation by Avogadro’s number. Then the activation energy, Eact = NL εact, is
commonly given in [kJ/mole] and the gas constant R = NL kB is used instead
of Boltzmann’s constant. The actual number of collisions in the volume V
per time unit is Z = NL V ζ. The exponential temperature dependence of
the rate parameter on temperature is often fulfilled with astonishingly high
accuracy but an interpretation of the steric factor ρ is often unsatisfactory
and therefore some chemists prefer to stay away from any rationalization of
the steric factor and define it simply as the ratio between the pre-exponential
factor and the collision frequency: ρ = A/ζ.

It has to be remarked, however, that the application of classical collision
theory to molecular details of chemical reactions can be an illustrative and
useful heuristic at best, because the molecular domain falls into the realm
of quantum phenomena and any theory that aims at a derivation of reaction
probabilities from first principles has to be built upon a quantum mechanical
basis (section 4.2.2.3).

4.2.2.3 Bimolecular reaction dynamics

For any detailed understanding of chemical reactions knowledge from quan-
tum mechanics mechanics is indispensable and we refer here to the great
variety of text books. Very briefly we sketch the basic idea: In conventional
quantum chemistry the fast motion of electrons is separated from slow mo-
tion of atomic nuclei and the stationary Schrödinger equation of a molecule
or a reaction complex is partitioned into two equations

Hel Ψ
(n)
el = En(R)Ψ

(n)
el with Hel = Tel + V (r,R) , (4.39a)

(
Tnuc + En(R)

)
Ξ(k;n)

nuc = Wk,n Ξ
(k;n)
nuc . (4.39b)

18 Svante Arrhenius used a slightly different form, k = A · exp(−EA/RT ), where A
is the so-called pre-exponential factor.
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Fig. 4.5 Energy surface of the symmetric bimolecular triatomic exchange
reaction SA + SB → SB + SA. The best studied example of such a reaction is the
hydrogen isotope exchange reaction D + HD→ DH +D for which a highly accurate
energy surface is available. The three atoms lie on a straight line. The model surface
plotted here is

E(x, y) = a/x12 − b/x6 + a/y12 − b/y6 + c/(x + y)12.
The upper part of the figure shows a 3D-plot of the energy surface with the reaction
path being recognizable as a steep valley. The lower part presents a contour plot of
this surface. The dotted white line indicates the reaction path. In the steep horizontal
valley at the bottom of the figure the atom is approaching the molecule, then the bond
becomes longer and at the saddle point the two bonds are of equal length. Parameters:
a = 10, b = 8, and c = 1.5 × 105, leading to a bond length of re = 1.165 [l.u.] and a
bond energy of ∆E = −1.6 [e.u.]. At the saddle point the distance is x = y = 1.3856
[l.u.] and the energy amounts to ∆E = −1.1303 [e.u.]. Length and energy are given
in arbitrary units, [l.u.] stands for length unit and [e.u.] for energy unit respectively.
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Herein the positions of all electrons are subsumed in the vector r, and like-
wise the nuclei occupy positions denoted by R. Both equations are partial
differential equations and they are coupled through the energy (hyper)surface
En(R) (see figure 4.5). The Hamilton operator Hel describes the motion of
electrons and consists of the kinetic energy operator of electrons Tel and the
electrostatic potential V (r,R) caused by the electric charges of electrons and
nuclei, En(R) is the n-th eigenvalue of the Schrödinger equation (4.39a), and

Ψ
(n)
el is the corresponding eigenfunction. The separation of electronic and

nuclear motion was introduced into quantum mechanics by Max Born and
Robert Oppenheimer in 1927 [24]. Because of the large difference in mass
between electrons and nuclei – being at least three orders of magnitude –
and the reasonable assumption that linear momenta of electrons and nuclei
are roughly the same because the forces acting on them are identical – actio
equals reactio – we have

M
dR

dt
= P ≈ p = m

dr

dt
with M ≫ m and hence

dR

dt
≪ dr

dt
.

Seen from the fast moving electrons nuclei are practically immobile, the total

wave function can be factorized, Φ(r,R) = Ψ
(n)
el (r) · Ξ(k;n)

nuc (R) or, in other
words, the electrons see the nuclei at fixed positions and the nuclei see the
electrons in form of a potential coming from a time-averaged mean density.
Within the Born-Oppenheimer approximation the connecting piece between
the electron density in the quantum state n and nuclear motion but also
chemical reactions is the energy (hyper)surface En(R). Classical collision
theory (section 4.2.2.2) did not account for energetic aspects of reactions
and the consideration of an energy surface is an appropriate and important
extension. Nuclear motion can be modeled by Newtonian mechanics and the
combination of an energy surface of quantum mechanical origin and classical
dynamics is often addressed as semiclassical collision theory in contrast to
the full quantum mechanical approach based on scattering theory [32].

Roughly a decade after the establishment of quantum mechanics Henry
Eyring proposed a theory of chemical reactions [68] that allows to calculate
reaction rate parameters. This theory also called transition state theory is
still use more than 65 years after its invention and provides the alternative
to the fully empirical reaction probabilities of collision theory [172]. In order
to be activated for the reaction the reaction complex has to be driven up the
reaction coordinate (ρ) through energy transfer from other degrees of free-
dom until the local maximum called transition state is reached (figure 4.6).
Then the reaction complex travel down the product valley and looses energy
through transfer to other degrees of freedom. The transition state is symbol-
ized by double-dagger (‡) and is treated like a molecular entity except one
unstable vibrational mode along the reaction coordinate ρ. Thermodynamics
is applied to calculate the reaction rate parameter for the reaction
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Fig. 4.6 Transition state for the reaction A+BC → AB+C. Reaction dynamics
is visualized as a process along a single coordinate called the reaction coordinate ρ.
The Gibbs free energy of the reaction complex, ∆G(ρ), is plotted against the reaction
coordinate and increases during the the approach of the reactants until it reaches a
(local) maximum denoted as transition state. Then the reaction complex looses free
energy as it goes down the product valley. The example presented is an exergonic
reaction since ∆G0 = ∆Greactants −∆Gproducts < 0
.

A + B
K‡

⇋ [AB]‡
k‡

−−−−→ products

by making a quasi-equilibrium assumption for the transition state:

K‡ =
[AB‡]

[A] · [B]
. (4.40)

The conventional rate parameter is then obtained from k = k‡ ·K‡ and what
remains, is to find an expression for the rate k‡ with which the transition state
is converted into products. The transition state is considered as a molecular
complex with one uncommon degree of freedom consisting of the motion along
the reaction coordinate ̺, which leads to products. All other 3n− 7 or 3n− 6
in case of linear geometries degrees of freedom are handled as in conventional
statistical mechanics and the equilibrium constant for complex formation is
of the form

K‡ =
qAB‡

qA qB
e−∆H

‡
0/RT ,
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wherein the individual partition functions are denoted by q and the enthalpy
difference between the transition state and the reactants is ∆H‡

0 .
19 The re-

maining degree of freedom is responsible for product formation and has the

partition function q
(̺)

AB‡ . No matter whether this mode is interpreted as a de-
generate vibration with a negative harmonic potential or as a translational

degree of freedom we find k‡ · q(̺)AB‡ = kBT/h with h being Planck’s constant
and the final result is the same:

k = k‡ ·K‡ = κ
kBT

h
e∆S

‡
0/R e−∆H

‡
0/RT . (4.41)

By κ we denote an empirical transmission factor measuring the probability
that the vibrating activated complex decomposes into the product valley,
and activation entropy and activation are related to the equilibrium constant
through:

RT ln K‡ = −∆G‡
0 = −∆H‡

0 + T ∆S‡
0 .

Equation (4.41) is Eyring’s formula for the value of the reaction rate pa-
rameter that corresponds to the rate probability γ(SA+SB). The value of the
formula is twofold: (i) It shows how reaction rate parameters can be derived
from first principles, and (ii) it provides a thermodynamic interpretation of

the steric factor ρ by means of an activation entropy ∆S‡
0 . Direct calculations

of rate constants, however, are highly inaccurate since energy surfaces cannot
be obtained with sufficient precision apart from a few special cases like the
H+H2 reaction (figure 4.5).

4.2.2.4 Monomolecular reactions

A monomolecular or unimolecular reaction is of the form A −→ C and de-
scribes the spontaneous conversion

SA −−−−→ SC . (4.42)

One molecule SA is converted spontaneously into one molecule SC. The
monomolecular reaction was first considered to be particularly simple, be-
cause only one type of molecule is involved, but this expectation turned out
to be wrong: Most formally monomolecular reactions follow a bimolecular
rate law at sufficiently low concentrations and have to be distinguished from
true monomolecular conversions. It is worth mentioning also a class of sponta-
neous dissociation reactions of small cluster ions, for example (H3O

+)(H2O)n
or Cl−(H2O)n with n=2-4, where the loss of ligands seems to be initiated by
collisions with the wall of the reaction vessel [241].

19 At constant pressure, for example in solution where the volume change ∆V0 of a
reaction is small, the reaction enthalpy ∆H0 takes on practically the same values as
the reaction energy ∆E0.
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In absence of interaction with an environment the true monomolecular
conversion (4.42) is driven by some quantum mechanical mechanism similar
as in the case of radioactive decay of a nucleus. Time-dependent perturba-
tion theory in quantum mechanics [212, pp.724-739] shows that almost all
weakly perturbed energy-conserving transitions have linear probabilities of
occurrence in time intervals δt, when δt is microscopically large but macro-

scopically small. Therefore, to a good approximation the probability for a
radioactive nucleus to decay within the next infinitesimal time interval dt is
of the form α dt, were α is some time-independent constant. On the basis of
analogy we may expect πµ(t, dt) the probability for a monomolecular con-
version to be approximately of the form γµ dt with γµ being independent of
dt.

The vast majority of apparent monomolecular reactions, however, follow a
different mechanisms and involve a reaction partner in the sense of a catalyzed
bimolecular conversion

SA + SB −−−−→ SC + SB or (4.34’)

SA + SA −−−−→ SC + SA . (4.34”)

In equation (4.34’) the conversion A −→ C is initiated by a collision of an SA

molecule with a SB molecule, which acts as a catalyst since it is not consumed
by the process.20 When the collision partner is another SA molecule (4.34”),
we are dealing with a monomolecular reaction in the conventional sense, which
is described straightforwardly as a special class of bimolecular process. The
first proposal of mechanism (4.34”) for the monomolecular conversion has
been made already in 1922 by Frederick Lindemann [183]: The monomolecular
conversion follows a two step mechanism of the form

A + A
k1

−−−−→←−−−−
h1

A + A∗ and

A∗ k2
−−−−→ C

(4.43)

with k2 ≪ h1. The Lindemann mechanism with a conventional rate parameter
k1 did not fit the experimental data and has been improved by Cyril Hinshel-
wood [129] by a different interpretation of the activation of molecule A that
was extended to a range of energy values k1(E0→E1) ⇒ k1(E0→E1+δE). Later
on the molecular mechanistic details were improved and the Lindemann-
Hinshelwood mechanism has been substantially extended by Oscar Rice,
Herman Ramsperger [248], and Louis Kassel [153] through the explicit in-

20 Formally we are dealing with a reaction that is catalyzed by a molecule of the same
kind or another kind and the reaction is are related to the spontaneous conversion
by rigorous thermodynamics: Whenever a catalyzed reaction appears in a mechanism
the uncatalyzed process has to be considered as well.
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troduction of a transition state A‡:

A + A
k1

−−−−→←−−−−
h1

A + A∗ and

A∗ k2a

−−−−→ A‡ k‡

−−−−→ C .

(4.44)

As in transition state theory the rate parameter k‡ corresponds to the fast
process associated with the reactive mode of the transition state. Since k‡ is
thought to be larger than any other rate parameter, the rate limiting step of
the formation of the product C is the conversion A∗ → A‡ and comparing
Lindemann and RRK mechanism we have k2 ≈ k2a and k2a = k‡[A‡]/[A∗]
from the steady state assumption. Eventually, the theory of monomolecular
reactions got its present form through a reformulation of the transitions state
by Rudolph Marcus and Oscar Rice [196, 194, 195]. The current version of
the so-called RRKM theory of monomolecular reactions theory allows for
a highly accurate and very detailed description of reactions and it can be
readily converted into a stochastic formulation [180].

4.2.2.5 Termolecular and other reactions

Termolecular or trimolecular reactions of the form

SA + SB + SC −−−−→ SD + . . . (4.45)

are rare and need not be considered because collisions of three particles do
not occur with a probability larger than of measure zero. Exceptions are two
classes of reactions: (i) Vapor phase association reactions where a third body
is required as collision partner and (ii) the reaction of nitrogen monoxide
with oxygen or halogens. A characteristic example of a class (i) reaction is
the formation of ozone

O + O2 + N2 −−−−→ O3 + N2 ,

where the nitrogen molecule removes energy in order to allow for reaching a
bound state of ozone [233]. The typical class (ii) reaction is the oxidation of
nitrogen oxide with molecular oxygen [230]

2NO + O2 −−−−→ 2NO2 .

Although nitric oxide oxidation by oxygen is considered as the prototype of
a termolecular reaction two competitive two step mechanism involving only
bimolecular collisions are discussed:
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NO + NO ⇋ (NO)2 , (NO)2 + O2 → 2NO2 or

NO + O2 ⇋ NO3 , NO3 + NO → 2NO2 .

A comparison of the data for all three mechanistic variants of the reaction
are found in the review [279].

There may also be, however, special situations where approximations of
complicated processes by termolecular events is justified. One example is a
set of three coupled reactions with four reactant molecules [103, pp. 359-361]
where is was shown that πµ(t, dt) is essentially linear in dt.

The last class of reaction to be considered here is no proper chemical
reaction but an influx of material into the reactor. It is often denoted as a
the zeroth order reaction (4.1a):

∗ −−−−→ SA . (4.46)

Here, the definition of the influx and the efficient mixing or homogeneity
condition is essential, because it guarantees that the number of molecules
entering the homogeneous system is a constant and does not depend on dt.
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4.3 Examples of chemical reactions

In this section we shall present exact solutions of the chemical master equation
for examples from three classes of chemical reactions: zeromolecular in form
of the flow in a reactor, monomolecular, and bimolecular. Molecularity of a
reaction refers to the number of molecules in the reaction complex and in most
cases the molecularity is also reflected by the chemical rate law of reaction
kinetics in form of the reaction order. In particular, we distinguish fist order
and second order kinetics, which is typically observed with monomolecular
and bimolecular reactions, respectively.

4.3.1 The flow reactor

The flow reactor is introduced as an experimental device that allows for in-
vestigations of systems off thermodynamic equilibrium. The establishment of
a stationary state or the flow equilibrium in a flow reactor (CFSTR or CSTR:
continuous flow stirred tank reactor; figure 4.7) is a suitable case study for the
illustration of the search for a solution of a birth-and-death master equation.
At the same time the non-reactive flow of a single compound represents the
simplest conceivable process in such a reactor. The stock solution contains A
at the concentration [A]influx = â = ā [mole·l−1]. The influx concentration
â is equal to the stationary concentration ā, because no reaction is assumed
to take place in the reactor. The flow is measured by means of the flow rate
r [l·sec−1]: This implies an influx of ā · r [mole·sec−1] of A into the reactor,
instantaneous mixing with the content of the reactor, and an outflux of the
mixture in the reactor at the same flow rate r.21 The reactor has a volume
of V [l] and thus we have a mean residence time of τR = V · r−1 [sec] of a
volume element dV in the reactor.

In- and outflux of compound A into and from the reactor are modeled by
two formal elementary steps or pseudo-reactions

⋆ −−−−→ A

A −−−−→ ⊘ .
(4.47)

In chemical kinetics the differential equations are almost always formulated in
molecular concentrations. For the stochastic treatment, however, we replace
concentrations by the numbers of particles, n = a · V · NL with n ∈ N0 and
NL being Avogadro’s number the number of particles per mole.

The particle number of A in the reactor is a stochastic variable with the
probability Pn(t) = P

(
N (t) = n

)
. The time derivative of the probability

21 The assumption of equal influx and outflux rate is required because we are dealing
with a flow reactor of constant volume V (CSTR, figure 4.7).
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distribution is described by means of the master equation

∂Pn(t)

∂t
= r

(
n̄ Pn−1(t) + (n+1)Pn+1(t) − (n̄+n)Pn(t)

)
; n ∈ N0 . (4.48)

Equation (4.48) describes a birth-and-death process with w+
n = rn̄ and w−

n =
rn. Thus we have a constant birth rate and a death rate which is proportional
to n. Solutions of the master equation can be found in text books listing
stochastic processes with known solutions, for example [108]. Here we shall
derive the solution by means of probability generating functions as introduced
in subsection 2.2.1, equation (2.24) in order to illustrate one particularly
powerful approach:

g(s, t) =
∞∑

n=0

Pn(t) s
n . (2.24’)

Sometimes the initial state is included in the notation: gn0(s, t) implies
Pn(0) = δn,n0 . Partial derivatives with respect to time t and the dummy
variable s are readily computed:

∂g(s, t)

∂t
=

∞
∑

n=0

∂Pn(t)

∂t
· sn =

= r
∞
∑

n=0

(

n̄ Pn−1(t) + (n + 1)Pn+1(t) − (n̄ + n)Pn(t)
)

sn and

∂g(s, t)

∂s
=

∞
∑

n=0

nPn(t) s
n−1 .

Proper collection of terms and arrangement of summations – by taking into
account: w−

0 = 0 – yields

∂g(s, t)

∂t
= rn̄

∞
∑

n=0

(

Pn−1(t) − Pn(t)
)

sn + r

∞
∑

n=0

(

(n+ 1)Pn+1(t) − nPn(t)
)

sn .

Evaluation of the four infinite sums

∑∞

n=0
Pn−1(t) s

n = s
∑∞

n=0
Pn−1(t) s

n−1 = s g(s, t) ,

∑∞

n=0
Pn(t) s

n = g(s, t) ,

∑∞

n=0
(n+ 1)Pn+1(t) s

n =
∂g(s, t)

∂t
, and

∑∞

n=0
nPn(t) s

n = s
∑∞

n=0
nPn(t) s

n−1 = s
∂g(s, t)

∂t
,

and regrouping of terms yields a linear partial differential equation of first
order

∂g(s, t)

∂t
= r

(
n̄(s− 1) g(s, t) − (s− 1)

∂g(s, t)

∂s

)
. (4.49)
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Fig. 4.7 The flow reactor. The reactor shown in the sketch is a device for experi-
mental and theoretical chemical reaction kinetics, which is used to carry out chemical
reactions in an open system. The stock solution contains materials, for example A at
the concentration [A]influx = â, which are usually consumed during the reaction to be
studied. The reaction mixture is stirred in order to guarantee a spatially homogeneous
reaction medium. Constant volume implies an outflux from the reactor that compen-
sates precisely the influx. The flow rate r is equivalent to the inverse mean residence
time of solution in the reactor multiplied by the reactor volume, τ −1

R · V = r. The
reactor shown here is commonly called continuously stirred tank reactor (CSTR).

The partial differential equation (PDE) is solved through consecutive sub-
stitutions

φ(s, t) = g(s, t) exp(−n̄ s) −→ ∂φ(s, t)

∂t
= −r(s− 1)

∂φ(s, t)

∂s
,

s− 1 = eρ and ψ(ρ, t) = φ(s, t) −→ ∂ψ(ρ, t)

∂t
+ r

∂ψ(ρ, t)

∂ρ
= 0 .

Computation of the characteristic manifold is equivalent to solving the
ordinary differential equation (ODE) r dt = −dρ. We find: rt− ρ = C where
C is the integration constant. The general solution of the PDE is an arbitrary
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function of the combined variable rt − ρ:

ψ(ρ, t) = f
(
exp(−rt+ ρ)

)
· e−n̄ and φ(s, t) = f

(
(s− 1) e−rt

)
· e−n̄ ,

and the probability generating function

g(s, t) = f
(
(s− 1) e−rt)

)
· exp

(
(s− 1)n̄

)
.

Normalization of probabilities (for s = 1) requires g(1, t) = 1 and hence
f(0) = 1. The initial conditions as expressed by the conditional probability
P (n, 0|n0, 0) = Pn(0) = δn,n0 leads to the final expression

g(s,0) = f(s− 1) · exp
(

(s− 1)n̄
)

= sn0 ,

f(ζ) = (ζ + 1)n0 · exp(−ζn̄) with ζ = (s− 1) e−rt ,

g(s, t) =
(

1 + (s− 1) e−rt
)n0 · exp

(

−n̄(s− 1) e−rt
)

· exp
(

n̄(s− 1)
)

=

=
(

1 + (s− 1) e−rt
)n0 · exp

{

−n̄(s− 1) (1− e−rt)
}

.

(4.50)

From the generating function we compute with somewhat tedious but straight-
forward algebra the probability distribution

Pn(t) =

min{n0,n}
∑

k=0

(n0

k

)

n̄n−k · e
−krt

(

1− e−rt
)n0+n−2k

(n− k)!
· e−n̄ (1−e−rt) (4.51)

with n, n0, n̄ ∈ N0. In the limit t→∞ we obtain a non-vanishing contribution
to the stationary probability only from the first term, k = 0, and find

lim
t→∞

Pn(t) =
n̄n

n!
exp(−n̄) .

This is a Poissonian distribution with parameter and expectation value α = n̄.
The Poissonian distribution has also a variance which is numerically identical
with the expectation value, σ2(NA) = E(NA) = n̄, and thus the distribution
of particle numbers fulfils the

√
N -law at the stationary state.

The time dependent probability distribution allows to compute the expec-
tation value and the variance of the particle number as a function of time

E
(
N (t)

)
= n̄ + (n0 − n̄) · e−rt ,

σ2
(
N (t)

)
=
(
n̄ + n0 · e−rt

)
·
(
1 − e−rt

)
.

(4.52)

As expected the expectation value apparently coincides with the solution
curve of the deterministic differential equation

dn

dt
= w+

n − w−
n = r (n̄− n) , (4.53)
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Fig. 4.8 Establishment of the flow equilibrium in the CSTR. The upper part
shows the evolution of the probability density, Pn(t), of the number of molecules of a
compound A which flows through a reactor of the type illustrated in figure 4.7. The
initially infinitely sharp density becomes broader with time until the variance reaches
its maximum and then sharpens again until it reaches stationarity. The stationary
density is a Poissonian distribution with expectation value and variance, E(N ) =
σ2(N ) = n̄. In the lower part we show the expectation value E

(

N (t)
)

in the confidence
interval E±σ. Parameters used: n̄ = 20, n0 = 200, and V = 1; sampling times (upper
part): τ = r · t = 0 (black), 0.05 (green), 0.2 (blue), 0.5 (violet), 1 (pink), and ∞
(red).

which is of the form

n(t) = n̄ + (n0 − n̄) · e−rt . (4.53’)

Since we start from sharp initial densities variance and standard deviation are
zero at time t = 0. The qualitative time dependence of σ2{NA(t)}, however,
depends on the sign of (n0 − n̄):
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(i) For n0 ≤ n̄ the standard deviation increases monotonously until it
reaches the value

√
n̄ in the limit t→∞, and

(ii) for n0 > n̄ the standard deviation increases until it passes through a
maximum at

t(σmax) =
1

r

(
ln 2 + lnn0 − ln(n0 − n̄)

)

and approaches the long-time value
√
n̄ from above.

In figure 4.8 we show an example for the evolution of the probability density
(4.51). In addition, the figure contains a plot of the expectation value E

(
N (t)

)

inside the band E − σ < E < E + σ. In case of a normally distributed
stochastic variable we find 68.3% of all values within this confidence interval .
In the interval E−2σ < E < E+2σ we would find even 95.4% of all stochastic
trajectories (2.3.3).

4.3.2 Monomolecular chemical reactions

The reversible mono- or monomolecular chemical reaction can be split into
two irreversible elementary reactions

A
k1

−−−−→ B (4.54a)

A
h1

←−−−− B , (4.54b)

wherein the reaction rate parameters, k1 and h1, are called reaction rate

constants . The reaction rate parameters depend on temperature, pressure,
and other environmental factors. At equilibrium the rate of the forward
reaction (4.54a) is precisely compensated by the rate of the reverse reac-
tion (4.54b), k1 ·[A] = h1 ·[B], leading to the condition for the thermodynamic
equilibrium:

K =
k1
h1

=
[B]

[A]
. (4.55)

The parameter K is called the equilibrium constant that depends on tem-
perature, pressure, and other environmental factors like the reaction rate
parameters. In an isolated or in a closed system we have a conservation law:

NA(t) + NB(t)
Ω ·NL

= [A] + [B] = c(t) = c0 = c̄ = constant , (4.56)

with c being the total concentration and c̄ the corresponding equilibrium
value, limt→∞ c(t) = c̄.
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The two irreversible reactions are characterized by vanishing rate param-
eters, lim h1 → 0 or lim k1 → 0, respectively. It is worth mentioning that
vanishing rate parameters correspond to an instability in the Gibbs free en-
ergy at equilibrium, ∆G0 = −RT ln K and are incompatible with rigorous
thermodynamics. Nevertheless, the assumption of irreversibility is a good ap-
proximation in cases where equilibria are lying almost completely on the side
of reactants or products, respectively.

4.3.2.1 Irreversible monomolecular chemical reaction

We start by discussing the simpler irreversible case,

A
k

−−−−→ B , (4.54a’)

which is can be modeled and analyzed in full analogy to the previous case
of the flow equilibrium. Although we are dealing with two molecular species,
A and B the process is described by a single stochastic variable, NA(t),
since we have NB(t) = n0 − NA(t) with n0 = n(0) being the number of
A molecules initially present because of the conservation relation (4.56). If
a sufficiently small time interval is applied, the irreversible monomolecular
reaction is modeled by a single step birth-and-death process with w+

n = 0
and w−

n = kn.22 The probability density is defined by Pn(t) = P (NA = n)
and its time dependence obeys

∂Pn(t)

∂t
= k (n+ 1)Pn+1(t) − k nPn(t) . (4.57)

The master equation (4.57) is solved again by means of the probability gen-
erating function,

g(s, t) =

∞∑

n=0

Pn(t) s
n ; |s| ≤ 1 ,

which is determined by the PDE

∂g(s, t)

∂t
− k (1− s) ∂g(s, t)

∂s
= 0.

The computation of the characteristic manifold of this PDE is tantamount
to solving the ODE

k dt =
ds

s− 1
=⇒ ekt = s− 1 + const .

22 We remark that w−
0 = 0 and w+

0 = 0 are fulfilled, which are the conditions for a
natural absorbing barrier at n = 0 (section 5.2.2.3).
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Fig. 4.9 Continued on next page.
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Fig. 4.9 Probability density of an irreversible monomolecular reaction.
The three plots on the previous page show the evolution of the probability density,
Pn(t), of the number of molecules of a compound A which undergo a reaction A→B.
The initially infinitely sharp density Pn(0) = δn,n0

becomes broader with time until
the variance reaches its maximum at time t = t1/2 = ln2/k and then sharpens again
until it approaches full transformation, limt→∞ Pn(0) = δn,0. On this page we show
the expectation value E

(

NA(t)
)

and the confidence intervals E ± σ (68,3%,red) and

±2σ (95,4%,blue) with σ2
(

NA(t)
)

being the variance. Parameters used: n0 =200,
2000, and 20 000; k = 1 [t−1]; sampling times: 0 (black), 0.01 (green), 0.1 (blue), 0.2
(violet), (0.3) (magenta), 0.5 (pink), 0.75 (red), 1 (pink), 1.5 (magenta), 2 (violet), 3
(blue), and 5 (green).

With φ(s, t) = (s−1) exp(−kt)+γ, g(s, t) = f(φ), the normalization condition
g(1, t) = 1, and the boundary condition g(s, 0) = f(φ)t=0 = sn0 we find

g(s, t) =
(
s · e−kt + 1 − e−kt

)n0

. (4.58)

This expression is easily expanded in binomial form, which orders with respect
to increasing powers of s,

g(s, t) = (1− e−kt)n0+
(n0

1

)

se−kt(1− e−kt)n0−1 +
(n0

2

)

se−2kt(1 − e−kt)n0−2+

+ . . .+
( n0

n0 − 1

)

sn0−1e−(n0−1)kt(1 − e−kt) + sn0e−n0kt .

Comparison of coefficients yields the time dependent probability density

Pn(t) =

(
n0

n

)(
exp(−kt)

)n (
1− exp(−kt)

)n0−n
. (4.59)

It is straightforward to compute the expectation value of the stochastic vari-
able NA, which coincides again with the deterministic solution, and its vari-
ance
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E
(
NA(t)

)
= n0 e

−kt ,

σ2
(
NA(t)

)
= n0 e

−kt (1− e−kt
)
.

(4.60)

The half-life of a population of n0 particles,

t1/2 : E{NA(t)} =
n0

2
= n0 · e−ktm =⇒ t1/2 =

1

k
ln 2 ,

is time of maximum variance or standard deviation, dσ2/ dt = 0 or dσ/ dt =
0, respectively. An example of the time course of the probability density of
an irreversible monomolecular reaction is shown in figure 4.9.

4.3.2.2 Reversible monomolecular chemical reaction

The analysis of the irreversible reaction is readily extended to the reversible
case (4.54), where we are dealing with a one step birth-and-death process.
Again we are dealing with a closed system, the conservation relation NA(t)+
NB(t) = n0 – with n0 being again the number of molecules of class A initially
present, Pn(0) = δn,n0 – holds and the transition probabilities are given by:
w+
n = k2(n0 − n) and w−

n = k1n.
23 The master equation is now of the form

∂Pn(t)

∂t
= k2(n0 − n+ 1)Pn−1(t) + k1(n+ 1)Pn+1(t)−

−
(
k1n+ k2(n0 − n)

)
Pn(t) .

(4.61)

Making use of the probability generating function g(s, t) we derive the PDE

∂g(s, t)

∂t
=
(
k1 + (k2 − k1)s− k1s2

)∂g(s, t)
∂s

+ n0 k2(s− 1) g(s, t) .

The solutions of the PDE are simpler when expressed in terms of parameter
combinations, κ = k1 + k2 and λ = k1/k2, and the function
ω(t) = λ exp(−κt) + 1:

g(s, t) =
(
1 + (s− 1) e−κt − s

λ

)n0

=

=

(
λ (1− e−κt) + s (λe−κt + 1)

1 + λ

)n0

=

=

n0∑

n=0

((
n0

n

) (
λe−κt + 1

)n (
λ(1 − e−κt)

))n0−n sn

(1 + λ)n0
.

23 Here we note the existence of barriers at n = 0 and n = n0, which are characterized
by w−

0 = 0, w+
0 = k2n0 > 0 and w+n0 = 0, w−

n0
= k1n0 > 0, respectively. These

equations fulfil the conditions for reflecting barriers (section 5.2.2.3).
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The probability density for the reversible reaction is then obtained as

Pn(t) =

(
n0

n

)
1

(1 + λ)n0

(
λe−κt + 1

)n (
λ(1 − e−κt)

)n0−n
. (4.62)

Expectation value and variance of the numbers of molecules are readily com-
puted (with ω(t) = λ exp(−κt) + 1):

E
(
NA(t)

)
=

n0

1 + λ
ω(t) ,

σ2
(
NA(t)

)
=

n0 ω(t)

1 + λ

(
1− ω(t)

1 + λ

)
,

(4.63)

and the stationary values are

lim
t→∞

E
(
NA(t)

)
= n0

k2
k1 + k2

,

lim
t→∞

σ2
(
NA(t)

)
= n0

k1 k2
(k1 + k2)2

,

lim
t→∞

σ
(
NA(t)

)
=
√
n0

√
k1 k2

k1 + k2
.

(4.64)

This result shows that the
√
N -law is fulfilled up to a factor that is indepen-

dent of N : E/σ =
√
n0 k2/

√
k1 k2.

Starting from a sharp distribution, Pn(0) = δn,n0, the variance increases,
may or may not pass through a maximum and eventually reaches the equi-
librium value, σ̄2 = k1k2 n0/(k1 + k2)

2. The time of maximal fluctuations is
easily calculated from the condition dσ2/ dt = 0 and one obtains

tvarmax =
1

k1 + k2
ln

(
2 k1

k1 − k2

)
. (4.65)

Depending on the sign of (k1 − k2) the approach towards equilibrium passes
a maximum value or not. The maximum is readily detected from the height
of the mode of Pn(t) as seen in figure 4.10 where a case with k1 > k2 is
presented.

In order to illustrate fluctuations and their value under equilibrium con-
ditions the Austrian physicist Paul Ehrenfest designed a game called Ehren-
fest’s urn model [54], which was indeed played in order to verify the

√
N -law.

Balls, 2N in total, are numbered consecutively, 1, 2, . . . , 2N , and distributed
arbitrarily over two containers, say A and B. A lottery machine draws lots,
which carry the numbers of the balls. When the number of a ball is drawn,
the ball is put from one container into the other. This setup is already suf-
ficient for a simulation of the equilibrium condition. The more balls are in a
container, the more likely it is that the number of one of its balls is drawn
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Fig. 4.10 Continued on next page.
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Fig. 4.10 Probability density of a reversible monomolecular reaction The
three plots on the previous page show the evolution of the probability density, Pn(t),
of the number of molecules of a compound A which undergo a reaction A⇌B. The
initially infinitely sharp density Pn(0) = δn,n0

becomes broader with time until the
variance settles down at the equilibrium value eventually passing a point of maximum
variance. On this page we show the expectation value E

(

NA(t)
)

and the confidence

intervals E±σ (68,3%,red) and ±2σ (95,4%,blue) with σ2
(

NA(t)
)

being the variance.
Parameters used: n0 =200, 2000, and 20 000; k1 = 2 k2 = 1 [t−1]; sampling times:
0 (black), 0.01 (dark green), 0.025 (green), 0.05 (turquoise), 0.1 (blue), 0.175 (blue
violet), 0.3 (purple), 0.5 (magenta), 0.8 (deep pink), 2 (red).

and a transfer occurs into the other container. Just as it occurs with chem-
ical reactions we have self-controlling fluctuations: Whenever a fluctuations
becomes large it creates a force for compensation which is proportional to
the size of the fluctuation.

4.3.3 Bimolecular chemical reactions

Two classes of bimolecular reactions are accessible to full stochastic analysis:

A + B
k

−−−−→ C and (4.66a)

2A
k

−−−−→ B . (4.66b)

Bimolecularity gives rise to nonlinearities in the kinetic differential equations
and in the master equations and complicates substantially the analysis of the
individual cases. At the same time, these classes of bimolecular equations do
not show essential differences in the qualitative behavior compared to the cor-
responding monomolecular or linear case A −→ B in contrast to autocatalytic
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Fig. 4.11 Irreversible bimolecular addition reaction A + B → C. The plot
shows the probability distribution Pn(t) = Prob

(

NC(t) = n
)

describing the number
of molecules of species C as a function of time and calculated by equation (4.72).
The initial conditions are chosen to be NA(t) = δ(a, a0), NB(t) = δ(b, b0), and
NC(t) = δ(c, 0). With increasing time the peak of the distribution moves from left to
right. The state n = min(a0, b0) is an absorbing state and hence the long time limit of
the system is: limt→∞NC (t) = δ

(

n,min(a0, b0)
)

. Parameters used: a0 = 50, b0 = 51,
k = 0.02 [t−1 ·M−1]; sampling times (upper part): t = 0 (black), 0.01 (green), 0.1
(turquoise), 0.2 (blue), 0.3 (violet), 0.5 (magenta), 0.75 (red), 1.0 (yellow), 1.5 (red),
2.25 (magenta), 3.5 (violet), 5.0 (blue), 7.0 (cyan), 11.0 (turquoise), 20.0 (green), and
∞ (black).

processes (section 5.1), which can rise to multiply steady states, and oscil-
lations of concentrations, and deterministic chaos. The following derivations
are based upon two publications [205, 139].

4.3.3.1 Addition reaction

In the first example (4.66a) we are dealing with three dependent stochastic
variables NA(t), NB(t), and NC(t). Following McQuarrie et al. we define the
probability Pn(t) = P

(
NA(t) = n

)
and apply the standard initial condition

Pn(0) = δn,n0 , P (NB(0) = b) = δb,b0 , and P (NC(0) = c) = δc,0. Accordingly,
we have from the laws of stoichiometryNB(t) = b0−n0+NA(t) and NC(t) =
n0−NA(t). For simplicity we denote b0−n0 = ∆0. Then the master equation
for the chemical reaction is of the form

∂Pn(t)

∂t
= k (n+ 1) (∆0 + n+ 1)Pn+1(t) − k n (∆0 + n)Pn(t) . (4.66a’)

We remark that the birth and death rates are no longer linear in n. The
corresponding PDE for the generating function is readily calculated
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∂g(s, t)

∂t
= k (∆0 + 1)(1− s)∂g(s, t)

∂s
+ k s(1− s) ∂

2g(s, t)

∂s2
. (4.67)

The derivation of solutions or this PDE is quite demanding. It can be achieved
by separation of variables:

g(s, t) =

∞∑

m=0

Am Zm(s)Tm(t) . (4.68)

We dispense from details and list only the coefficients and functions of the
solution:

Am = (−1)m (2m+∆0)Γ (m+∆0)Γ (n0 + 1)Γ (n0 +∆0 + 1)

Γ (m+ 1)Γ (∆0 + 1)Γ (n0 −m+ 1)Γ (n0 +∆0 +m+ 1)
,

Zm(s) = Jm(∆0, ∆0 + 1, s) , and

Tm(t) = exp
(
−m(m+∆0) kt

)
.

Herein, Γ represents the conventional gamma function with the definition
Γ (x+1) = xΓ (x), and J(p, q, s) are the Jacobi polynomials named after the
German mathematician Carl Jacobi [1, ch.22, pp.773-802], which are solutions
of the differential equation

s(1−s)d
2Jn(p, q, s)

ds2
+
(
q− (p+1)s

)dJn(p, q, s)
ds

+ n(n+p)Jn(p, q, s) = 0 .

These polynomials fulfil the following conditions:

dJn(p, q, s)

ds
= − n(n+ p)

s
Jn−1(p+ 2, q + 1, s) and

∫ 1

0

sq−1(1− s)p−qJn(p, q, s)Jℓ(p, q, s) ds =
n!
(
Γ (q)

)2
Γ (n+ p− q + 1)

(2n+ p)Γ (n+ p)Γ (n+ q)
δℓ,n .

At the relevant value of the dummy variable, s = 1, we differentiate twice
and find:
(

∂g(s, t)

∂s

)

s=1

=

n0
∑

m=1

(2m +∆0)Γ (n0 + 1)Γ (n0 +∆0 + 1)

Γ (n0 −m+ 1)Γ (n0 +∆0 +m+ 1)
Tm(t) , (4.69)

(

∂2g(s, t)

∂s2

)

s=1

=

=

n0
∑

m=2

(m− 1)(m +∆0 + 1)(2m +∆0)Γ (n0 + 1)Γ (n0 +∆0 + 1)

Γ (n0 −m+ 1)Γ (n0 −∆0 +m+ 1)
Tm(t) (4.70)

from which we obtain expectation value and variance according to subsec-
tion 2.2.1
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E
(

NA(t)
)

=

(

∂g(s, t)

∂s

)

s=1

and

σ2
(

NA(t)
)

=

(

∂2g(s, t)

∂s2

)

s=1

+

(

∂g(s, t)

∂s

)

s=1

−
(

(

∂g(s, t)

∂s

)

s=1

)2

. (2.25’)

As we see in the current example and we shall see in the next subsubsection,
bimolecularity complicates the solution of the chemical master equations sub-
stantially and makes it quite sophisticated. We dispense here from the de-
tailed expressions but provide the results for the special case of vast excess
of one reaction partner, |∆0| ≫ n0 > 1, which is known as pseudo first order

condition or concentration buffering. Then, the sums can be approximated
well be the first terms and we find (with k′ = ∆0k):

(
∂g(s, t)

∂s

)

s=1

≈ n0
∆0 + 2

n0 +∆0 + 1
e−(∆0+1)kt ≈ n0 e

−k′t and

(
∂2g(s, t)

∂s2

)

s=1

≈ n0 (n0 − 1) e−2 k′t ,

and we obtain finally,

E
(
NA(t)

)
= n0 e

−k′t and

σ2
(
NA(t)

)
= n0 e

−k′t
(
1− e−k′t

)
,

(4.71)

which is essentially the same result as obtained for the irreversible first order
reaction.

For the calculation of the probability density we make use of a slightly
different definition of the stochastic variables and use NC(t) counting the
number of molecules C in the system: Pn(t) = P

(
NC(t) = n

)
. With the

initial condition Pn(0) = δ(n, 0) and the upper limit of n, limt→∞ Pn(t) = c
with c = min{a0, b0} where a0 and b0 are the sharply defined numbers of A
and B molecules initially present (NA(0) = a0, NB(0) = b0), we have

c∑

n=0

Pn(t) = 1 and thus Pn(t) = 0 ∀ (n /∈ [0, c], n ∈ Z)

and the master equation is now of the form

∂Pn(t)

∂t
= k

(
a0 − (n− 1)

)(
b0 − (n− 1)

)
Pn−1(t)−

− k (a0 − n)(b0 − n)Pn(t) . (4.66a”)

In order to solve the master equation (4.66a”) the probability distribution
Pn(t) is Laplace transformed in order to obtain a set of pure difference equa-
tion from the master equation being a set of differential-difference equation
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qn(s) =

∫ ∞

0

exp(− s · t)Pn(t) dt

and with the initial condition Pn(0) = δ(n, 0) we obtain

−1 + s q0(s) = − k a0 b0 q0(s) ,
s qn(s) = k

(
a0 − (n− 1)

)(
b0 − (n− 1)

)
qn−1(s)−

− k (a0 − n)(b0 − n) qn(s) , 1 ≤ n ≤ c .

Successive iteration yields the solutions in terms of the functions qn(s)

qn(s) =

(
a0
n

)(
b0
n

)
(n!)2kn

n∏

j=0

1

s+ k(a0 − j)(b0 − j)
, 0 ≤ n ≤ c

and after converting the product into partial fractions and inverse transfor-
mation one finds the result

Pn(t) = (−1)n
(
a0
n

)(
b0
n

) n∑

j=0

(−1)j
(
1 +

n− j
a0 + b0 − n− j

)
×

×
(
n

j

)(
a0 + b0 − j

n

)−1

e−k(a0−j)(b0−j)t .

(4.72)

An illustrative example is shown in figure 4.11. The difference between the
irreversible reactions monomolecular conversion and the bimolecular addition
reaction (figure 4.9) is indeed not spectacular.

4.3.3.2 Dimerization reaction

When the dimerization reaction (4.66b) is modeled by means of a master
equation [205] we have to take into account that two molecules A vanish at
a time, and an individual jump involves always ∆n = 2:

∂Pn(t)

∂t
=

1

2
k (n+ 2)(n+ 1)Pn+2(t) −

1

2
k n(n− 1)Pn(t) , (4.66b’)

which gives rise to the following PDE for the probability generating function

∂g(s, t)

∂t
=

k

2
(1− s2) ∂

2g(s, t)

∂s2
. (4.73)

The analysis of this PDE is more involved than it might look at a first glance.
Nevertheless, an exact solution similar to (4.68) is available:
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Fig. 4.12 Irreversible dimerization reaction 2A→ C. The plot shows the prob-
ability distribution Pn(t) = Prob

(

NA(t) = n
)

describing the number of molecules
of species C as a function of time and calculated by equation (4.77). The number of
molecules C is given by the distribution Pm(t) = Prob

(

NC(t) = m
)

. The initial con-
ditions are chosen to be NA(t) = δ(n, a0), and NC(t) = δ(m, 0) and hence we have
n+ 2m = a0. With increasing time the peak of the distribution moves from right to
left. The state n = 0 is an absorbing state and hence the long time limit of the system
is: limt→∞NA(t) = δ(n, 0) limt→∞NC(t) = δ(m,a0/2). Parameters used: a0 = 100
and k = 0.02[t−1 ·M−1]; sampling times (upper part): t = 0 (black), 0.01 (green), 0.1
(turquoise), 0.2 (blue), 0.3 (violet), 0.5 (magenta), 0.75 (red), 1.0 (yellow), 1.5 (red),
2.25 (magenta), 3.5 (violet), 5.0 (blue), 7.0 (cyan), 11.0 (turquoise), 20.0 (green), 50.0
(chartreuse), and ∞ (black).

g(s, t) =

∞∑

m=0

Am C
− 1

2
m (s)Tm(t) , (4.74)

wherein the parameters and functions are defined by

Am =
1− 2m

2m
· Γ (n0 + 1)Γ [(n0 −m+ 1)/2]

Γ (n0 −m+ 1)Γ [(n0 +m+ 1)/2]
,

C
− 1

2
m (s) : (1− s2) d

2C
− 1

2
m (s)

ds2
+ m(m− 1)C

− 1
2

m (s) = 0 ,

Tm(t) = exp{−1

2
km(m− 1) t} .

The functions C
− 1

2
m (s) are ultraspherical or Gegenbauer polynomials named

after the German mathematician Leopold Gegenbauer [1, ch.22, pp.773-802].
They are solution of the differential equation shown above and belong to the
family of hypergeometric functions. It is straightforward to write down ex-
pressions for the expectation values and the variance of the stochastic variable
NA(t) (µ stands for an integer running index, µ ∈ N):
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E
(
NA(t)

)
= −

2⌊n0
2 ⌋∑

m=2µ=2

Am Tm(t) and

σ2
(
NA(t)

)
= −

2⌊n0
2 ⌋∑

m=2µ=2

(1
2
(m2 −m+ 2)Am Tm(t) + A 2

m T
2
m(t)

)
.

(4.75)

In order to obtain concrete results these expressions can be readily evaluated
numerically.

There is one interesting detail in the deterministic version of the dimeriza-
tion reaction. It is conventionally modeled by the differential equation (4.76a),
which can be solved readily. The correct ansatz, however, would be (4.76b)
for which we have also an exact solution (with [A]=a(t) and a(0) = a0):

−da

dt
= k a2 =⇒ a(t) =

a0
1 + a0 kt

and (4.76a)

−da

dt
= k a(a− 1) =⇒ a(t) =

a0
a0 + (1− a0)e−kt

. (4.76b)

The expectation value of the stochastic solution lies always between the so-
lution curves (4.76a) and (4.76b). An illustrative example is shown in fig-
ure 4.12.

As the previous subsection 4.3.3.1 we consider also a solution of the master
equation by means of a Laplace transformation [139]. Since we are dealing
with a step size of two molecules A converted into one molecule C, the master
equation is defined only for odd or only for even numbers of molecules A. For
an initial number of 2a0 molecules and a probability P2n(t) = P

(
NA(t) =

2n
)
we have for the initial conditions NA(0) = 2a0, NC(0) = 0 and the

condition that all probabilities outside the interval [0, 2a0] as well as the odd
probabilities P2n−1 (n = 1, . . . , 2a0 − 1) vanish

∂P2n(t)

∂t
= −1

2
k (2n)(2n − 1)P2n(t) +

1

2
k (2n + 2)(2n + 1)P2n+2(t) (4.66b”)

The probability distribution P2n(t) is derived as in the previous subsection
by Laplace transformation

q2y(s) =

∫ ∞

0

exp(− s · t)P2y(t) dt

yielding the set of difference equations
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−1 + s q2a0(s) = −1

2
k (2a0)(2a0 − 1) q2a0(s) ,

s q2n(s) = −1

2
k (2n)(2n− 1) q2n(s)+

+
1

2
k (2n+ 2)(2n+ 1) q2n+2(s) , 0 ≤ y ≤ a0 − 1 ,

which again can be solved by successive iteration. It is straightforward to
calculate first the Laplace transform for 2µ, the number of molecules of species
A that have reacted to yield C: 2µ = 2(a0−m) withm = [C] and 0 ≤ m ≤ a0:

q2(a0−m)(s) =

(

k

2

)m (2a0

2m

)

(2m)!
m
∏

j=1

(

s+
k

2

(

2(a0 − j)
)

·
(

2(a0 − j)− 1
)

)−1

,

and a somewhat tedious but straightforward exercise in algebra yields the
inverse Laplace transform:

P2(a0−m)(t) = (−1)m a0! (2a0 − 1)!!

(a−m)! (2a0 − 2m− 1)
×

×
m∑

j=0

(−1)j (4a0 − 4j − 1)(4a0 − 2m− 2j − 3)!!

j!(m− j)!(4a0 − 2j − 1)!!
×

× e−k (a0−j)·
(
2(a0−j)−1

)
t .

The substitution i = a0 − j leads to

P2(a0−m)(t) = (−1)m a0! (2a0 − 1)!!

(a−m)! (2a0 − 2m− 1)
×

×
a0∑

i=a0−m
(−1)a0−i (4i− 1)(2a0 − 2m+ 2i− 3)!!

(a0 − i)!(a0 − i+m)!(2a0 + 2i− 1)!!
×

× e−k 2i·
(
2i−1

)
t .

Setting now n = a0−m in accord with the definition of m we obtain the final
result

P2n(t) = (−1)n a0!(2a0 − 1)!!

n!(2n− 1)!!
×

×
n∑

i=1

(−1)i (4i− 1)(2n+ 2i− 3)!!

n!(2n− 1)!!
× e−k i(2i−1)t .

(4.77)

The results are illustrated be means of a numerical example in figure 4.12.
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4.4 Stochastic chemical reaction networks

Stochastic chemical reaction networks (SCRNs) therefore are studied mainly
by means of computer simulation based on algorithms that converge to so-
lutions, which are exact within the frame of chemical master equations (sec-
tion 4.7).

4.4.1 Reaction network modeling

Without considering fluctuations reaction networks are commonly modeled
by differential equations, ODEs in well mixed homogeneous solution and
PDEs in case spatial patterning is of interest.
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4.5 Fluctuations and single molecules techniques

The rapid advancements of molecular spectroscopy with respect to signal
intensity and temporal within the second half of the twentieth century became
the basis for entirely new developments. We menton here two of them as
examples.: (i) correlation spectroscopy and (ii) fluorescence spectroscopy at
single molecule resolution.
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4.6 Scaling and size expansions

Master equations encounter serious limitations with respect to solvability
when particle numbers become large whereas Fokker-Planck and stochastic
differential equations are much easier to handle and accessible to upscaling.
In this section we shall discuss ways to relate master equations to Fokker-
Planck equations. In particular, we shall try to solve master equations through
approximation methods based on expansions in parameters to be still defined.
Straightforward is the expansion of the master equation in a Taylor series
with the jump moments as coefficients. Truncation after the second term
yields a Fokker-Planck equation. It is important to note that every diffusion
process can be approximated by a jump process but the reverse is not true:
There are master equations for which no approximation by a Fokker-Planck
equation exists. A particularly useful expansion technique based on system
sizes has been introduced by Nicholas van Kampen [285, 286]. It can be used
to calculate fluctuations without handling full population sizes.

4.6.1 From master to Fokker-Planck equations

The typical example that has been discussed already previously is the random
walk (section 3.2.3.6), where the master equation becomes a Fokker-Planck
equation in the limit of infinitely small step size. During this transition the
jumps must become simultaneously smaller and more probable and this can
be taken care by a scaling assumption, which is encapsulated by a parameter
δ: The average step size is proportional to δ and so is the variance of the step
size24 and thus decreases with δ whereas the jump probabilities increase as δ
becomes smaller. In the random walk example we had a step size of l = l0 δ
and a probability ϑ = ϑ0/δ

2.
Here we perform first a general transition from the master equation to the

Fokker-Planck equation and then illustrate by means of examples. Following
[93, pp. 273-274] we rewrite the elements of the transition matrix by intro-
ducing a new variable y = (z − x−A(x)δ)/

√
δ, where we denote the general

drift term by A(x). For the jump probability we write

Wδ(z |x) = δ−3/2 φ(y, x) with
∫

dy φ(y, x) = Q and

∫
dy y φ(y, x) = 0 ,

(4.78)

where the function φ(y, x) is given by the concrete example to be studied.
Now we define the first three terms for an expansion in jump moments (4.85),

24 This is automatically fulfilled when the steps follow a Poisson distribution.
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α 0(x) ≡
∫

dzWδ(z|x) =
Q

δ

α 1(x) ≡
∫

dz (z − x)Wδ(z|x) = A(x)Q (4.79)

α 2(x) ≡
∫

dz (z − x)2Wδ(z|x) =

∫
dy y2 φ(y, x) ,

and assume that the function φ(y, x) vanishes sufficiently fast as y → ∞ in
order to guarantee that

lim
δ→0

Wδ(z|x) = lim
y→∞

((
x

z − x

)3

φ(y, x)

)
= 0 for z 6= x .

Next we choose some twice differentiable function f(z), carry out a procedure
that is very similar to the derivation of the differential Chapman-Kolmogorov
equation in section 3.2.2 and find

lim
δ→0

〈
∂f(z)

∂t

〉
=

〈
α 1(z)

∂f(z)

∂z
+

1

2
α 2(z)

∂2f(z)

∂z2

〉
.

This result has the consequence that in the limit δ → 0 the master equation

∂P (x)

∂t
=

∫
dz
(
W (x|z)P (z) − W (z|x)P (x)

)
(4.80a)

becomes the Fokker-Planck equation

∂P (x)

∂t
= − ∂

∂x

(
α 1 P (x)

)
+

1

2

∂2

∂x2

(
α 2 P (x)

)
. (4.80b)

Accordingly, one can always construct a Fokker-Planck limit for the master
equation if the requirements imposed by the three α-functions (4.79) are met.
In case these criteria are not fulfilled, there is no approximation possible. The
approximation is illustrated now by means of three examples.

Random walk. Based on the notation introduced in subsection 3.2.3.6 we find
for x = n · l:

W (x|z) = ϑ (δz,x−l + δz,x+l) =⇒ α 0(x) = 2ϑ, α 1(x) = 0, α 2(x) = 2 l2 ϑ .

With δ = l2 and D = l2ϑ we obtain the familiar stochastic diffusion equation

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
. (4.81)
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The final result obtained is exactly the same as in section 3.2.3.6, although
we used a much simpler intuitive procedure instead of the transformation
(4.78).

Poisson process. With the notation used in section 3.2.3.5 – except α is to be
replaced by ϑ – and x = n · l we find:

W (x|z) = ϑ δz,x+l =⇒ α 0(x) = ϑ, α 1(x) = l ϑ, α 2(x) = l2 ϑ .

In this case there is no way to define l and ϑ as functions of δ such that α 1(x)
and α 2(x) remain finite in the limit l → 0. Applying, for example, the model
assumption made for the one-dimensional random walk we find l = l0 δ and
ϑ = ϑ0/δ

2, and hence limδ→0 lϑ =∞. Accordingly, there is no Fokker-Planck
limit for the Poisson process.

General approximation of diffusion by birth-and death master equations. We
begin with a master equation of the class

Wδ(z|x) =

(
A(x)

2δ
+
B(x)

2δ2

)
δz,x+δ +

(
−A(x)

2δ
+
B(x)

2δ2

)
δz,x−δ , (4.82)

where Wδ(z|x) is positive for sufficiently small δ. Under the assumption that
this is fulfilled for the entire range of interest for x, the process takes place
on a range of x that is composed of integer multiples of δ.25 In the limit
δ → 0 the birth and death master equation is converted into a Fokker-Planck
equation with

α 0(x) = B(x)
/
δ2, α 1(x) = A(x), α 2(x) = B(x) and

lim
δ→0

Wδ(z |x) = 0 for z 6= x .
(4.83)

Although α 0(x) diverges with 1/δ2 in contrast to (4.79) – where we pre-
scribed the required 1/δ behavior – and the imagination of jumps converging
smoothly into a continuous distribution is no longer valid, there exists a lim-
iting Fokker-Planck equation, because the behavior of α 0(x) is irrelevant

∂P (x, t)

∂t
= − ∂

∂x

(
A(x)P (x, t)

)
+

1

2

∂2

∂x2

(
B(x)P (x, t)

)
. (4.84)

Equation (4.83) provides a tool for the simulation of a diffusion process by
an approximating birth-and-death process. The method, however, fails for
B(x) = 0 for all possible ranges of x since then Wδ(z, x) does not fulfil the
criterion of being nonnegative.

25 We remark that the scaling relations (4.78) and (4.82) not the same but both lead
to a Fokker-Planck equation.
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4.6.2 Kramers-Moyal expansion

A general expansion of master equations has been proposed by the two physi-
cists Hendrik Anthony Kramers and José Enrique Moyal, which is a kind of
Taylor expansion of the integral representation of the master equation

∂P (x, t)

∂t
=

∫
dz
(
W (x|z, t)P (z, t) − W (z|x, t)P (x, t)

)
(4.80a)

in jump moments (4.85). A comprehensive presentation dealing with different
ways to derive the series expansion of the Fokker-Planck equation is found in
[250, pp. 63-76]. Starting point is the transition probability from the proba-
bility density at time t to the probability density at time t+∆t:

P (x, t+∆t) =

∫
dx′W (x, t+∆t|x′, t)P (x′, t) .

In order to derive an expression for the differential ∂P the transition proba-
bility W (x, t+∆t|x′, t) must be known for small ∆t at least. In addition, we
assume known jump moments

αn(x
′, t,∆t) =

〈(
X (t+∆t)−X (t)

)n〉 ∣∣∣
X (t)=x′

=

=

∫
dx (x− x′)nW (x, t+∆t|x′, t) .

(4.85)

Here X (t) = x′ implies that the random variable X (t) adopts the sharp value
x′ at time t. Now we introduce ∆x = x − x′ into the integrand in equation
(4.80a) and expand in a Taylor series26

W (x, t+∆t|x′, t)P (x′, t) =

= W (x+∆x−∆x, t+∆t|x−∆x, t)P (x −∆x, t) =

=

∞∑

n=0

(−1)n
n!

∂n

∂xn

(
W (x+∆x, t+∆t|x, t)P (x −∆x, t)

)
.

Insertion into (4.80a) and integration over dx′ = −d(∆x) yields

P (x, t+∆t) − P (x, t) =
∂P (x, t)

∂t
∆t + O(∆t2) =

=

∞∑

n=0

(−1)n
n!

∂n

∂xn
αn(x, t,∆t)P (x, t) ,

26 The Taylor series is named after the English mathematician Brook Taylor who
invented the calculus of finite differences in 1715.
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and Taylor expansion of the jump moments and truncation after the linear
term yields the desired final result:

αn(x, t,∆t)

n!
=

∞∑

k=0

∆tk

k!
Θ

(n)
k with Θ

(n)
k =

1

n!

∂kαn
∂∆tk

.

Since D
(n)
0 has to vanish because the transition probability has the initial

value W (x, t|x −∆x, t) = δ(∆x) we find,

αn(x, t,∆t)

n!
= Θ

(n)
1 ∆t + O(∆t2) ,

with the linear term being the only nonzero coefficient, and accordingly we

can drop the subscript, Θ(n) ≡ Θ(n)
1 . Eventually, we find for the expansion of

the master equation

∂P (x, t)

∂t
=

∞∑

n=1

(−1)n ∂n

∂xn

(
Θ(n) P (x, t)

)
.

We remark that the above given derivation corresponds to a forward stochas-
tic process and accordingly there exists also a backward Kramers-Moyal ex-
pansion.

Assuming explicit time independence of the transition matrix and the jump
moments we obtain the conventional form of the Kramers-Moyal expansion

∂P (x, t)

∂t
=

∞∑

n=1

(−1)n
n!

∂n

∂xn

(
αn(x)P (x, t)

)
with

αn(x) =

∞∫

−∞

(z − x)n W (x, z − x) dz .
(4.86)

In case the Kramers-Moyal expansion is terminated at the second term the
result is a Fokker-Planck equation of the form (4.80b):

∂P (x)

∂t
= − ∂

∂x

(
α 1(x)P (x)

)
+

1

2

∂2

∂x2

(
α 2(x)P (x)

)
. (4.80b)

The two jump moments represent the conventional drift and diffusion terms:
α1(x) ≡ A(x) and α2(x) ≡ B(x). The major difference between the two
equations (4.84) and (4.80b) consists in the fact that (4.84) has been derived
for one-step birth and death processes whereas (4.80b) is generally valid.
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4.6.3 Small noise expansion

For large particle numbers thermal noise fulfilling a
√
N -law my be very small

and advantage of this fact can be made in small noise expansions of stochastic
differential equations and (SDEs) Fokker-Planck. A small noise SDE can be
written as:

dx = a(x) dt + ε b(x) dW (t) , (4.87a)

where the solution is assumed to be of the form

xε(t) = x0(t) + ε x1(t) + ε2 x2(t) + . . . (4.87b)

Solutions can be derived term by term and x0(t), for example, is the solu-
tion of the deterministic differential equation, dx = a(x)dx with the initial
condition x0(0) = c0.

In the small noise limit suitable Fokker-Planck equation is of the form

∂P (x, t)

∂t
= − ∂

∂x

(
A(x)P (x, t)

)
+

1

2
ε2

∂2

∂x2

(
B(x)P (x, t)

)
, (4.88a)

where variable and probability density are scaled

ξ =
x− x0(t)

ε
and Pε(ξ, t) = ε P (x, t|c0, 0) , (4.88b)

and the probability density is assumed to be of the form

Pε(ξ, t) = P (0)
ε (ξ, t) + ε P (1)

ε (ξ, t) + ε2 P (2)
ε (ξ, t) + . . . (4.88c)

For both approaches hold two facts: (i) There is no guarantee that the ex-
pansion series (4.87b) or (4.88c) converge, and (ii) the explicit calculations
involving the series expansions are commonly quite sophisticated [93, pp.169-
184].

For the purpose of illustration we consider one special example, the
Ornstein-Uhlenbeck process, which is exactly solvable (see section 3.2.3.4).
The stochastic differential equations takes on the form

dx = − k x dt + ε dW (t) . (4.89)

In the limit ε→ 0 the stochasticity disappears and the resulting ODE remains
first order in time and we are dealing with a non-singular limit. The exact
solution of (4.89) for the initial condition x(0) = c0 is

xε(t) = c0 exp(−k t) + ε

∫ t

0

exp
(
−k(t− τ)

)
dW (τ) . (4.90)

This case is particularly simple since the partitioning according to the series
expansion (4.87b) is straightforward
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x0(t) = c0 exp(−k t) and x1(t) =

∫ t

0

exp
(
−k(t− τ)

)
dW (τ) ,

and x0(t) is indeed the solution of the ODE obtained by setting ε = 0 in the
SDE (4.89).

Now we consider the corresponding Fokker-Planck equation

∂P (x, t)

∂t
=

∂

∂x

(
k xP (x, t)

)
+

1

2
ε2
∂2P (x, t)

∂t2
, (4.91)

with the exact solution being a Gaussian with x0(t) as expectation value

〈x(t)〉 = E
(
x(t)

)
= α(t) = c0 exp(−k t) and

σ2
(
x(t)

)
= ε2 β(t) = ε2

1− exp(−2k t)
2k

,
(4.92)

and hence

Pε(x, t| c0, 0) =
1

ε

1√
2πβ(t)

exp

(
1

ε2

(
x− α(t)

)2

2β(t)

)
. (4.92’)

In the limit ε → 0 we obtain the expected results for the determinist8ic
solution:

lim
ε→0

Pε(x, t| c0, 0) = δ
(
x− α(t)

)
,

which is the first order solution of the corresponding SDE and a deterministic
trajectory along the path x(t) = c0 exp(−kt). In the limit ε → 0 the second
order differential equation (4.91) is reduced to a first order equation and
this implies a singularity and the requirement to apply singular perturbation
theory.

Therefore, the probability density, however, cannot be expanded straight-
forwardly in a power series in ε, the introduction of a scaled variable is needed
before:

ξ =
(
x − α(t)

) /
ε or x = α(t) + ε ξ .

Now we can write down the probability density in ξ in terms of its first and
second moments,

Pε(ξ, t|0, 0) = Pε(x, t|c0, 0) ·
dx

dξ
=

1√
2πβ(t)

exp

(
− ξ2

2β(t)

)
.

Scaling has eliminated the singularity as the probability density for ξ does not
contain ε: The distribution of the scaled variable ξ is a Gaussian with mean
zero and the deviation of x from the deterministic trajectory α(t) is of order
ε as ε goes to zero. The coefficient of ε is the random variable ξ. As expected,
in the interpretation there is no difference between the Fokker-Planck and
the stochastic differential equation.
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4.6.4 Size expansion of the master equation

Although quit a few representative examples and model systems can be ana-
lyzed by solving the one step birth-and-death master equation exactly (sec-
tion 4.3), the actual applicability to specific problems of chemical kinetics of
this technique is rather limited. In order to apply a chemical master equation
to a problem in practice on is commonly dealing with about 1012 particles
or more. Upscaling discloses one particular problem that is related to size
expansion and that becomes virulent in the transition from the master equa-
tion to a Fokker-Planck equation. The problem is intimately related to the
parameter volume V , which is the best possible estimator of system size
in condensed matter. We distinguish two classes of quantities: (i) intensive

quantities that are independent of system size, and (ii) extensive quantities

that grow proportional to system size. Examples of intensive properties are
temperature, pressure, density, concentrations, and extensive properties are
volume, particle numbers, energy, or entropy. In upscaling from say 1000 to
1012 particles extensive properties grow by a factor of 109 whereas intensive
properties remain the same. Some pairs of properties – one extensive and one
intensive – are of particular importance, for example particle number N and
concentration c = N/(V · NL) or mass M and (volume) density ̺ = M/V ,
respectively.

In order to compensate for the lack of generality, approximation methods
were developed, which turned out to be particularly illustrative and useful
in the limit of sufficiently large particle numbers [286, 287]. The Dutch the-
oretical physicist Nicholas van Kampen expands the master equation in the
inverse square root of some extensive quantity, particle number, mass or vol-
ume, which is characteristic of system size and which will be denoted by Ω.
In van Kampen’s notation,

a ∝ Ω = extensive variable, and

α = a/Ω = intensive variable ,
(4.93)

the limit of interest is a large value of Ω at fixed α, which is tantamount
to the transition to a macroscopic system.27 The transition probabilities are
reformulated as

W (a|a′) = W (a′;∆a) with ∆a = a− a′ ,

and scaled according to the assumption

W (a|a′) = Ω ψ
(
(
a′

Ω
,∆a

)
= Ω ψ

(
(α′, ∆a

)
.

27 In this section we shall use Greek letters for intensive and Roman letters for
extensive variables wherever possible.
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The essential trick in the van Kampen expansion is that the size of the jump is
expressed in term of an extensive quantity, ∆a, whereas the intensive variable
α is used for the expression of the dependence on the variable, a′.

The expansion is made now in the new variable z defined by

a = Ω φ(t) + Ω1/2 z or z = Ω−1/2 a − Ω1/2 φ(t) . (4.94)

where the function φ(t) is still to be determined. The derivative moments
αn(a) are now proportional to the system size Ω and therefore we can scale
them accordingly: αn(a) = Ω α̃n(x). In the next step the new variable z is
introduced into the Kramers-Moyal expansion (4.86):

∂P (z, t)

∂t
− Ω1/2 ∂φ

∂t

∂P (z, t)

∂z
=

=

∞∑

n=1

(−1)n Ω
1−n/2

n!

∂n

∂zn

(
α̃n
(
φ(t) +Ω−1/2 z

)
P (z, t)

)
,

∂P (z, t)

∂t
= Ω1/2 ·

(
∂φ

∂t
− α̃1

(
φ(t)

)) ∂P (z, t)

∂z
+ Ω0 ·

(
· · ·
)
. . . .

For general validity of an expansion all terms of a certain order in the ex-
pansion parameter must vanish. We make use of this property to define φ(t)
such that the terms of order Ω1/2 are eliminated by demanding

∂φ

∂t
= α̃ 1

(
φ(t)

)
. (4.95)

This equation is an ODE determining φ(t) and, of course, it is in full agree-
ment with the deterministic equation for the expectation value of the random
variable. Accordingly, φ(t) is indeed the deterministic part of the solution.

The next step is an expansion of α̃n
(
φ(t)+Ω−1/2z

)
in Ω−1/2 and reorder-

ing of terms yielding

∂P (z, t)

∂t
=

∞∑

m=2

Ω−(m−2)/2

m!

m∑

n=1

(−1)n
(
m

n

)
α̃m−n
n

(
φ(t)

) ∂n

∂zn

(
zm−nP (z, t)

)

In taking the limit of large system size Ω all terms vanish except the one
with m = 2 and we find the result

∂P (z, t)

∂t
= − α̃(1)

1

(
φ(t)

) ∂

∂z

(
z P (z, t)

)
+

1

2
α̃ 2

(
φ(t)

) ∂2

∂z2
P (z, t) , (4.96)

where α
(1)
1 stands for the linear drift term.

It is straightforward to compare with the result of the Kramers-Moyal
expansion (4.86) truncated after two terms:
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∂P (x, t)

∂t
= − ∂

∂x

(
α 1(x)P (x, t)

)
+

1

2

∂2

∂x2

(
α 2(x)P (x, t)

)
.

The change of variables ξ = x/Ω leads to

∂P (ξ, t)

∂t
= − ∂

∂ξ

(
α̃ 1(ξ)P (ξ, t)

)
+

1

2Ω

∂2

∂ξ2

(
α̃ 2(ξ)P (ξ, t)

)
.

Through application of small noise theory (section 4.6.3) with ǫ2 = Ω−1 and
using the substitution ξ = Ω1/2

(
x−φ(t)

)
one obtains the lowest order Fokker-

Planck equation, which is exactly the same as the lowest order approximation
in the van Kampen expansion. This result has an important consequence:
If we are only interested in the lowest order approximation we may use the
Kramers-Moyal equation, which is much easier to derive than the van Kampen
equation.

Eventually, we have found a procedure to relate approximately master
equations, Fokker-Planck and stochastic differential equations and to close the
gap between microscopic stochasticity and macroscopic behavior. It should
be stressed, however, that the range of validity of a Fokker-Planck equation
derived from a master equation is not independent of the kind of limiting
procedure applied. If the transition was made by means of equations (4.78)
and (4.79) in the limit δ → 0, the full nonlinear dependence of α1(x) and
α2(x) can be seriously analyzed. If, on the other hand, only the small noise
approximation is approximately valid than it is appropriate to consider only
the linearization of the drift term and individual solutions of this equations
are represented by the trajectories of the stochastic equation:

dz = α̃
(1)
1

(
φ(t)

)
z dt +

√
α̃ 2

(
φ(t)

)
dW (t) . (4.97)

The choice of the best way of scaling will also depend on the special example
to be studied and we close this section by presenting two examples: (i) the
flow reactor and (ii) the reversible first order chemical reaction.

Equilibration in the flow reactor. The problem we are considering here is the
time dependence of a single chemical substance A in a device for performing
chemical reactions under controlled conditions as described in section 4.3.1.
The concentration of A in the solution flowing into the reactor is â and it
is equal to ā the concentration of A in the reactor after flow equilibrium
has been established. The flux in and out of the reactor is controlled by the
flow rate r commonly measured in volume/time=[cm3/sec] and it represents
the reciprocal mean residence time of the solution in the reactor: r = τ−1

R .
The extensive variables in this case are the numbers of particles of class A:
nA = n = a · V · NL = a · Ω with n ∈ N0. The elements of the transition
matrix W are

W (n|n′) = r
(
δn,n′+1n̄ + δn,n′−1n

)
. (4.98)
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The first term with n′+1 = n as the only nonzero contribution describes the
increase in the particle number in the reactor through influx,

N (t) = n′ =⇒ N (t+ dt) = n = n′ + 1 ,

whereas the second term deals with the outflux of a particle A,

N (t) = n′ =⇒ N (t+ dt) = n = n′ − 1 ,

and in both cases we have by simple mass action the probabilities r · n̄ and
r·n(t), respectively. The reformulation of the elements of the transition matrix
leads to

W (a′;∆n) = Ω
(
r ā δ∆n,+1 + r a′ δ∆n,−1

)

with ∆n = n− n′. Calculation of the first two jump moments yields

α1 =

∞∑

n′=0

(n′ − n)W (n′|n) = r(n̄− n) = Ω r(ā− a) ,

α2 =

∞∑

n′=0

(n′ − n)2W (n′|n) = r(n̄ + n) = Ω r(ā+ a) ,

and the deterministic equation with φ(t) = a(t) = n(t)/Ω is of the form

da

dt
= r (ā − a) and a(t) = ā +

(
a(0)− ā

)
e−rt .

Following the procedure of van Kampen’s expansion we define

n = Ω φ(t) + Ω1/2 z or z = Ω−1/2n − Ω 1/2nφ(t) (4.94’)

and obtain the Fokker-Planck equation

∂P (z)

∂t
= r

∂

∂z

(
z P (z)

)
+
r

2

∂2

∂z2

((
ā + a(t)

)
P (z)

)
, (4.99)

which leads to the expectation value and variance in the scaled variable z:

〈z(t)〉 = E
(
z(t)

)
= z(0) e−rt ,

σ2
(
z(t)

)
=
(
ā + a(0) e−rt

)
(1− e−rt) .

Transformation into the extensive variable, the particle number n yields

〈n(t)〉 = E
(
n(t)

)
= n̄ +

(
n(0)− n̄

)
e−rt ,

σ2
(
n(t)

)
=
(
n̄ + n(0) e−rt

)
(1 − e−rt) .

(4.100)

The stationary solution of the Fokker-Planck equation is readily calculated
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Fig. 4.13 Comparison of expansions of the master equation. The reaction
A⇌B with B buffered, [B] = b = b0, is chosen as example and the exact solution
(black) is compared with the results of the Kramers-Moyal expansion (red) and the
van Kampen size expansion (blue). Parameter choice: V = 1, k1 = 2, k2 = 1, b = 40.

P̄ (z) =
1√
2π ā

exp

(
− z

2

2ā

)

and it represents the approximation of the exact stationary Poisson density
by means of a Gaussian as mentioned in (2.38):

P̄ (n) =
n̄n

n!
exp(−n̄) ≈ 1√

2π n̄
exp

(
− (n− n̄)2

2n̄

)
.

The chemical reaction A⇌B. The transition probabilities for the interval
t′ → t of the corresponding single step birth-and-death master equation with
[A]t = a(t), [A]t′ = a′, [B] = b0, a fixed or buffered concentration, and the
reaction rate parameters k1 and k2 are:



332 4 Chemical applications

W (a|a′) = δa,a′+1 k2b0 + δa,a′−1 k1a .

As before we choose the volume of the system times Loschmidt’s number,
Ω = V ·NL, as size parameter and have: a = αΩ and b = βΩ. This leads to
the scaled transition probability,

W (α′;∆a) = Ω
(
k2β δ∆a,1 + k1α

′ δ∆a,−1

)
,

and the first two derivative moments

α1 =
∑

(a′)

(a′ − a)W (a′|a) = k2b0 − k1a = Ω(k2β − k1α) ,

α2 =
∑

(a′)

(a′ − a)2W (a′|a) = k2b0 + k1a = Ω(k2β + k1α) .

Following the procedure of van Kampen’s expansion we define

a = Ω φ(t) + Ω1/2 z (4.101)

and obtain for the deterministic differential equation and its solution:

dφ(t)

dt
= k2β − k1 φ(t) and φ(t) = φ(0) e−k1t +

k2β

k1
(1− e−k1t) .

The Fokker-Planck equation takes on the form

∂P (z)

∂t
= k1

∂

∂z

(
z P (z)

)
+

1

2

∂2

∂z2

((
k2β + k1 φ(t)

)
P (z)

)

The expectation value of z is readily computed to be 〈z(t)〉 = z(0)e−k1t. Since
the partition of the variable a in equation (4.101) is arbitrary we can assume
z(0) = 0 – as usual28 – and find for the variance in z

σ2
(
z(t)

)
=

(
k2β

k1
+ φ(0)

)
(1− e−k1t)

and eventually obtain for the solutions in the macroscopic variable a with
a(0) = Ω φ(0)

〈a(t)〉 = Ω φ(t) = a(0) e−k1t +
k2 b0
k1

(1− e−k1t) ,

σ2
(
a(t)

)
= Ω σ2

(
z(t)

)
=

(
k2 b0
k1

+ a(0)

)
(1− e−k1t) .

28 The assumption z(0) = 0 implies z(t) = 0 and hence the corresponding stochastic
variable Z(t) describes the fluctuations around zero.
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Finally, we compare the different stationary state solutions obtained from the
van Kampen expansion, α = k2b0/k1,

P̄ (z) =
1√

πα
2

(
1 + erf(

√
α
2 )
) exp

(
− (z − α)2

2α

)
,

with those derived from the Kramers-Moyal expansion

P̄ (a) = N (k2 b0 + k1 a)
−1+4k2 b0/k1 e−2a ,

and the exact solution

P̄ (a) =

(
k2 b0/k1

)a
exp
(
−k2 b0/k1

)

a!
=

αa e−α

a!
,

which is a Poissonian. A comparison of numerical plots is shown in figure 4.13.
It is remarkable how well the truncated Kramers-Moyal expansion agrees with
the exact probability density. It is easy to understand therefore that it is much
more popular than the size expansion, which in addition is also much more
sophisticated.

4.6.5 Size expansion of birth-and-death processes

In the previous section (section 4.6.4) we introduced a size expansion for the
chemical master equation. Here, we repeat the derivation this technique in
the case of a simple birth an death process from biology, the spreading of an
epidemic, which is, nevertheless, sufficiently general in order to be transferable
to other cases [286, pp.251-258].

Before we discuss the specific example, however, we recall the birth-and-
death transition matrix for a single step processes (3.98),

W (n|n′) = w+
n′ δn,n′−1 + w−

n′ δn,n′+1 ,

where w+
n and w−

n are analytic functions, which are as we shall assume (at
least) twice differentiable:

∂Pn(t)

∂t
= w+

n−1 Pn−1(t) + w−
n+1 Pn+1(t) −

(

w+
n + w−

n

)

Pn(t) .

It turns out useful to define a single step difference operator Θ̂ by

Θ̂ f(n) = f(n+ 1) , and Θ̂
−1
f(n) = f(n− 1) . (4.102)

Using this operator we can rewrite the master equation in compact form

∂P(t)

∂t
=
{
(Θ̂ − 1)w+

n + (Θ̂
−1 − 1)w−

n

}
P(t) . (3.98’)
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The jump moments are now

αp(n) = (−1)p w+
n + w−

n . (4.29a)

We repeat the macroscopic rate equation

d〈n〉
dt

= −w−
〈n〉 + w+

〈n〉 ,

find for the coupled equations for expectation value and variance the simpler
expressions

d〈n〉
dt

= w+
〈n〉 − w−

〈n〉 +
1

2

(
d2w+

〈n〉
dn2

−
d2w−

〈n〉
dn2

)
σ 2
n , (4.103a)

dσ 2
n

dt
= w+

〈n〉 + w−
〈n〉 + 2

(
dw+

〈n〉
dn

−
dw−

〈n〉
dn

)
σ 2
n . (4.103b)

With these preliminaries we are in the position to handle the epidemic ex-
ample by means of the size expansion technique (see [286, pp.251-254] and
section 4.6.4).

An epidemic spreads in a population of Ω individuals. We assume that
n(t) individuals are already infected. The probability of a new infection is
proportional to both, to the number of infected and to the number of unin-
fected individuals, w−

n = β n(Ω − n). No cure is possible and thus w+
n = 0.

Finally, we have
W (n|n′) = β δn,n′+1 n

′ (Ω − n′) ,

which leads to the master equation

∂Pn(t)

∂t
= β(n− 1)(Ω − n+ 1)Pn+1(t) − βn(Ω − n)Pn(t) or

∂P

∂t
= β

(
Θ̂

−1 − 1
)
n (Ω − n)P(t) .

(4.104)

Basic to the expansion is the idea that the density of the stochastic variable
N can be split in a macroscopic part, Ω φ(t), and fluctuations of the order
Ω1/2 around it. As shown in figure 4.14 we assume that P (n, t) is represented
by a (relatively) sharp peak located approximately at Ω φ(t) with a width of
order Ω1/2. In other words, we assume that the fluctuations fulfil a

√
N -law,

and we make the ansatz

n(t) = Ω φ(t) + Ω1/2 x(t) , (4.105)

where x is a new variable describing the fluctuations. The function φ(t) has to
be chosen in accord with the master equation. As said above, Ω φ(t) is called
the macroscopic part and Ω1/2 x the fluctuating part of n. We may refer to
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Fig. 4.14 The size expansion of a stochastic variable N . The variable n
is partitioned according to into a macroscopic part and the fluctuations around it,
n = Ωφ(t) + Ω1/2x(t), wherein Ω is a size parameter, for example the size of the
population or the volume of the system. Computations: Ωφ(t) = 5n0(1 − 0.8e−kt)

with n0 = 2 and k = 0.5; p(n, t) = Ω1/2x(t) = e−(n−Ωφ(t))2/(2σ2)/
√

2πσ2 with
σ = 0.1, 0.17, 0.24, 0.285, 0.30.

the new variables as an Ω language. The probability density of n becomes
now a probability density Π(x, t) of x:

P (n, t)∆n = Π(x, t)∆x ,

Π(x, t) = Ω1/2 P
(
Ωφ(t) +Ω1/2x, t

)
.

(4.106)

Differentiation yields29

∂Π

∂x
= Ω1/2 ∂P

∂n
,

∂Π

∂t
= Ω1/2

(
Ω

dφ

dt

∂P

∂n
+
∂P

∂t

)
,

29 The somewhat unclear differentiation ∂P/∂n can be circumvented through direct
variation of t by δt and simultaneously of x by −Ω1/2φ(t)δt, which leads to the same
final result.
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and eventually we obtain

Ω1/2 ∂P

∂t
=

∂Π

∂t
− Ω1/2 dφ

dt

∂Π

∂x
. (4.107)

Now, the difference operators are also size expanded in power series of differ-
ential operators

Θ̂ = 1 + Ω−1/2 ∂

∂x
+

1

2
Ω−1 ∂2

∂x2
+ . . . , (4.108a)

Θ̂
−1

=
1

1 + Ω−1/2 ∂
∂x + 1

2 Ω
−1 ∂2

∂x2 + . . .
=

= 1 − Ω−1/2 ∂

∂x
− 1

2
Ω−1 ∂2

∂x2
+ . . . + Ω−1 ∂2

∂x2
+ . . . ≈

≈ 1 − Ω−1/2 ∂

∂x
+

1

2
Ω−1 ∂2

∂x2
, (4.108b)

Θ̂
−1 − 1 = −Ω−1/2 ∂

∂x
+

1

2
Ω−1 ∂2

∂x2
. (4.108c)

Insertion of the operator and substitution of the new variables into the master
equation (4.104) yields after cancelation of an overall factor Ω−1/2

∂Π

∂t
− Ω1/2 dφ

dt

∂Π

∂x
= βΩ2

(
−Ω−1/2 ∂

∂x
+

1

2
Ω−1 ∂2

∂x2

)
·

·
((
φ+Ω−1/2x

)(
1− φ−Ω−1/2x

)
Π(x, t)

)
.

The right-hand side requires two consecutive differentiations of three factors:

−Ω−1/2 ∂

∂x

((

φ+Ω−1/2x
)

·
(

1− φ−Ω−1/2x
)

Π(x, t)
)

=

= −
(

1− 2φ− 2Ω−1/2x
)

Π(x, t) − Ω1/2
(

φ+Ω−1/2x
)

·
(

1 − φ−Ω−1/2x
) ∂Π

∂x
,

1

2
Ω−1 ∂2

∂x2

{(

φ+Ω−1/2x
)

·
(

1 − φ−Ω−1/2x
)

Π(x, t)
}

=

= −Ω−3/2 ∂Π

∂x
+

1

2
Ω−1

(

φ+Ω−1/2x
)

·
(

1− φ−Ω−1/2x
) ∂2Π

∂x2
.

For convenience we introduce a new time scale, τ = βΩt, in order to absorb
one factor Ω – and for convenience also the factor β – into the time variable.
Collection of terms corresponding to the largest powers in Ω now yields
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Ω1/2 :
dφ

dτ

∂Π(x, τ)

∂x
= φ (1 − φ) ∂Π(x, τ)

∂x
,

Ω0 :
∂Π(x, τ)

∂τ
= − (1− 2φ)

∂

∂x

(
xΠ(x, τ)

)
+

1

2
φ (1 − φ) ∂

2Π(x, τ)

∂x2
.

The largest term cancels if

dφ

dτ
= φ (1 − φ) , (4.109’)

and this yields the differential equation for the macroscopic variable φ(t),
which after transformation back into the original variables leads to the macro-
scopic rate equation

dn

dt
= β n (Ω − n) . (4.109)

Equating the next largest term, the coefficient of Ω0 to zero results in a linear
Fokker-Planck equation with time dependent coefficients φ(t):

∂Π(x, τ)

∂τ
= − (1− 2φ)

∂

∂x

(
xΠ(x, τ)

)
+

1

2
φ (1 − φ) ∂

2Π(x, τ)

∂x2
. (4.110)

Equation (4.110) describes the fluctuations of the random variable N (t)
around the macroscopic part and these fluctuations are of order Ω1/2 as
expected and initially assumed.

The strategy for solving the master equation (4.104) is now obvious. At
first one determines φ(τ) by integrating the differential equation (4.109’)
with the initial value φ(0) = n0/Ω, then one solves the Fokker-Planck equa-
tion (4.110) with the initial condition Π(x, 0) = δ(x) and finally one obtains
the desired probabilities from

P (n, t|n0, 0) = Ω−1/2 Π
(n−Ωφ(τ)

Ω1/2
, τ
)

(4.111)

A typical solution is sketched in figure 4.14 and it compares perfectly with
the exact solutions for sufficiently large systems (see, for example figures 4.9
and 4.10). Remembering the derivation we remark the terms of relative order
Ω−1/2 and smaller have been neglected.
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4.7 Numerical simulation of master equations

Almost at the same time when the Feinberg-Horn-Jackson theory was in-
troduced a simulation tool for stochastic chemical reactions was devel-
oped by the American physicist and mathematical chemist Daniel Gillespie
[101, 102, 104, 106].

History
He conceived and implemented a simple and powerful algorithm for the

calculation of single trajectories, and showed later that the chemical master
equation and the computation tool can be put on a firm physical and math-
ematical basis [104]. Meanwhile the Gillespie algorithm became an essential
simulation tool in chemistry and biology. Here we present the concept and the
implementation of the algorithm and demonstrate the usefulness by means
of selected examples.

4.7.1 Basic assumptions

Gillespie’s general stochastic model of chemical reaction networks considers
a population ofM different molecular species, S = {S1,S2, . . . ,SM} in a ho-
mogeneous medium, which interact through R elementary chemical reactions
R = {R1,R2, . . . ,RR} as in the previous deterministic model (section 4.1.3).
Again two conditions are assumed to be fulfilled by the system: (i) the con-
tainer with constant volume V in the sense of a flow reactor (CSTR in fig-
ure 4.7) is assumed to be well mixed by efficient stirring,30 and (ii) the system
is assumed to be in thermal equilibrium at constant temperature T . The pri-
mary goals of the simulation are the computation of the time course of the
stochastic variables – Xk(t) being the number of molecules Sk of species K at
time t – and the description of the evolution of the entire molecular popula-
tion. The individual computations yield single trajectories, very much in the
sense of a single solution of a stochastic differential equation (figure 3.20) or
single molecule experiments. Observable results of conventional macroscopic
experiments are commonly derived through sampling of trajectories.

For a reaction system involving M species in R reactions the entire popu-
lation is characterized by an N -dimensional random vector counting numbers
of molecules for the various species Sk,

~X (t) =
(
X1(t),X2(t), . . . ,XM (t)

)
. (4.112)

The common variables in chemistry are concentrations rather than particle
numbers:

30 As said before the assumption is almost always perfectly fulfilled in the gas phase
or and applies also to solution where perfect mixing is still a challenge.
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x =
(
x1(t), x2(t), . . . , xN (t)

)
with xk(t) =

Xk(t)
V ·NL

, (4.113)

where the volume V is an appropriate expansion parameter Ω for the system
size (section 4.6.4). The chemical master equation and the (probabilistic)
rate parameters were derived in section 4.2.2 (see also [104, pp. 407-417]) for
reaction channels Rµ of bimolecular nature

SA + SB −−−−→ SC + . . . (4.34)

like (4.1f,4.1i,4.1j and 4.1k) shown in the list (4.1) by making use of the well-
developed collision theory in the vapor phase. The extension to monomolec-
ular reaction channels (section 4.2.2.4) and termolecular reaction channels
(section 4.2.2.5) is straightforward. Zero-molecular processes like the influx
of material into the reactor in the elementary step (4.1a) provide no major
problems and reversible reactions, for example (4.54), are handled as two
elementary steps, A + B −→ C + D and C + D −→ A + B. As in Feinberg-
Horn-Jackson theory (section 4.1.3) we distinguish between reactant species
– for example A and B in equation (4.34) – and product species – e.g., C . . .
in equation (4.34) – of a reaction Rµ.

4.7.2 Reaction stoichiometry

In section 4.2.2 we succeeded to derive the fundamental fact that for each
elementary reaction channel Rµ with µ = 1, . . . , R, which is accessible to the
molecules of a well-mixed and thermally equilibrated system in the gas phase
(or in solution), exists a scalar quantity γµ, which is independent of dt such
that [104, p.418]

γµ dt = probability that a randomly selected combination of

Rµ reactant molecules at time t will react accordingly

in the next infinitesimal time interval [t, t+ dt[ .

(4.114)

The specific probabilistic rate parameter, γµ is one of three quantities
that are required to fully characterize a particular reaction channel Rµ.
In addition to γµ we shall require a function hµ(n) where the vector
n = (n1, . . . , nM )t contains the exact numbers of all molecules at time t,
~N (t) =

(
N1(t), . . . ,NM (t)

)t
= n(t),

hµ(n) ≡ the number of distinct combinations of Rµ reactant

molecules in the system when the numbers of molecules

Sk are exactly nk with k = 1, . . . ,M ,

(4.115)
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and an M × R matrix of integers, S = {skµ; k = 1, . . . ,M, µ = 1, . . . , R},
where

skµ ≡ the change in the Sk molecular population caused by the

occurrence of one Rµ reaction.
(4.116)

The functions hµ(n) and the matrix S are readily deduced by inspection of
the algebraic structure of the reaction channels. We illustrate by means of an
example:

R1 : S1 + S2 −−−−→ S3 + S4 ,

R2 : 2S1 −−−−→ S1 + S5 , and (4.117)

R3 : S3 −−−−→ S5 .

The functions hµ(n) are obtained by simple combinatorics

h1(n) = n1 n2 ,

h2(n) = n1 (n1 − 1)/2 , and

h3(n) = n3 ,

and the matrix S is of the form

S =




−1 −1 0
−1 0 0
+1 0 −1
+1 0 0
0 +1 +1




,

where the rows refer to molecular species, (S1,S3,S4,S5), and the columns
to individual reactions, (R1,R2,R3). The integers in S reflect the net pro-
duction of species per elementary reaction: Species S1 in reaction R2 has
a stoichiometric coefficient −2 on the reactant side sine two molecules are
consumed in one elementary step and a coefficient +1 on the product side
leading to s12 = −2 + 1 = −1 in the stoichiometric matrix S.

It is worth noticing that the functional form of hµ is determined exclusive
by the reactant side of Rµ. For mass action kinetics there is only one dif-
ference between the deterministic and the stochastic expressions: Since the
particles are counted exactly in the latter approach we have to use n(n−1)/2
instead of n2/2 because n − 1 is significantly different from n in small sys-
tems. The stoichiometric matrix S refers to the product side of the reaction
equations in the sense that products are counted with positive and reactants
with negative stoichiometric coefficients and the summation yields the net
production of molecular species per one elementary reaction event: skµ is the
number of molecules Sk produces by reaction Rµ, these numbers are integers
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and negative values indicate the number of molecules, which have disappeared
during one reaction. In the forthcoming analysis we shall make use of vectors
corresponding to individual reactions Rµ: νµ = (s1µ, . . . , sRµ)

t.
It is illustrative to consider the relation to conventional deterministic chem-

ical kinetics. If we denote the concentration vector of the molecular species
S by x = (x1, . . . , xM )t and the flux or rate vector by ϕ = (ϕ1, . . . , ϕM )t the
kinetic equation can be expressed by

dx

dt
= S · ϕ . (4.118)

The individual elements of the flux vector in mass action kinetics are

ϕµ = kµ

n∏

k=1

x
s
(R)
kµ

k for s
(R)
1µ S1 + s

(R)
2µ S2 + . . . + s

(R)
Mµ SN −→

wherein the factors s
(R)
kµ are the stoichiometric coefficients on the reactant

side of the reaction equations. It is sometimes useful to define analogous fac-

tors s
(P)
kµ for the product side, both classes of factors can be summarized in

matrices SR and SP and then the stochastic matrix is simply given by the dif-
ference S = SP−SR. We illustrate by means of the model mechanism (4.117)
in our example:

SP − SR =











0 +1 0
0 0 0
+1 0 0
+1 0 0
0 +1 +1











−











+1 +2 0
+1 0 0
0 0 +1
0 0 0
0 0 0











=











−1 −1 0
−1 0 0
+1 0 −1
+1 0 0
0 +1 +1











= S

We remark that the entries of SR and SP are nonnegative integers by defi-
nition. The flux ϕ has the same structure as in the stochastic approach, γµ
corresponds to the kinetic rate parameter or rate constant kµ and the com-
binatorial function hµ and the mass action product are identical apart from
the simplifications, e.g., (n− 1)⇒ n, for large particle numbers.

4.7.3 Occurrence of reactions

The probability of occurrence of reaction events within an infinitesimal time
interval dt is cast into three theorems:

Theorem 1. If ~X (t) = n, then the probability that exactly one Rµ will occur
in the system within the time interval [t, t+ dt[ is equal to

γµ hµ(n) dt + o( dt) ,

where o( dt) denotes terms that approach zero with dt faster than dt.



342 4 Chemical applications

Theorem 2. If ~X (t) = n, then the probability that no reaction will occur
within the time interval [t, t+ dt[ is equal to

1 −
∑

µ

γµ hµ(n) dt + o( dt) .

Theorem 3. The probability of more than one reaction occurring in the system
within the time interval [t, t+ dt[ is of order o( dt).

Proofs for all three theorems were derived by Daniel Gillespie and can be
found in [104, pp.420,421].

Based on the three theorems an analytical description can be derived for
the evolution of the population vector ~X (t). The initial state of the system

at some initial time t0 is fixed: ~X (t0) = n0. In almost all cases there is no
chance to derive an exact solution for the time evolution of the probability
function P (n, t|n0, t0) but a deterministic function for the differential change
of the probability for t ≥ t0 is readily obtained. We express the probability
P (n, t+ dt|n0, t0) as the sum of the probabilities of several mutually exclusive

and collectively exhaustive routes from ~X (t0) = n0 to ~X (t+ dt) = n. These
routes are distinguished from one another with respect to the event that
happened in the last time interval [t, t+ dt[:

P (n, t+ dt|n0, t0) = P (n, t|n0, t0) ×
(

1−
R
∑

µ=1

γµ hµ(n) dt + o( dt)

)

+

+

R
∑

µ=1

P (n− νµ, t|n0, t0) ×
(

γµ hµ(n− νµ) dt + o( dt)
)

+

+ o( dt) .

(4.119)

The different routes from ~X (t0) = n0 to ~X (t+ dt) = n are obvious from the
balance equation (4.119):

(i) One route from ~X (t0) = n0 to ~X (t + dt) = n is given by the first
term on the right-hand side of the equation: No reaction is occurring in the
time interval [t, t + dt[ and hence ~X (t) = n was fulfilled at time t. The

joint probability for route (i) is therefore the probability to be in ~X (t) = n

conditioned by ~X (t0) = n0 times the probability that no reaction has occurred

in [t, t+ dt[. In other words, the probability for this route is the probability
to go from n0 at time t0 to n at time t and to stay in this state during the
next interval dt.

(ii) An alternative route from ~X (t0) = n0 to ~X (t + dt) = n accounted
for by one particular term in sum of terms on the right-hand side of the
equation: An Rµ reaction is occurring in the time interval [t, t+ dt[ and hence
~X (t) = n − νµ was fulfilled at time t. The joint probability for route (ii) is
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therefore the probability to be in ~X (t) = n − νµ conditioned by ~X (t0) = n0

times the probability that exactly one Rµ reaction has occurred in [t, t+ dt[.
In other words, the probability for this route is the probability to go from n0

at time t0 to n−νµ at time t and to undergo an Rµ during the next interval
dt. Obviously, the same consideration is valid for every elementary reaction
and we have R terms of this kind.

(iii) A third possibility – neither no reaction nor exactly one reaction
chosen from the set {Rµ;µ = 1, . . . , R} – must inevitably invoke more than

one reaction within the time interval [t, t + dt[. The probability for such
events, however, is o( dt) or of measure zero by theorem 3.

All routes (i) and (ii) are mutually exclusive since different events are
taking place within the last interval [t, t+ dt[.

The last step to derive the chemical master equation is straightforward:
P (n, t|n0, t0) is subtracted from both sides in equation (4.119), then both
sides are divided by dt, the limit dt ↓ 0 is taken, all o( dt) terms vanish and
finally we obtain

∂

∂t
P (n, t|n0, t0) =

R∑

µ=1

(
γµ hµ(n− νµ)P (n− νµ|n0, t0)−

− γµ hµ(n)P (n, t|n0, t0)
)
.

(4.120)

Initial conditions are required to calculate the time evolution of the proba-
bility P (n, t|n0, t0) and we can easily express them in the form

P (n, t0|n0, t0) =

{
1 , if n = n0 ,

0 , if n 6= n0 ,
(4.120’)

which is precisely the initial condition used in the derivation of equa-

tion (4.119). Any sharp initial probability distribution P
(
nk, t0|n(0)

k , t0
)
=

δ(nk − n(0)
k ) is admitted for the molecular particle numbers at t0. The as-

sumption of extended initial distributions is, of course, also possible but the
corresponding master equations become more sophisticated.
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4.7.4 The simulation algorithm

The chemical master equation in the form (4.120) as derived from molecular
collisions in section 4.2.2 is the basis of Gillespie’s stochastic simulation al-
gorithm [106] and it is important to realize how the simulation tool fits into
the general theoretical framework of the chemical master equation. The algo-
rithm is not based on the probability function P (n, t|n0, t0) but on another
related probability density p(τ,µ|n, t), which expresses the probability that

given ~X (t) = n the next reaction in the system will occur in the infinitesimal
time interval [t+ τ, t+ τ + dτ [, and it will be an Rµ reaction.

Fig. 4.15 Partitioning of the time interval [t, t+ τ +dτ [. The entire interval is
subdivided into (k+1) nonoverlapping subintervals. The first k intervals are of equal
size ε = τ/k and the (k + 1)-th interval is of length dτ .

Within the frame of the theory of random variables, p(τ,µ|n, t) is the joint
density function of two random variables: (i) the time to the next reaction,
τ , and (ii) the index of the next reaction, µ. The possible values of the two
random variables are given by the domain of the real variable 0 ≤ τ < ∞
and the integer variable 1 ≤ µ ≤ R. In order to derive an explicit formula for
the probability density p(τ,µ|n, t) we introduce the quantity

α(n) =

R∑

µ=1

γµ hµ(n)

and consider the time interval [t, t + τ + dτ [ to be partitioned into k + 1
subintervals, k > 1. The first k of these intervals are chosen to be of equal
length ε = τ/k, and together they cover the interval [t, t + τ [ leaving the
interval [t + τ, t + τ + dτ [ as the remaining (k + 1)-th part (figure 4.15).

With ~X (t) = n the probability p(τ,µ|n, t) describes the event no reaction

occurring in each of the k ε-size subintervals and exactly one Rµ reaction in
the final infinitesimal dτ interval. Making use of theorems 1 and 2 and the
multiplication law of probabilities we find
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p(τ,µ|n, t) =
(
1 − α(n) ε + o(ε)

)k(
γµ hµ(n) dτ + o(dτ)

)

Dividing both sides by dτ and taking the limit dτ ↓ 0 yields

p(τ,µ|n, t) =
(
1 − α(n) ε + o(ε)

)k
γµ hµ(n)

This equation is valid for any integer k > 1 and hence its validity is also
guaranteed for k → ∞. Next we rewrite the first factor on the right-hand
side of the equation

(
1 − α(n) ε + o(ε)

)k
=

(
1 − a(n) kε + k o(ε)

k

)k
=

=

(
1 − α(n) τ + τ o(ε)/ε

k

)k
,

and take now the limit k → ∞ whereby we make use of the simultaneously
occurring convergence o(ε)/ε ↓ 0:

lim
k→∞

(
1 − α(n) ε + o(ε)

)k
= lim

k→∞

(
1− α(n) τ

k

)k
= e−α(n) τ .

By substituting this result into the initial equation for the probability density
of the occurrence of a reaction we find

p(τ,µ|n, t) = α(n)
γµ hµ(n)

α(n)
e−α(n) τ =

= γµ hµ(n) e
−∑R

ν=1 γνhν(n) τ .

(4.121)

Equation (4.121) provides the mathematical basis for the stochastic simu-

lation algorithm. Given ~X (t) = n, the probability density consists of two
independent probabilities where the first factor describes the time to the next

reaction and the second factor the index of the next reaction. These factors
correspond to two statistically independent random variables η1 and η2.
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4.7.5 Implementation of the simulation algorithm

Equation (4.121) is implemented now for computer simulation and we inspect
the probability densities of the two unit-interval uniform random variables η1
and η2 in order to find the conditions to be imposed of a statistically exact
sample pair (τ,µ): η1 has an exponential density function with the decay
constant α(n),

τ =
1

α(n)
ln
(
1
/
η1
)
, (4.122a)

and taking m to be the smallest integer which fulfils

µ = inf

{
m
∣∣∣

m∑

µ=1

cµ hµ(n) > α(n) η2

}
. (4.122b)

After the values for τ and µ have been determined the action advance the

state vector ~X (t) of the system is taking place:

~X (t) = n −→ ~X (t+ τ) = n+ νµ .

Repeated application of the advancement procedure is the essence of the
stochastic simulation algorithm. It is important to realize that this advance-
ment procedure is exact as far as η1 and η2 are obtained by fair samplings

from a unit interval uniform random number generator or, in other words,
the correctness of the procedure depends on the quality of the random num-
ber generator applied. Two further issues are important: (i) The algorithm
operates with internal time control that corresponds to real time of the chem-
ical process, and (ii) contrary to the situation in differential equation solvers
the discrete time steps are not finite interval approximations of an infinites-
imal time step and instead, the population vector ~X (t) maintains the value
~X (t) = n throughout the entire finite time interval [t, t+dτ [ and then changes

abruptly to ~X (t + τ) = n + νµ at the instant t + τ when the Rµ reaction
occurs. In other words, there is no blind interval during which the algorithm
is unable to record changes.

4.7.5.1 Structure of the simulation algorithm

The time evolution of the population in described by the vector ~X (t) = n(t),
which is updated after every individual reaction event. Reactions are cho-
sen from the set R = {Rµ;µ = 1, . . . , R}, which is defined by the reaction
mechanism under consideration. They are classified according to the crite-
ria listed in table 4.1. The reaction probabilities are contained in a vector

α(n) =
(
c1h1(n), . . . , cRhR(n)

)t
, which is also updated after every individ-
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Table 4.1 The combinatorial functions hµ(n) for elementary reactions. Re-
actions are ordered with respect to reaction order, which in case of mass action is
identical to the molecularity of the reaction. Order zero implies that no reactant
molecule is involved and the products come from an external source, for example
from the influx in a flow reactor. Orders 0, 1, 2, and 3 mean that zero, one, two or
three molecules are involved in the elementary step, respectively.

No. Reaction Order hµ(n)

1 ∗ −→ products 0 1

2 A −→ products 1 nA

3 A + B −→ products 2 nAnB

4 2A −→ products 2 nA(nA − 1)/2

5 A + B + C −→ products 3 nAnBnC

6 2A + B −→ products 3 nA(nA − 1)nB/2

7 3A −→ products 3 nA(nA − 1)(nA − 2)/6

ual reaction event. Updating is performed according to the stoichiometric
vectors νµ of the individual reactions Rµ, which represent columns of the
stoichiometric matrix S. We repeat that the combinatorial functions hµ(n)
are determined exclusively by the reactant side of the reaction equation
whereas the stoichiometric vectors νµ represent the net production, (prod-
ucts)−(reactants).
The algorithm comprises five steps:

(i) Step 0. Initialization: The time variable is set to t = 0, the initial values
of all N variables X1, . . . ,XN for the species – Xk for species Sk – are
stored, the values for the R parameters of the reactions Rµ, c1, . . . , cR,
are stored, and the combinatorial expressions are incorporated as factors
for the calculation of the reaction rate vectorα(n) according to table 4.1
and the probability density P (τ,µ). Sampling times, t1 < t2 < · · · and
the stopping time tstop are specified, the first sampling time is set to
t1 and stored and the pseudorandom number generator is initialized by
means of seeds or at random.

(ii) Step 1. Monte Carlo step: A pair of random numbers is created (τ,µ) by
the random number generator according to the joint probability function
P (τ,µ). In essence two explicit methods can be used: the direct method
and the first-reaction method.

(iii) Step 2. Propagation step: (τ,µ) is used to advance the simulation time
t and to update the population vector n, t → t + τ and n → n + νµ,
then all changes are incorporated in a recalculation of the reaction rate
vector a.

(iv) Step 3. Time control : Check whether or not the simulation time has been
advanced through the next sampling time ti, and for t > ti send current
t and current n(t) to the output storage and advance the sampling time,
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ti → ti+1. Then, if t > tstop or if no more reactant molecules remain
leading to hµ = 0 ∀ µ = 1, . . . , R, finalize the calculation by switching
to step 4, and otherwise continue with step 1.

(v) Step 4. Termination: Prepare for final output by setting flags for early
termination or other unforseen stops and send final time t and final n
to the output storage and terminate the computation.

A caveat is needed for the integration of stiff systems where the values of
individual variable can vary by many orders of magnitude and such a situation
might caught the calculation in a trap by slowing down time progress.

4.7.5.2 The Monte Carlo step

Pseudorandom numbers are drawn from a random number generator of suffi-
cient quality whereby quality is meant in terms of no or very long recurrence
cycles and a the closeness of the distribution of the pseudorandom numbers
r to the uniform distribution on the unit interval:

0 ≤ a < b ≤ 1 =⇒ P (a ≤ η ≤ b) = b − a .

With this prerequisite we discuss now two methods which use two output
values η of the pseudorandom number generator to generate a random pair
(τ,µ) with the prescribed probability density function P (τ,µ).

The direct method. The two-variable probability density is written as the
product of two one-variable density functions:

P (τ,µ) = P1(τ) · P2(µ|τ) .

Here, P1(τ) dτ is the probability that the next reaction will occur between
times t + τ and t + τ + dτ , irrespective of which reaction it might be, and
P2(µ|τ) is the probability that the next reaction will be an Rµ given that
the next reaction occurs at time t+ τ .

By the addition theorem of probabilities, P1(τ) dτ is obtained by summa-
tion of P (τ,µ) dτ over all reactions Rµ:

P1(τ) =

R∑

µ=1

P (τ,µ) . (4.123)

Combining the last two equations we obtain for P2(µ|τ)

P2(µ|τ) = P (τ,µ)
/ R∑

ν

P (τ,ν) (4.124)
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Equations (4.123) and (4.124) express the two one-variable density functions
in terms of the original two-variable density function P (τ,µ). From equa-
tion (4.121) we substitute into P (τ,µ) = p(τ,µ|n, t) through simplifying the
notation by using

αµ ≡ γµhµ(n) and α =

R∑

µ=1

αµ ≡
R∑

µ=1

γµhµ(n)

and find

P1(τ) = α exp(−α τ) , 0 ≤ τ <∞ and

P2(µ|τ) = P2(µ) = αµ

/
α , µ = 1, . . . , R .

(4.125)

As indicated, in this particular case, P2(µ|τ) turns out to be independent
of τ . Both one variable density functions are properly normalized over their
domains of definition:

∫ ∞

0

P1(τ) dτ =

∫ ∞

0

α e−ατ dτ = 1 and

R∑

µ=1

P2(µ) =

R∑

µ=1

αµ

α
= 1 .

Thus, in the direct method a random value τ is created from a random number
on the unit interval, η1, and the distribution P1(τ) by taking

τ = − ln η1
α

. (4.126)

The second task is to generate a random integer µ̂ according to P2(µ|τ) in
such a way that the pair (τ,µ) will be distributed as prescribed by P (τ,µ).
For this goal another random number, η2, will be drawn from the unit interval
and then µ̂ is taken to be the integer that fulfils

µ−1∑

ν=1

αν < η2 α ≤
µ∑

ν=1

αν . (4.127)

The values α1, α2, . . . , are cumulatively added in sequence until their sum
is observed to be equal or to exceed η2α and then µ̂ is set equal to the
index of the last αν term that had been added. Rigorous justifications for
equations (4.126) and (4.127) are found in [101, pp.431-433]. If a fast and
reliable uniform random number generator is available, the direct method
can be easily programmed and rapidly executed. This it represents a simple,
fast, and rigorous procedure for the implementation of the Monte Carlo step
of the simulation algorithm.

The first-reaction method. This alternate method for the implementation
of the Monte Carlo step of the simulation algorithm is not quite as efficient
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as the direct method but it is worth presenting here because it adds insight
into the stochastic simulation approach. Adopting again the notation αν ≡
γνhν(n) it is straightforward to derive

Pν(τ) dτ = αν exp(−αν τ) dτ (4.128)

from (4.114) and (4.115). Then, Pν(τ) would indeed be the probability at
time t for an Rν reaction to occur in the time interval [t+ τ, t+ τ + dτ [ were
it not for the fact that the number of Rν reactant combinations might have
been altered between t and t+ τ by the occurrence of other reactions. Taking
this into account, a tentative reaction time τν for Rν is generated according
to the probability density function Pν(τ), and in fact, the same can be done
for all reactions {Rµ}. We draw a random number ην from the unit interval
and compute

τν = − ln ην
αν

, ν = 1, . . . , R . (4.129)

From these R tentative next reactions the one, which occurs first, is chosen
to be the actual next reactions:

τ = smallest τν for all ν = 1, . . . , R ,

µ = ν for which τν is smallest .
(4.130)

Daniel Gillespie [101, pp.420-421] provides a straightforward proof that the
random (τ,µ) obtained by the first reaction method is in full agreement with
the probability density P (τ,µ) from equation (4.121).

It is tempting to try to extend the first reaction methods by letting the
second next reaction be the one for which τν has the second smallest value.
This, however, is in conflict with correct updating of the vector of particle
numbers, n, because the results of the first reaction are not incorporated into
the combinatorial terms hµ(n). Using the second earliest reaction would, for
example, allow the second reaction to involve molecules already destroyed in
the first reaction but would not allow the second reaction to involve molecules
created ion the first reaction.

Thus, the first reaction method is just as rigorous as the direct method
and it is probably easier to implement in a computer code than the direct
method. From a computational efficiency point of view, however, the direct
method is preferable because for R ≥ 3 it requires fewer random numbers
and hence the first reaction methods is wasteful. This question of economic
use of computer time is not unimportant because stochastic simulations in
general are taxing the random number generator quite heavily. For R ≥ 3
and in particular for large R the direct method is probably the method of
choice for the Monte Carlo step.
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4.7.5.3 The computer code

An early computer code of the simple version of the algorithm described – still
in FORTRAN – is found in [101]. Meanwhile many attempts were made in
order to speed-up computations and allow for simulation of stiff systems (see
e.g. [30]. A recent review of the simulation methods also contains a discussion
of various improvements of the original code [106].
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4.7.6 Examples of simulations



Chapter 5

Applications in biology

Nothing in biology makes sense except in the light of
evolution.
Theodosius Dobzhansky, 1972.

Abstract Stochastic phenomena are central to biological modeling: Small
numbers of molecules regulate and control genetics, epigenetics, and cellular
metabolism, and small numbers of well-adapted individuals drive evolution.
Reproduction, the basis of all processes in biology is autocatalysis in the lan-
guage of chemists and replication of the genetic molecules, DNA and RNA,
build the bridge between chemistry and biology. The earliest stochastic mod-
els in biology were applying branching processes to find answers to genealog-
ical questions like the fate of family names in pedigrees. Branching processes,
birth-and-death processes, and related stochastic models are frequently used
in biology and they will be defined, analyzed, and applied to typical problems.
Although the master equation is not so dominant in biology as it is chem-
istry, it is sufficiently important to justify a detailed presentations. Kimura’s
neutral theory of evolution makes use of a Fokker-Planck equation to de-
scribe population dynamics in the absence of fitness differences. Simulations
of stochastic reaction networks are a rapidly growing field as illustrated by
means of a few examples.

The population aspect is basic to biology, in particular it is highly impor-
tant in evolution and accordingly we introduce it here again. A population
vector

Π(t) =
(
N1(t), N2(t), . . . , Nn(t)

)
with Nk ∈ N0 , t ∈ R1

≥0 ,

counts the numbers of individuals for the different species1 Xk as a function
of time Nk(t). This definition states already that time will be considered as
a continuous variable and the use of counting implies that the numbers of
individuals are discrete. The basic assumptions thus are the same as in the
applications of master equations to chemical reaction kinetics (section 4.2.1).

1 In this chapter we use species in the sense of molecular species for any component
of a population vector Π = (N1, N2, . . . , Nn) and indicate by biological species the
genuine notion of species in biology.
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There is, however, a major difference between the molecular approach based
on elementary reactions on one hand side and macroscopic modeling as com-
monly used in biology on the other hand: The biological objects are no longer
single molecules or atoms but modules commonly consisting of a large number
of atoms or individual cells or organisms. Elementary step dynamics obeys
several conservation relations like conservation of mass or conservation of the
numbers of atoms for every chemical element – unless nuclear reactions are
admitted, and the laws of thermodynamics provide additional restrictive re-
lations. In the macroscopic models these relations are not violated, of course,
but they are hidden in complex networks of interactions, which appear in the
model only after averaging on several hierarchical levels. For example, con-
servation of mass and energy are encapsulated and obscured in the carrying
capacity K of the ecosystem as modeled by the logistic equation [292]:

dN

dt
= hN

(
1− N

K

)
and N(t)

N0K

N0 + (K −N0) exp(−ht)
, (5.1)

with N =
∑n

i=1Ni being the population size, h the so-called Malthus or
growth parameter,2 and N0 = N(0) representing the initial population size
at time t = 0. Consequently, numbers of individual species may change in
biological models, Nk(t) → Nk(t + ∆t) ± 1, without a compensation in an-
other variable. A similar situation in chemistry is happening in buffering

where a large molecular reservoir remains practically unchanged when a sin-
gle molecule is added or subtracted (see section 4.6.4 figure 4.13, and irre-
versible addition reaction in section 4.3.3.1). In other biological models, for
example in population genetics, the limitation of the population size is part
of the specific model, or as done most frequently normalized variables are
used. As indicated above the changes ±1 in the numbers of individuals imply
that the time interval considered is sufficiently short that multiple events can
be excluded. Exceptions are, of course, processes with m particles reacting in
a single event, for example mX→ . . . , where the changes are ±m. In biology
we can interpret the flow reactor (section 4.3.1) as a kind of idealized ecosys-
tem. The analogous processes to influx (4.1a) and outflux (4.1b) in biological
systems are migration, immigration and emigration, respectively.

A stochastic process on the population level is – by the same token as in
section 3.1 – a recording of time ordered successive events at times Ti:

T0 < T1 < T2 < . . . < Tk−1 < Tk < Tk+1 . . . ,
along a continuous time axis t.3 As an example we consider a birth event or
a death event at some time t = Tr, which creates or consumes one individual

2 the Malthus parameter is commonly denoted by r. Since r is defined as the flow
rate in the CSTR, we use here h in order to avoid confusion.
3 The application of discretized time in evolution – mimicking synchronized genera-
tions, for example – is straightforward and we shall discuss a specific case in detail
(section 5.2.1.2), because we focus here on continuous time birth-and-death processes
and master equations.
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according to the processes, Xj → 2Xj or Xj → ∅, respectively. Then the
population changes according to:

Π =







(

. . . , Nj(t) = Nj(Tr−1), Nk(t) = Nk(Tr−1), . . .
)

for Tr−1 ≤ t < Tr
(

. . . , Nj(t) = Nj(Tr−1)± 1, Nk(t) = Nk(Tr−1), . . .
)

for Tr ≤ t < Tr+1

.

This formulation of a biological birth or death events reflects the previ-
ously mentioned convention in probability theory: Right-hand continuity is
assumed for steps in stochastic processes (see figure 1.9).

Compared to stochasticity in chemistry stochastic phenomena in biology
are not only more important but also much harder to control. The major
sources of the problem are small population numbers and the lack of suffi-
ciently simple references systems that are accessible to experimental studies.
In biology we are regularly encountering reaction mechanisms that lead to
enhancement of fluctuations at non-equilibrium conditions and biology in
essence is dealing with processes and stationary states far away from equilib-
rium whereas in chemistry autocatalysis in non-equilibrium systems became
an object of general interest and intensive investigation not before some forty
years ago. We start therefore with the classification and analysis of simple
autocatalytic processes at the ODE level (section 5.1). In section 5.2 we
present an overview of the various stochastic processes that are popular in
biology: branching processes (section 5.2.1), solvable birth-and-death pro-
cesses including boundaries in form of different barriers (section 5.2.2), and
special biological models (section 5.2.3). Then, we discuss the usage of mas-
ter equations in stochastic modeling of biological phenomena (section 5.3).
A section on discrete time processes follows, which are important in biology
when synchronization occurs with external or internal pace makers, for ex-
ample seasons (the relation between discrete and continuous time models is
discussed by means of a specific example in section 5.2.1.2). Random selection
occurs in case of selective neutrality as postulated in the neutral theory of
evolution (section 5.3.2) and finally, we shall present examples of numerical
analysis and simulation of stochastic processes in biology (section 5.5).
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5.1 Autocatalysis and growth

Autocatalysis in its simplest form is found in the bimolecular reaction (4.1g):
A + X→ 2X. In the previous chapter 4 we studied already bimolecular reac-
tions, the addition and the dimerization reaction, which allowed for analytical
solution and which gave rise to conventional or perfectly normal behavior, al-
though the analysis and the solutions were quite sophisticated (section 4.3.3).
The nonlinearity in the kinetic equation became manifest in the task to find
solutions but did not change effectively the qualitative behavior of the reac-
tion systems, for example the

√
N -law for the fluctuations in the stationary

states retained in essence its validity.
The simplest conceivable autocatalytic reaction mechanism consists of two

elementary steps, reproduction and extinction, and will be studied as an ex-
ample for an exactly solvable birth-and-death process in section 5.2.2. In
this case the

√
N -law is not valid and fluctuations do not settle down to

some value which is proportional to the square root of the size of the sys-
tem but grow in time without limit as we saw in case of the Wiener pro-
cess (section 3.2.3.2). Here, we shall set the stage by reviewing the most
relevant results from conventional deterministic autocatalysis [240, pp. 9-75]
(section 5.1.1 and 5.1.2). A short glance of the relation between autocatalysis
and growth (section 5.1.3) ends the section.

5.1.1 Autocatalysis in closed systems

Autocatalysis in its simplest form is described by the single reaction step

A + nX

k1

−−−−→←−−−−
h1

(n+ 1)X , (5.2)

which for small n is already contained in equation (4.1): n = 0 represents the
uncatalyzed monomolecular conversion reaction (4.1c) A ⇋ X , and n = 1
is the bimolecular reaction of first order autocatalysis (4.1g). Equation (5.2)
with n = 2 corresponds to a termolecular reaction4 which is representative for
second and higher order autocatalysis. It is a frequently used component of
mechanisms exhibiting unconventional nonlinear behavior (see section 5.1.3).

4 Termolecular and higher reaction steps are commonly neglected in mass action ki-
netics because they require a highly improbable encounter of three molecules. They
are nevertheless frequently used in models and simplified kinetic mechanisms, exam-
ples are the Schlögl model [254] and the Brusselator model [224]. The Oregonator
model [79, 80, 252] is a five step mechanism showing similar behavior without a
termolecular step. Both, Brusselator and Oregonator are simplified models for the
Belousov-Zhabotinsky reaction [305].
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Fig. 5.1 Autocatalysis in a closed system. The concentration of the substance X
as a function of time, x(t), according to equation (5.5) is compared for the uncatalyzed
first order reaction A → X (n = 0; black curve), for the first order autocatalytic
process A+X→ 2X (n = 1; red curve), and for the second order autocatalytic process,
A+2X→ 3X (n = 2 green curve). The following initial conditions and rate parameters
were chosen: x0 = 0.01, c0 = a(t) + x(t) = 1 (normalized concentrations), h1 =
0 (irreversible reaction), and k1 = 0.13662, 0.9190 and 20.519 for the uncatalyzed
process, the first order and the second order autocatalytic process, respectively. The
rate parameters k1 are chosen such that all curves pass the point (x, t) = (0.5, 5).

Still higher autocatalytic elementary steps, n ≥ 3, give rise to qualitative
behavior that is very similar to the case n = 2.

In the case of mass action kinetics autocatalysis is modeled by the differ-
ential equation

dx

dt
= − da

dt
= k1 x

n a − h1 x
n+1 . (5.3)

The variables are the concentrations of molecular species: x(t) = [X ] and
a(t) = [A] with the initial concentrations x(0) = x0 and a(0) = a0 and the
conservation relation x(t)+a(t) = c0.

5 Equation (5.3) can be solved by means
of the integral [109, p.106]:

∫
dx

xn(α+ βx)
=

n−1∑

k=1

(−1)k βk−1

(n− k)αk xn−k +
(−1)n βn−1

αn
ln
α+ βx

x
.

with α = k1c0, β = −(k1 + h1), and n ∈ N>0. For the special case n = 0 we
have

∫
dx/(α+ βx) = ln(α+ βx)/β.

5 The conservation law is a result of mass conservation in the closed system considered
here.
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It is not possible to derive an explicit expression x(t) in general but then
the analysis of the implicit equation, t(x) turns out to be quite useful too:

t(x) =

n−1
∑

k=1

(−1)k βk−1

(n − k)αk

(

1

xn−k
− 1

xn−k
0

)

+
(−1)n βn−1

αn
ln

(α+ βx) x0

x (α+ βx0)
. (5.4)

For numerical calculations of the solution curves it makes practically no dif-
ference whether one considers x(t) or t(x).

In figure 5.1 the curves x(t) for first order, A + X→ 2X and second order
autocatalysis A + 2X → 3X are compared with the corresponding curve for
the uncatalyzed process, A→ X:

n = 0 : x(t) =
1

k1 + h1

(

k1c0 + (h1x0 − k1a0) e
−(k1+h1) t

)

, (5.5a)

n = 1 : x(t) =
k1 c0 x0

(k1 + h1)x0 (1− e−k1c0 t) + k1c0 e−k1c0 t
, (5.5b)

n = 2 : t(x) =
1

k1c0

(

x− x0

x x0

+
k1 + h1

k1 c0
ln

(

(k1 + h1)x0 − k1c0
)

x
(

(k1 + h1)x− k1c0
)

x0

)

. (5.5c)

All three curves approach the final state monotonously – this is the state of
complete conversion of A into X, limt→∞ x(t) = 1, because we have chosen
h1 = 0. Both curves for autocatalysis show self-enhancement at low con-
centrations of the autocatalyst X, pass through an inflection point, and then
approach the final state in form of relaxation kinetics. The difference between
first and second order autocatalysis manifests itself in the steepness of the
curve, i.e. the value of the tangent at the inflection point, and is remarkably
large. In general holds: The higher the coefficient of autocatalysis, the steeper
is the curve; already for second order it is close to a step function.

Inspection of equation 5.5 reveals three immediate results:

(i) The autocatalytic reactions require a seeding amount of X, since x0 = 0
has the consequence x(t) = 0 ∀ t,

(ii) for sufficiently long time the system approaches a stationary state cor-
responding to chemical equilibrium

lim
t→∞

x(t) = x̄ =
k1

k1 + h1
c0 and lim

t→∞
a(t) = ā =

h1
k1 + h1

c0 , and

(iii) The function x(t) increases or decreases monotonously for t > 0 de-
pending on whether x0 < x̄ or x0 > x̄ holds.
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Fig. 5.2 Stationary states of autocatalysis in the flow reactor. The upper
plot shows avoided crossing in first order autocatalysis (n = 1) when the uncatalyzed
reaction is included. Parameter values: k1 = 1, h1 = 0.01, c0 = 1, κ = 0 (black and
red), κ = 0.001, 0.01, and 0.1 (grey and pink). The uncatalyzed reaction (blue) is
shown for comparison. The lower plot refers to second order autocatalysis (n = 2)
and shows shrinking of the range of bistability as a function of the parameter κ.
Parameter values: k1 = 1, h1 = 0.01, c0 = 1, κ = 0 (black and red), κ = 0.0005 and
0.002 (grey and pink). Again, the uncatalyzed reaction is shown in blue. The upper
stable branch in the bistability range is called equilibrium branch, the lowest branch
represent the state of extinction.
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5.1.2 Autocatalysis in open systems

The continuously stirred tank reactor (CSTR) is an appropriate open system
to study chemical reactions under controlled conditions (figure 4.7). Material
consumed during the reaction flows contained in solution into the reactor and
the volume increase is compensated by an outflow of reaction mixture. The
flow rate is r and represents the reciprocal mean residence time of a volume
element in the reactor: r = τ −1

v
. Substance A flows into the reactor with a

concentration c0 int he stock solution, and all substances being present int
the reactor flow out by the same rate r. Both parameters, r and c0, can be
easily varied in experiments. The reaction is initiated by injection of a seeding
amount of X, x0. The reaction mechanism is of the form

∗
c0 r

−−−−→ A ,

A + nX
k1

−−−−→←−−−−
h1

(n+ 1)X ,

A
r

−−−−→ ∅ , and

X
r

−−−−→ ∅ .

(5.6)

The stoichiometric factor n again distinguishes different cases, the uncat-
alyzed reaction with n = 0, first order autocatalysis with n = 1, and second
or higher order autocatalysis with n ≥ 2. Two kinetic differential equations
are required to describe the temporal changes, because the concentrations a
and x are now independent:

da

dt
= − k1 a xn + h1 x

n+1 + r (c0 − a)
dx

dt
= k1 a x

n − h1 x
n+1 − r x .

(5.7)

The sum of the concentrations, c(t) = a(t) + x(t), however, converges to the
concentration or A in the stock solution, c0, since

dc

dt
= r (c0 − c) .

The relaxation time towards the stable steady state c(t) = c̄ = c0 is the mean
residence time, τv = r−1, and accordingly, different orders of autocatalysis,
n, have no in influence on the relaxation time.

Steady states analysis, da/ dt = 0 and dx/ dt = 0, reveals three dif-
ferent scenarios sharing the limiting cases: At vanishing flow rate r the
system approaches thermodynamic equilibrium with x̄ = k1c0/(k1 + h1),
ā = h1c0/(k1 + h1) and K = k1/h1, and no reaction occurs at sufficiently
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Fig. 5.3 Stationary states of higher order autocatalysis in the flow reactor.
The curves show the range of bistability for different orders autocatalysis (n = 2, 3,
4, and 5 from right to left) and the parameters k1 = 1, h1 = 0.01, and c0 = 1.
The two stable branches, the thermodynamic branch (upper branch) and the state of
extinction (x̄ = 0) are shown in black, the intermediate unstable branch is plotted in
red. The vertical dotted lines indicate the critical points of the subcritical bifurcations.

large flow rates, r > rcr, when the mean residence time is too short to sus-
tain changes due to the reaction and then we have x̄ = 0 and ā = c0 for
lim r → ∞. In the intermediate range, at finite flow rates 0 < r < rcr, we
observe:

(i) The unique steady state for the uncatalyzed process, n = 0, A ⇋ X
fulfils

x̄ =
k1 c0

k1 + h1 + r
and ā =

(h1 + r) c0
k1 + h1 + r

and show monotonous change from equilibrium to no reaction.
(ii) In case of first order autocatalysis, n = 1, steady state conditions yield

two solutions,

x̄1 =
k1c0 − r
k1 + h1

, ā1 =
h1c0 + r

k1 + h1
and x̄2 = 0 , ā2 = c0 . (5.8)

The first solution P1 = (x̄1, ā1) is stable in the range 0 ≤ r < k1c0
whereas solution P2 = (x̄2, ā2) shows stability at high flow rates r >
k1c0. The change from the active state P1 to the state of extinction, P2,
occurs abruptly at the transcritical bifurcation point r = k1c0 (See the
solution for κ = 0 in figure 5.2).6

6 Bifurcation analysis is a standard topic in the theory of nonlinear systems. Mono-
graphs oriented towards practical application are, for example, [142, 143, 260].
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(iii) Second and higher order autocatalysis (n ≥ 2) allow for a common
treatment. The steady condition yields7

r(x̄) = k1c0 x̄
n−1 − (k1 + h1) x̄

n .

Points with a horizontal tangent to r(x̄), defined by dr/dx̄ = 0, in an
(x̄, r)-plot are points with a vertical tangent to the function x̄(r), which
represent subcritical or other bifurcation points (figure 5.2). Such points
correspond to maximal or minimal values of r at which branches of x̄(r)
end and they can be computed analytically:

x̄(rmax) =
n− 1

n
· k1 c0
k1 + h1

for n ≥ 2 and x̄(rmin) = 0 for n ≥ 3 ,

with the corresponding flow rates

rmax =

(
n− 1

k1 + h1

)n−1

·
(
k1 c0
n

)n
and rmin = 0 .

In figure 5.3 the bifurcation patterns for second and higher order autocatalysis
in the flow reactor are compared. All four curves show a range of bistability,
rmin < r < rmax, with two stable stationary states (black in the figure) that
are separated by one unstable state (red in the figure). In case of second order
autocatalysis, n = 2, the lower limit is built by vanishing flow rate, r = 0, for
n = 3, 4, and 5 the lower limit is given by the minimum of the function r(x̄),
which coincides with r = 0. An increase in the values of n causes the range
of bistability to shrink.

The three cases, n = 0,1, and n ≥ 2, provide an illustrative example for the
role of a nonlinearity in chemical reactions: The uncatalyzed reaction shows a
simple decay to the stationary state with a single negative exponential func-
tion. In closed systems all autocatalytic processes have characteristic phases,
consisting of a growth phase with a positive exponential at low concentration
of the autocatalyst and the (obligatory) relaxation phase with a negative ex-
ponential at concentrations sufficiently close to equilibrium (figure 5.1). In the
flow reactor the nonlinear systems exhibit characteristic bifurcation patterns
(figure 5.2): First order autocatalysis gives rise to a rather smooth transition
in the form of a transcritical bifurcation from the equilibrium branch to the
state of extinctions, whereas for n ≥ 2 the transitions are abrupt and as
characteristic for a subcritical bifurcation chemical hysteresis is observed.

All cases of autocatalysis in the flow reactor (n > 0) discussed so far
contradict a fundamental theorem of thermodynamics stating the uniqueness
of the equilibrium state. Only a single steady state may occur in the limit
lim r → 0. The incompatibility of the model mechanism (5.6) with basic

7 Similarly as in the case of the time dependence in the closed system, expressed by
equation (5.5c), we make use of the uncommon implicit function r = f(x̄) than the
direct relation x̄ = f(r).
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thermodynamics can be corrected by fulfilling the principle: Any catalyzed
reaction requires the existence of an uncatalyzed process that approaches the
same equilibrium state or, in other words, a catalyst accelerates the forward
and the backward reaction by the same factor. Accordingly we have to add
the uncatalyzed process to the reaction mechanism (5.6)

A

k1·κ
−−−−→←−−−−
h1·κ

X . (5.6a)

The parameter κ represents the ratio of the rate parameters of the uncat-
alyzed and the catalyzed reaction. In figure 5.2 we show the effect of nonzero
values of κ on the bifurcation pattern. In first order autocatalysis the trans-
critical bifurcation disappears through a phenomenon known in linear algebra
as avoided crossing: Two eigenvalues, λ1 and λ2 of a 2×2 matrix A plotted as
functions of parameter p cross at some critical value: λ1(pcr) = λ2(pcr) avoid
crossing when the variation of a second parameter, q, causes an off-diagonal
element of A to change for zero to some non-zero value. Parameter p is repre-
sented by the flow rate r and parameter q by κ in the figure. The two steady
states are obtained as solutions of a quadratic equation

x̄1,2 =
1

2(k1 + h1)
·

·
(

k1c0 − κ(k1 + h1)− r ±
√

(

k1c0 − κ(k1 + h1)− r
)

+ 4k1c0κ(k1 + h1)

)

.

In the limit κ→ 0 we obtain the solutions (5.8) and in the limit of vanishing
flow, lim r → 0, we find x̄1 = k1c0/(k1 + h1) and x̄2 = −κ. As demanded by
thermodynamics only one solution, x̄1, the equilibrium state P1 = (x̄1, ā1)
for r = 0 occurs within the physically meaningful domain of nonnegative
concentrations whereas the second steady state P2 = (x̄2, ā2) for r = 0, has
a negative value of the concentration of the autocatalyst.

5.1.3 Unlimited growth

It is worth considering different classes of growth functions y(t) and the
behavior of long time solutions of the corresponding ODEs. An intimately
related problem concerns population dynamics: What is the long time dis-
tribution of genotypes in a normalized population,

(
x1(t), x2(t), . . . , xN (t)

)

with
∑N
i=1 xi(t) = 1, provided the initial distribution at time t = 0 has been(

x1(0), x2(0), . . . , xN (0)
)
? Is there a universal long time distribution that is

characteristic for certain classes of growth functions?
The results presented below are obtained within the frame of the ODE

model, i.e. neglecting stochastic phenomena caused by small particle numbers.
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Fig. 5.4 Typical functions describing unlimited growth. All functions are
normalized in order to fulfil the conditions y(0) = 1 and dy/dt|y=0 = 1. The individual
curves show hyperbolic growth (y(t) = 1/(1 − t); magenta; the dotted line shows
the position of the instability), exponential growth (y(t) = exp(t); red), parabolic
growth (y(t) = (1+ t/2)2; blue), linear growth (y(t) = 1+ t; black), sublinear growth
(y(t) =

√
1 + 2t; turquoise), logarithmic growth (y(t) = 1 + log(1 + t); green), and

sublogarithmic growth (y(t) = 1 + t/(1 + t); yellow; the dotted line indicates the
maximum value ymax: limt→∞ y(t) = ymax).

The differential equation describing unlimited growth,

dy

dt
= f · yn (5.9)

yields two types of general solutions for the initial value y(0) = y0

y(t) =
(
y 1−n
0 + (1− n)ft

)1/(1−n)
for n 6= 1 and (5.9a)

y(t) = y0 · e ft for n = 1 . (5.9b)

In order to make the functions comparable we normalize them in order to
fulfil y(0) = 1 and dy/dt|t=0 = 1. According to equations (5.9) this yields
y0 = 1 and f = 1. The different classes of growth functions as shown in
figure 5.4 are characterized by the following behavior:

(i) Hyperbolic growth requires n > 1; for n = 2 it yields the solution
curve of the y(t) = 1/(1 − t). Characteristic is the existence of an
instability in the sense that y(t) approaches infinity at some critical
time, limt→tcr = ∞ with tcr = 1. The selection behavior is illustrated
by the Schlögl model: Depending on the initial conditions each of the
replicators can be selected. Xm the species with the highest replication
parameter, fmm = max{fii; i = 1, 2, . . . , N} has the largest basin of
attraction. After selection has occurred a new species Xk is extremely
unlikely to replace the current species even if its replication parameter
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is substantially higher, fkk > fmm. We are dealing with once for ever

selection.
(ii) Exponential growth is observed for n = 1 and described by the so-

lution y(t) = e t. It represents the most common growth function
in biology. The species with the highest replication parameter Xm,
fm = max{fi; i = 1, 2, . . . , N}, is always selected on the population
level, limt→∞ xm = 1. Injection of a new species Xk with a still higher
replication parameter, fk > fm, leads to selection of the fitter variant
Xk.

(iii) Parabolic growth occurs for 0 < n < 1 and for n = 1/2 has the solution
curve y(t) = (1 − t/2)2. It is observed, for example, in enzyme free
replication of oligonucleotides that form a stable duplex, i.e. a complex
of one plus and one minus strand.

(iv) Linear growth follows from n = 0 and takes on the form y(t) = 1 + t.
Linear growth is observed, for example, in replicase catalyzed replication
at enzyme saturation.

(v) Sublinear growth occurs for n < 0. In particular, for n = −1 gives rise
to the solution y(t) = (1 + 2t)1/2 =

√
1 + 2t.

In addition we mention also two additional forms of weak growth that do not
follow from equation (5.9):

(vi) Logarithmic growth that can be expressed by the function y(t) = y0 +
ln(1 + ft) or y(1) = 1 + ln(1 + t) after normalization, and

(vii) sublogarithmic growth modeled by the function y(t) = y0 + ft/(1 + ft)
or y(t) = 1 + t/(1 + t) in normalized form.

Hyperbolic growth, parabolic growth, and sublinear growth in figure 5.4 con-
stitute families of solution curves defined by a certain parameter range, for
example a range of exponents nlow < n < nhigh, whereas exponential growth,
linear growth and logarithmic growth represent critical curves separating
zones of characteristic behavior. Logarithmic growth separates growth func-
tions approaching infinity in the limit t → ∞, limt→∞ y(t) = ∞ from those
that remain finite, limt→∞ y(t) = y∞ <∞. Linear growth separates concave
from convex growth functions, and exponential growth eventually separates
growth functions that reach infinity at finite times from those that don’t.

We summarize this section by comparing growth behavior and character-
istic dynamics of autocatalysis. Subexponential growth allows for coexistence
whereas superexponential growth gives rise to selection that depends on an
initial population Π(0) = Π0. Only the intermediate case of exponential
growth results in population independent selection with the Malthus param-
eter or the fitness of species as selection criterion. It is not accidental therefore
that in terms of autocatalysis exponential growth is the result of first order
autocatalysis, which in discrete time corresponds to a growth and division
process – X→ X∗ → 2X with X∗ being a cell after the internal growth phase
during which the genetic material has been duplicated – and which is univer-
sal for all cells in biology.
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5.2 Stochasticity in biology

In this section we shall discuss several approaches to models of stochastic pro-
cesses used in biology. These model some specific insights into mechanisms
that are missing in applications of the general formalisms like master and
Fokker-Planck equations. In particular we shall discuss branching processes
(section 5.2.1), birth-and-death processes (section 5.2.2) as well as some spe-
cific models in population biology like the Wright-Fisher process and the
Moran process (section 5.2.3) before we discuss the general treatment of bi-
ological processes by master equations (section 5.3).

5.2.1 Branching processes

According to David Kendall’s historical accounts on the centennial of the
beginnings of stochastic thinking in population mathematics [154, 155] the
name branching process was coined only late by Kolmogorov and Dmitriev
in their 1947 paper [169]. The interest in stochasticity of the evolving popu-
lations, however, is much older. The origin of the problem is the genealogy
of human males, which is reflected by the development of family names or
surnames in the population. Commonly the stock of family names is eroded
in the sense of steady disappearance of families in particular in small com-
munities. The problem was clearly stated in a book by Alphonse de Candolle
[29] and has been brought up by Sir Francis Galton after he had read de
Candolle’s book. The first rigorous mathematical analysis of a problem by
means of a branching process is commonly assigned to Galton and Reverend
Henry William Watson [300], the Galton-Watson process named after them
has become a standard problem in branching processes. Apparently, Galton
and Watson were not aware of earlier work on this topic [128], that had been
performed almost thirty years before by Jules Bienaymé and was reported in a
publication [18]. Most remarkable Bienaymé discussed already the criticality
theorem, which expresses different behavior of the Galton-Watson process for
m < 1, m = 1, and m > 1, where m denotes the expected or mean number of
sons per father. The three cases were called subcritical, critical, and supercrit-

ical, respectively, by Kolmogorov [168]. Watson’s original work contained a
serious error in the analysis of the supercritical case and this was not detected
and reported during more than fifty years before Johan Steffensen published
his work on this topic [266]. In the years after 1940 the Galton-Watson model
received plenty of attention because of the analogies of genealogies and nu-
clear chain reactions. In addition, mathematicians became generally more
interested in probability theory and stochasticity. The pioneering work re-
lated to nuclear chain reactions and criticality of nuclear reactors was done
by Stan Ulam at the Los Alamos National Laboratory [125, 63, 64, 65, 66].
Many other applications to biology and physics were found and branching
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processes have been studied intensively. By now, it seems, we have a clear
picture on the Galton-Watson process and its history [155].

5.2.1.1 The Galton-Watson process

A Galton-Watson process [300] deals with the generation of objects from
objects of the same kind in the sense of reproduction. These objects can
be neutrons, bacteria, or higher organisms, or men as in the family name
genealogy problem. The Galton-Watson process is the simplest possible de-
scription of consecutive reproduction and falls into the class of branching
processes. Recorded are only the population sizes of successive generations,
which are considered as random variables: Z0,Z1,Z2, . . . . A question of in-
terest is the extinction of a population in generation n, and this simply means
Zn = 0 from which follows that the random variables are zero in all future
generations: Zn+1 = 0 if Zn = 0. Indeed, the extinction or disappearance of
aristocratic family names was the problem that Galton wanted to model by
means of a stochastic process. In the following presentation and analysis we
make use of the two books [9, 120].

In mathematical terms the Galton-Watson process is a Markov chain
(Zn; n ∈ N0) on the nonnegative integers. The transition probabilities are
defined in terms of a given probability function Prob{Z1 = k} = pk; k ∈ N0

with pk ≤ 0,
∑
pk = 1 have the

P (i, j) = Prob{Zn+1 = j|Zn = i} =

{
p∗ij if i ≥ 1, j ≥ 0 ,

δ0,j if i = 0, j ≥ 0 ,
(5.10)

wherein δij is the Kronecker delta8 and {p∗ik ; k ∈ N0} is the i-fold convolution
of {pk; k ∈ N0}, and accordingly the probability mass function f(k) = pk is
the only datum of the process. The use of the convolution of the probability
distribution is an elegant mathematical trick for the rigorous analysis of the
problem. Convolutions in explicit form are quite difficult to handle as we shall
see in the case of the generating function. Nowadays one can use computer
assisted symbolic computation but in Galton’s times, in the 19th century
handling of higher convolutions was quite hopeless.

The process describes an evolving population of particles or individuals and
it might be useful although not necessary to define a time axis. The process
starts with Z0 particles at time T = 0, each if which produces – independently

8 The Kronecker delta is named after the German mathematician Leopold Konecker
and represents the discrete analogue of Dirac’s delta function:

δij =

{

0 if i 6= j ,

1 if i = j .
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Fig. 5.5 Continued on next page.
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Fig. 5.5 Calculation of extinction probabilities for the Galton-Watson pro-
cess. The individual curves show the iterated generating functions of the Galton-
Watson process, g0(s) = s (black), g1(s) = g(s) = p0+p1s+p2s2 (red), g2(s) (orange),
g3(s) (yellow), and g4(s) (green), for different probability densities p = (p0, p1, p2).
Choice of parameters: supercritical case (upper part) p = (0.1, 0.2, 0.7), m = 1.6;
critical case (middle part) p = (0.15, 0.7, 0.15), m = 1; subcritical case (lower part)
p = (0.7, 0.2, 0.1), m = 0.4.

of the others – a random number of offspring offspring at time T = 1 according
to the probability density f(k) = pk. The total number of particles in the first
generation, Z1 is the sum of all Z0 random variables where each was drawn
according to the pmf f(pk). The first generation produces Z2 particles at time
T = 2, the second generation gives rise to the third with Z3 particles at time
T = 3, and so on. Since discrete times Tn are equivalent to the numbers of
generations n we shall refer only to generations ion the following. From (5.10)
follows that the future development of the process at any time is independent
of the history and this constitutes the Markov property.

The number of offspring produced by a single parent particle in the n-th

generation is a random variable Z(1)
n where the superscript indicates Z0 = 1.

In general we shall write for the branching process (Z(i)
n ; n ∈ N0) when we

want to express that the process started with i particles. Since i = 1 is the by

far most common case, we write simply Zn instead of Z(1)
n . Equation (5.10)

tells that Zn+k = 0 ∀ k ≥ 0 if Zn = 0. Accordingly, the state Z = 0 is
absorbing and reaching Z = 0 is tantamount to becoming extinct.

In order to analyze the process we shall make use of the probability gen-
erating function

g(s) =

∞∑

k=0

pk s
k , |s| ≤ 1 , (5.11)

where s is complex in general but we shall assume here s ∈ R1. In addition,
we define the iterates of the generating function:

g0(s) = s , g1(s) = g(s) , gn+1(s) = g
(
gn(s)

)
, n = 1, 2, . . . . (5.12)

Expressed in terms of transition probabilities the generating function is of
the form

∞∑

j=0

P (1, j) sj = g(s) and

∞∑

j=0

P (i, j) sj =
(
g(s)

)i
, i ≥ 1 . (5.13)

Denoting the n-step transition probability by Pn(i, j) and using the Chapman-
Kolmogorov equation we obtain
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∞∑

j=0

Pn+1(1, j) s
j =

∞∑

j=0

∞∑

k=0

Pn(1, k)P (k, j) s
j =

=

∞∑

k=0

Pn(1, k)

∞∑

j=0

P (k, j) sj =

=
∞∑

k=0

Pn(1, k)
(
g(s)

)k
.

Writing g(n) =
∑
j Pn(1, j) s

j the last equation has shown that

g(n+1)(s) = g(n)
(
g(s)

)

which yields the fundamental relation

g(n)(s) = gn(s) , (5.14)

and by making use of Equ. (5.13) we find

∞∑

j=0

Pn(i, j) s
j =

(
gn(s)

)i
. (5.15)

Equ. (5.14) expressed as“The generating function ofZn is the n-iterate gn(s)”,
provides a tool for the calculation of the generating function. As stated in
Equ. (5.10) the probability distribution of Zn is obtained as the n-th convo-
lution or iterate of g(s). The explicit form of an n-th convolution is hard to
compute and the true value of (5.14) lies in the calculation of the moments
of Zn and in the possibility to derive asymptotic laws for large n.

For the purpose of illustration we present the first iterates of the simplest
useful generating function

g(s) = p0 + p1 s + p2 s
2 .

The first convolution g2(s) = g
(
g(s)

)
contains ten terms already:

g2(s) = p0 + p0p1 + p20p2 + (p21 + 2p0p1p2) s+

+ (p1p2 + p21p2 + 2p0p
2
2) s

2 + 2p1p
2
2 s

3 + p32 s
4.

The next convolution, g3(s), contains already nine constant terms that con-
tribute to the probability of extinction gn(0), and g4(s) already 29 terms.

It is straightforward to compute the moments of the probability distribu-
tions from the generating function:



5.2 Stochasticity in biology 371

∂g(s)

∂s
=

∞∑

k=0

k pk s
k−1 and

∂g(s)

∂s

∣∣∣
s=1

= E(Z1) = m , (5.16a)

∂2g(s)

∂s2
=

∞∑

k=0

k(k − 1) pk s
k−2 and

∂2g(s)

∂s2

∣∣∣
s=1

= E(Z2
1 ) − m ,

var(Z1) =
∂2g(s)

∂s2

∣∣∣
s=1

+m − m2 = σ2 . (5.16b)

Next we calculate the moments of the distribution in higher generations and
differentiate the last expression in Equ. 5.12 at |s| = 1:

∂gn+1(s)

∂s

∣∣∣
s=1

=
∂g(s)

∂s

(
gn(s)

∣∣∣
s=1

) ∂gn(s)
∂s

∣∣∣
s=1

=

=
∂g(s)

∂s

∣∣∣
s=1

∂gn(s)

∂s

∣∣∣
s=1

and

E(Zn+1) = E(Z)E(Zn) or E(Zn) = mn ,

(5.17)

by induction. Provided the second derivative of the generating function at
|s| = 1 is finite, Equ. 5.12 can be differentiated twice:

∂2gn+1(s)

∂s2

∣∣∣
s=1

=
∂g(s)

∂s

∣∣∣
s=1

∂2gn(s)

∂s2

∣∣∣
s=1

+
∂2g(s)

∂s2

∣∣∣
s=1

(∂gn(s)
∂s

∣∣∣
s=1

)2
,

and ∂2g(s)
/
∂s2

∣∣
s=1

is obtained by repeated application. The final result
is:

var(Zn) = E(Z2
n) − E(Zn)2 =

{
σ2mn (mn−1)
m (m−1) , if m 6= 1

nσ2 , if m = 1
. (5.18)

Thus, we have E(Zn) = mn and provided σ = var(Z1) < ∞ the variances
are given by Equ. (5.18).

Two more assumptions are made to simplify the analysis: (i) Neither the
probabilities p0 and p1 nor their sum are equal to one, p0 < 1, p1 < 1, and
p0 + p1 < 1, and this implies that g(s) is strictly convex on the unit interval
0 ≤ s ≤ 1, and (ii) the expectation value E(Z1) =

∑∞
k=0 k pk is finite, and

from the finiteness of the expectation value follows ∂g/∂s|s=1 is finite too
since |s| ≤ 1.

Eventually we can now consider Galton’s extinction problem of family
names. The straightforward definition of extinction is given in terms of a
random sequence (Zn; n = 0, 1, 2, . . . ,∞), which consists of zeros except a
finite number of positive integer value at the beginning of the series. The
random variable Zn is integer valued and hence extinction is tantamount to
the event Zn → 0. From P (Zn+1 = 0|Zn = 0) = 1 follows the equality
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Fig. 5.6 Extinction probabilities in the Galton-Watson process. Shown are
the extinction probabilities for the three Galton-Watson processes discussed in fig-
ure 5.5. The supercritical process (p = (0.1, 0.2, 0.7), m = 1.6; red) is characterized
by a probability of extinction of q = lim gn < 1 leaving room for a certain proba-
bility of survival, whereas both, the critical (p = (0.15, 0.7, 0.15), m = 1; black) and
the subcritical process (p = (0.7, 0.2, 0.1), m = 0.4; blue) lead to certain extinction,
q = lim gn = 1. In the critical case we observe much slower convergence than in the
super- or subcritical case representing a nice example of critical slowing down .

P (Zn → 0) = P (Zn = 0 for some n) =

= P
(
(Z1 = 0) ∪ (Z2 = 0) ∪ · · · ∪ (Zn = 0)

)
=

= lim
n→∞

P
(
(Z1 = 0) ∪ (Z2 = 0) ∪ · · · ∪ (Zn = 0)

)
=

= limP (Zn = 0) = lim gn(0) ,

(5.19)

and the fact that gn(0) is a nondecreasing function of n (see also figure 5.6).
We define a probability of extinction, q = P (Zn → 0) = lim gn(0) and

show that m = E(Z1) ≤ 1 the probability of extinction fulfils q = 1, and the
family names disappear in finite time. For m > 1, however, the extinction
probability is the unique solution less than one of the equation

s = g(s) for 0 ≤ s < 1 . (5.20)

It is straightforward to show by induction that gn(0) < 1, n = 0, 1, . . . . From
Equ. (5.19) we know

0 = gn(0) ≤ g1(0) ≤ g2(0) ≤ · · · ≤ q = lim gn(0) .
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Making use of the relations gn+1(0) = g
(
gn(0)

)
and lim gn(0) = lim gn+1(0) =

q we derive q = g(q) for 0 ≤ q ≤ 1 – trivially fulfilled for q = 1 since g(1) = 1:

(i) m ≤ 1, then (∂g(s)/∂s) < 1 for 0 ≤ s < 1. Next we use the law of the

mean9 express g(s) in terms of g(1) and for m ≤ 1 we find g(s) > s in
the entire range 0 ≤ s < 1. There is only the trivial solution q = g(q)
with q = 1 and extinction is certain. ⊓⊔

(ii) m > 1, then g(s) < s for s sightly less than one because (∂g/∂s)|s=1 =
m > 1, whereas for s = 0 we have g(0) > 0 and hence we have at
least one solution s = g(s) in the half-open interval [0, 1[. Assume there
were two solutions, for example s1 and s2 with 0 ≤ s1 < s2 < 1 than
Rolle’s theorem named after the French mathematician Michel Rolle
would demand the existence of ξ and η with s1 < ξ < s2 < η < 1 such
that (∂g(s)/∂s)|s=ξ = (∂g(s)/∂s)|s=η = 1 but this contradicts the fact
that that g(s) is strictly convex. In addition lim gn(0) cannot be one
because (gn(0);n = 0, 1, . . .) is a nondecreasing sequence. If gn(0) were
slightly less than one then gn+1(0) = g

(
gn(0)

)
would be less than gn(0)

and the series were decreasing. Accordingly, q < 1 is the unique solution
of Equ. 5.20 in [0, 1[. ⊓⊔

The answer is simple and straightforward: When a father has on the average
one son or less, the family name is doomed to disappear, when he has more
than one son there is a finite probability of survival 0 < (1−q) < 1, which, of
course, increases with increasing expectation value m, the average number of
sons. Reverend Henry William Watson correctly deduced that the extinction
probability is given by a root of Equ. (5.20). He failed, however, to recognize
that for m > 1 the relevant root is the one with q < 1 [91, 300]. It is
remarkable that it took almost fifty years for the mathematical community
to detect the error that has a drastic consequence for the result.

5.2.1.2 Reproduction and mutation as multitype branching

process

The problem of reproduction and mutation has been studied in population
genetics in great detail. In vitro evolution provided an additional access to
population dynamics that can be easily traced down to the molecular level
where correct replication and mutation are understood as parallel chemical
reactions [17, 55, 56, 57]: Evolution of RNA molecules in cell-free replica-
tion assays and reproduction of RNA-viruses is presently understood at the
same mechanistic resolution as other chemical reactions. We present here a

9 The law of the mean expresses the difference in the values of a function f(x) in terms
of the derivative at one particular point x = x1 and the difference in the arguments

f(b) − f(a) = (b− a) (∂f/∂x)|x=x1
, a < x < b .

The law of the mean is fulfilled at least at one point x1 on the arc between a and b.
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Fig. 5.7 Reproduction as a discrete multitype branching process. An in-
dividual Xi has progeny, Xk ∈ {X1,X2, . . . ,Xi, . . . ,Xm}, which consists of correct
copies, Xi, or mutations, Xj , j 6= i. Reproduction is assumed to be homogeneous in
time, to occur independently of the other individuals present in the population and
in discrete generations. The probabilities for an individual of type Xi to produce γ1
offspring of type X1, γ2 offspring of type X2, . . . , and γm offspring of type Xm is

given by Pi(γ
(i)
1 , γ

(i)
2 , . . . , γ

(i)
i , . . . γ

(i)
m ). These probabilities are independent of the

generation but, of course, depend on the type of individual.

stochastic treatment of the problem as a branching process and follow the
derivation and analysis in [48]. In particular, we shall consider here first the
development of the population in discrete time steps corresponding to non-
overlapping generations and transform later to continuous time. Eventually
we compare the discrete and continuous stochastic models with their deter-
ministic analogues: difference and differential equations.

Discrete time branching process. In the focus of these studies is the
evolution of a population of N individuals chosen from m distinct classes or
species Xk ∈ {X1,X2, . . . ,Xm}:

Π(n) = ~Z(n) =
(
Z1(n),Z2(n), . . . ,Zm(n)

)
with Zk ∈ N , n ∈ N .

The random variable Zk(n) (k = 1, . . . ,m) counts the number of individuals
Xk in generation n (n = 1, 2, . . . ,∞). In order to model discrete time evo-
lution we introduce multitype branching (figure 5.7) and for the purpose of
illustration a simple initial conditions by assuming

~Z(0) = ei with ei = (0, . . . , 1, . . . , 0) ,

being the unit vector pointing in the direction of type Xi. In other words, the
initial condition is one individual Xi at generation n = 0. Now we define the
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probability to obtain a certain distribution of species through replication and
mutation in the first generation by

P
(1)
i (z1, . . . , zm) = Prob

(
Z1(1) = z1, . . . ,Zm(1) = zm

)
,

and analogously in the n-th generation:

P
(n)
i (z1, . . . , zm) = Prob

(
Z1(n) = z1, . . . ,Zm(n) = zm

)
. (5.21)

Next we introduce the generating function g(1)(s) with s = (s1, . . . , sm) being

the vector of auxiliary variables and obtain for the of the first generation ~Z(1):

G(1)(s) = gi(s) =
∑

z1,...,zm≥0

P (1)(z1, . . . , zm) s
z1
1 · · · szmm . (5.22)

The generalization is straightforward: If ~Z(n) = (z1, . . . , zm) represents the

distribution of individuals at generation n, then ~Z(n + 1) is the sum of
z1 + . . .+ zm random vectors, out of which z1 have the generating function
f1(s), z2 the generating function f2(s), and so on. As typical for convolutions
(see section 5.2.1.1) the explicit formula is rather lengthy and provides little
additional insight, and we dispense here from showing it.

Instead, we compute a mean matrix , which contains the expectation values
that Xi is obtained through replication of Xj :

M = {mij = E
(
Zi(1)| ~Z(0) = ej

)
∀ i, j = 1, . . . ,m} . (5.23)

For obvious reason that have a firm background in physics we take it for
granted that the first moment exist for all i and j.10 The matrix element mij

is the mean number of Xi individuals derived from one type Xj individual
within one generation and this number is readily obtained from the generating
function:

mij =

(
∂gj
∂si

)

s1=...=sm=1

; i, j = 1, . . . ,m . (5.24)

In general, we are dealing with nonnegative first moments mij =≥ 0, and if
not stated otherwise we shall assume that the matrix M = {mij} is positively
regular: There exists an n > 0 such that Mn has strictly positive elements,
and M is irreducible, which implies that each type Xi can be derived from
each type Xj through a finite chain of mutations.11

10 In real systems we are always dealing with finite populations in finite time and
then expectation values do not diverge (but see, for example, the unrestricted birth-
and-death process in section 5.2.2).
11 Situations may exists where it is for all practical purposes impossible to reach
one population from another one through a chain of mutations in any reasonable
time span. Then M is not irreducible in reality and we are dealing with two inde-
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Fig. 5.8 Comparison of mutation-selection dynamics and branching pro-
cesses. The sketch summarizes the different transformations discussed in text. The
distinct classes of transformation are color coded: forming expectation values in blue,
normalization in red and transformation between discrete and continuous variables
in green (For details see text and [48]).

Perron-Frobenius theorem [258] applies to irreducible matrices M and
states that the mean matrix admits a unique simple largest eigenvalue λ,
which is dominant in the sense that |µ| < λ is fulfilled for every other eigen-
value µ of M. Since λ is non-degenerate a unique strictly positive right eigen-
vector, u = (u1, . . . , um) with ui > 0 ∀ i = 1, . . . ,m, and a unique strictly
positive right eigenvector, v = (v1, . . . , vm) with vi > 0 ∀ i = 1, . . . ,m such
that

Mut = λut and vM = λv . (5.25)

No other eigenvalue µ admits left an right eigenvector whose components
are all strictly positive. The left eigenvector is normalized according to an
L1-norm and for the right eigenvector we use a peculiar scalar product nor-

malization:
m∑

i=1

vi = 1 and (v,u) = v · ut = 1 .

pendently mutating populations. In particular, when more involved mutation mecha-
nisms comprising point mutations, deletions, and insertions are considered it may be
of advantage to deal with disjoint sets of types.
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The usage of the L1-norm rather than the more familiar L2-norm is a direct
consequence of the existence of conservation laws based on addition of parti-
cle numbers or concentrations. The somewhat strange normalization has the
consequence that the matrix T = ut · v = {tij = viuj} is idempotent or a
projection operator :

T · T = ut · v · ut · v = ut · 1 · v = T ,

and hence we have in addition

T ·M = M · T = λT and lim
n→∞

λ−nMn = T . (5.26)

Despite the fact that λn goes to zero, diverges or stays at λn = 1 – a situation
of probability measure zero – depending on whether λ < 1, λ > 1, or λ = 1
is fulfilled, respectively.

A population is said to become extinct if ~Z(n) = 0 for some n > 0. We

denote the probability of extinction for the initial condition ~Z(n) = ei by qi
and define

qi = Prob
(
∃n such that ~Z(n) = 0| ~Z(0) = ei

)
. (5.27)

The vector q = (q1, . . . , qm) is given by the smallest nonnegative solution of
the equation

g(q) = q or g(q) − q = 0 , (5.28)

where g(s) =
(
g1(s), . . . , gm(s)

)
with the functions gi(s) defined by equa-

tion (5.22). The conditions for extinction can be expressed in terms of the
the dominant eigenvector λ of the mean matrix M:

(i) if λ ≤ 1 then qi = 1 ∀ i and extinction is certain,
(ii) if λ > 1 then qi < 1 ∀ i and there is a positive probability of survival to

infinite time.

In case (ii) it is of interest to compute asymptotic frequencies where frequency
stands for the normalized random variables

Xi(n) =
Zi(n)∑m
k=1 Zk(n)

with Zi(n) > 0 ∀ i . (5.29)

If λ > 1, then there exists a random vector ~W = (W1, . . . ,Wm) and a scalar
random variable w such that with probability one we have

lim
n→∞

λ−n ~Z(n) = ~W and ~W = w u , (5.30)

where u is the right eigenvector of M given by (5.25). Then follows that

lim
n→∞

Xi(n) =
ui∑m
k=1 uk

. (5.31)
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holds almost always provided the population does not become extinct. Equa-
tion (5.31) states that the random variable for the frequency of type Xi,
Xi(n), converges almost certainly to a constant value (provided w 6= 0). The

asymptotic behavior of the random vector ~X (n) contrasts sharply the behav-
ior of the total population size, Z(n) =∑m

k=1 Zk, and that of the population

distribution ~Z(n), which both may undergo large fluctuations accumulating
in later generations because of the autocatalytic nature of the replication
process. In late generations the system either has become extinct or it has
grown to very large population size where in the latter case fluctuations in
relative frequencies become small by the law of large numbers.

The behavior of the random variable w can be described completely by
means of the results given in [158]: We have either

(i) w = 0 with probability one, which is always the case if λ ≤ 1, or

(ii) E
(
w| ~Z(0) = ei

)
= vi ,

where vi is the i-th component of the left eigenvector v of matrix M. A
necessary and sufficient condition for the validity of condition (ii) is

E(Zj(1) logZj(1)| ~Z(0) = el) < ∞ for 1 ≤ i, j ≤ m ,

which is a condition of finite population size that is always fulfilled in realistic
systems.

Continuous time branching process. In case of intermixing generations,
in particular in the case of in vitro evolution [152] or in absence of genera-
tion synchronizing pacemakers, the assumption of discrete generations is not
justified, because any initially given synchronization is lost within a repro-
duction cycles. Continuous time multitype branching Markov processes offer
an appropriate description in such cases but one which is technically more
complicated. Since the basic results are similar to the discrete case, we will
sketch them rather briefly.

For the continuous time model we suppose that an individual of type
Xl, independently of other individuals present in the population, persists for
an exponentially distributed time with mean α−1 (see also section 4.7.3)
and then generates a copy by reproduction and mutation according to a
distribution whose generating function is gi(s). As discussed and implemented
in case of chemical master equations (section 4.2.1) we assume that in a
properly chosen time interval of length ∆t – up to probability o(∆t) – exactly
one the following three alternatives is happening:

(i) no change,
(ii) extinction, or
(iii) survival and production of a copy of type Xj (j = 1, . . . ,m).

The probabilities for the events (ii) and (iii) are homogeneous in time and up
to some o(∆t) proportional to ∆t. As before we denote by Zi(t) the number

of individual of type Xi at time t and by ~Z(t) the distribution of types. Again
we define a mean matrix
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M = {mij = E
(
Zi(t)| ~Z(0) = ej

)
} , (5.23’)

where we assume again that all first moments are finite for all t ≥ 0. The
mean matrix satisfies the semigroup and the continuity property

M(t+ u) = M(t) ·M(u) and lim
t→+0

M(t) = I . (5.32)

Conditions (5.32) implies the existence of a matrix A called the infinitesimal
generator, which fulfils for all t > 0:

M(t) = eAt with A = {aij = µi(bij−δij)} and bij =

(

∂gi

∂sj

)

s=
1
...,sm=1

. (5.33)

Again we assume that each type can produce every other type. As in the
discrete time case we have mij(t) > 0 for t > 0, A is strictly positive, and
Perron-Frobenius theorem holds. A has a unique dominant real eigenvalue λ
with strictly positive right and left eigenvectors u and v, respectively. The
dominant eigenvalue of M(t) is eλt, again we normalize

∑m
i=1 vi =

∑m
i=1 uivi,

and with T = ut · v we have

lim
t→∞

e−λtM(t) = T , (5.26’)

which guarantees the existence of finite solutions in relative particle numbers.
As in the discrete case the extinction conditions are determined by λ: If
q = (q1, . . . , qm) denotes the extinction probabilities, then q is the unique
solution of g(q)−q = 0, where g(s) = (s1, . . . , sm) as before, and accordingly
(i) if λ ≤ 0 then qi = 1 ∀ i and (ii) if λ > 0 then qi < 1 ∀ i. Again we obtain

lim
t→∞

Xi(t) =
ui

u1 + . . .+ um
(5.31’)

whenever the process does no lead to extinction.

The deterministic reference. We shortly repeat here the solutions of the
deterministic problem [55, 57, 56], which is described by the differential equa-
tion

dxi
dt

=

m∑

j=1

wijxj − xi

(
m∑

r=1

m∑

s=1

wrsxs

)
(5.34)

or in vector notation

dxt

dt
= W xt − (1 ·W xt)xt (5.34’)

with W = {wij ; i, j = 1, . . . ,m}, x = (x1 . . . , xm), and 1 = (1, . . . , 1) re-
stricted to the unit simplex

Sm = {x ∈ Rm : xi ≥ 0,
∑m

j=1
xj = 1} . (5.35)
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The matrix W had been characterized as value matrix and it is commonly
split into a product of a fitness matrix F and a mutation matrix Q:

W =




Q11f1 Q12f2 . . . Q1mfm
Q21f1 Q22f2 . . . Q2mfm

...
...

. . .
...

Qm1f1 Qm2f2 . . . Qmmfm


 = Q · F .

The fitness matrix is a diagonal matrix whose elements are the fitness values
of the individual species: F = {fij = fi · δij}. The mutation matrix cor-
responds to the branching diagram in figure 5.7: Q = {Qij}, where Qij is
the frequency with which species Xi is obtained through copying Xj . Since
every copying event results either in a correct copy or a mutant we have∑m

i=1Qij = 1 and Q is a stochastic matrix . Some model assumptions, for
example the uniform error rate model [274], lead to symmetric Q-matrices,
which are then bistochastic matrices .12 It is worth considering the second
term on the right hand side of equation (5.34) in the explicit formulation

1 ·W xt =

m∑

r=1

m∑

s=1

wrsxs =

m∑

r=1

m∑

s=1

Qrsfsxs =

m∑

s=1

fsxs

m∑

r=1

Qrs = f̄ = φ ,

whereby the different notation indicates two different interpretations: (i) the
term 1 ·Wxt is the mean excess productivity of the population, which has
to be compensated in order to avoid net growth and maintaining the pop-
ulation normalized,

∑m
i=1 xi = 1, or (ii) φ(t) is an externally controllable

dilution flux that is suggestive of considering a flowreactor (figure 4.7). It is
straightforward to check that Sm is invariant under (5.34): if x(0) ∈ Sm then
x(t) ∈ Sm for all t > 0. Equation (5.34) was introduced as a phenomeno-
logical equation describing the kinetics of in vitro evolution in a flowreactor
under the constraint of constant population size. Here the aim is to relate
conventional replication-mutation kinetics to multitype branching processes.

Some preliminary remarks setting the stage for the comparison are:

1. The linear differential equation

dyt

dt
= W yt and x(t) =

1∑m
j=1 yj(t)

y(t) (5.36)

with a positive or nonnegative irreducible matrix W fulfils for y(0) ∈ Rm>0:
(i) y(t) ∈ Rm>0 and (ii) x(t) ∈ Sm ∀ t ≥ 0 and is a solution of (5.34).

12 The selection-mutation equation (5.34) in the original formulation [55, 57] matrix
contain also a degradation term djxj and the corresponding definition of the value
matrix reads W = {wij = Qijfj − dj}. In case all individuals follow the same death
law, dj = d∀ j the parameter d can be absorbed in the population size conservation
relation and need not be considered separately.
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2. As noted in the references [150, 277] equation (5.36) can be obtained from
(5.34) through the transformation

ψ(t) =

∫ t

0

φ(τ)dτ and y(t) = x(t) eψ(t) .

3. Accordingly, the nonlinear equation (5.34) is easy to solve and any equi-
librium of this equation must satisfy

W ξt = ε ξt

and therefore be a right eigenvector of W. By Perron-Frobenius there exists
such a unique right eigenvector in Sm, which we denoted by ξ and the
corresponding eigenvalue ε is just the dominant eigenvalue of W. From
the correspondence between equations (5.34) and (5.36) follows that all
orbits of equations (5.34) converge to ξ: limt→∞ x(t) = ξ.

4. Now we use the canonical way to associate difference and differential equa-
tions:

vn+1 = F(vn) ⇐⇒
dvt

dt
= F(v)t − vt . (5.37)

Of course, such an unreflected passage to continuous time is not always
justifiable, but for a generation length one the difference equation vn+1−
n = F(vn)− vn can be written as

v(1) − (0) = F
(
v(0)

)
− v(0) .

Provided we assume blending generations the change during the time in-
terval 1/n, v(1/n) − v(0) can be approximated by

(
F
(
v(0)

)
− v(0)

)
/n,

or
v(∆t) − v(0)

∆t
= F

(
v(0)

)
− v(0) ,

which in the limit ∆t→ 0 yields the differential equation (5.37).

The relationship between branching processes and the mutation-selection
equation 5.34 is sketched in figure 5.8. If we start out from the discrete mul-
titype branching process ~Z(n), then the expectation values Y(n) = E

(
~Z(n)

)

satisfy Y(n)t = MnY(0)t, where M is the mean matrix (5.23), and hence
Y(n) is obtained by iteration from the difference equation yt

n+1 = Myt
n.

From here one can reach the Mutation-selection equation in two ways: (i)
by first passing to continuous time as expressed by the differential equation
dyt/ dt = Vyt with V = M− I followed by normalization, which yields

dxt

dt
= Vxt − xt(1 ·Vxt) , (5.38)

or (ii) in opposite sequence by first normalizing the difference equation
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xt
n+1 =

1

1 ·Mxt
n

Mxt
n

on Sm, and then passing to continuous time yields

dxt

dt
=
(
Mxt − xt(1 ·Mxt)

) 1

1 ·Mxt
. (5.39)

Multiplication with the factor 1 ·Mxt, which is independent of i and always
strictly positive on Sm, results merely in a transformation of the time axis
that is tantamount to a change in the velocity, and the orbits of (5.39) are
the same as those of

dxt

dt
= Mxt − xt(1 ·Mxt) . (5.39’)

Since V = M− I, the two equations (5.34) and (5.39’) are identical on Sm.
Alternatively we begin now with a continuous Markovianmultitype branch-

ing process ~Z(t) for t ≥ 0 and either reduce it by discretization to the discrete

branching process ~Z(n), or else we obtain Y(t)t = M(t)Y(0)t for the expec-

tation values Y(t) = E
(
~Z(t)

)
, where M(t) is again the mean matrix with

M(1) = M. The expectation value Y(t) is then the solution of the linear
differential equation

dyt

dt
= Ayt with A = lim

t→+0

M(t)− I

t)
t (5.40)

as infinitesimal generator of the semigroup M(t), and M(t) = eAt. Normal-
ization leads to

dxt

dt
= Axt − xt(1 · Axt) on Sm . (5.41)

This equation in general has a dynamics that is different from (5.39’), but the
asymptotic behavior is the same, because A and M = eA have the same eigen-
vectors and accordingly u is the global attractor for both equations (5.39’)
and (5.41).

Three simple paths lead from branching processes to an essentially unique
version of the mutation-selection equation (5.34) and the question whether or
not such a reduction from a stochastic to a deterministic system is relevant.
A superficial analysis may suggest that it isn’t. Passing from the random
variables Zi(n) (i = 1, . . . ,m) to the expectation values E

(
Zi(n)

)
may be

misleading because the variances grow too fast as can be easily verified for
one-type branching. If µ and σ are the mean and the variance of a single
individual in the first generation, µ = E

(
Z(1)

)
and σ2 = var

(
Z(1)

)
then

mean and variance of the n-generation grow in the supercritical case like
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mn and σ2m
n(mn − 1)

m(m− 1)
= σ2

2n−2∑

k=n−1

mk ,

respectively, and the ratio from the standard deviation and the mean con-
verges to a positive constant,

√
var
(
Z(n)

)

E
(
Z(n)

) =

√√√√
2n−4∑

k=n−3

mk .

Accordingly, the window of probable values of the random variable Z(n)
is rather large. For a critical process the situation is still worse: the means
remains constant whereas the variance grows to infinity (see figure 5.11).
In case of multitype branching the situation is similar but the expressions
for variance and correlations get rather complicated and again the second
moments grow so fast that the averages tell precariously little about the
process (see [119] for the discrete and [9] for the continuous process).

Normalization, however, changes the situation: The transition from expec-
tation values to relative frequencies cancels the fluctuations or more precisely,
if the process does not go to extinction, the relative frequencies of the random
variables

Xi =
Zi

Z1 + . . .+ Zm
converge almost certainly to the value u1 (i = 1, . . . ,m), which are – at the
same time the limits of the relative frequencies of the expectation values

xi =
yi

y1 + . . .+ ym
.

In this sense, the deterministic mutation-selection equation (5.34) yields a
description of the stochastic evolution of the internal structure of the popu-
lation, which is much more reliable than the dynamics of the unnormalized
means. The qualitative features of the selection process condense the variance
free part of the deterministic approach.

Finally, we mention other attempts to find stochastic solutions to the
replication-mutation problem [127, 138, 151, 200].



384 5 Biological applications

t

E( )N( )t

Fig. 5.9 A growing linear birth-and-death process. The two-step reaction
mechanism of the process is (X→2X,X →∅) with rate parameters λ and µ, respec-
tively. The growing or supercritical process is characterized by λ > µ. The upper part
shows the evolution of the probability density, Pn(t) = ProbX (t) = n. The initially
infinitely sharp density, P (n, 0) = δ(n, n0) becomes broader with time and flattens
as the variance increases with time. In the lower part we show the expectation value
E
(

N (t)
)

in the confidence interval E ± σ. Parameters used: n0 = 100, λ =
√
2, and

µ = 1/
√
2; sampling times (upper part): t = 0 (black), 0.1 (green), 0.2 (turquoise),

0.3 (blue), 0.4 (violet), 0.5 (magenta), 0.75 red), and 1.0 (yellow).
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t

E( )N( )t

Fig. 5.10 A decaying linear birth-and-death process. The two-step reaction
mechanism of the process is (X→2X, X→∅) with rate parameters λ and µ, respec-
tively. The decaying or subcritical process is characterized by λ < µ. The upper part
shows the evolution of the probability density, Pn(t) = ProbX (t) = n. The initially
infinitely sharp density, P (n, 0) = δ(n, n0) becomes broader with time and flattens as
the variance increases but then sharpens again as process approaches the absorbing
barrier at n = 0. In the lower part we show the expectation value E

(

N (t)
)

in the

confidence interval E ± σ. Parameters used: n0 = 40, λ = 1/
√
2, and µ =

√
2; sam-

pling times (upper part): t = 0 (black), 0.1 (green), 0.2 (turquoise), 0.35 (blue), 0.65
(violet), 1.0 (magenta), 1.5 red), 2.0 (orange), 2.5 (yellow), and limt→∞ (black).
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5.2.2 Birth-and-death processes

In section 3.2.5.2 we discussed the concept of birth-and-death processes in
relation to the application of master equations in chemistry. Here, we shall
come back to the original biological idea of birth and death of individuals but
retain the close relation to master equations. In particular, we shall discuss
the nature and influence of boundary conditions on birth-and-death processes,
demonstrate the usefulness of first passage times and related concepts for
finding straightforward answer to frequently asked questions, and present a
collection of analytical results in table form [108].

5.2.2.1 The linear birth-and-death process

Reproduction of individuals is modeled by a simple duplication mechanism
and death is represented by first order decay. In the language of chemical
kinetics these two steps are:

A + X
λ

−−−−→ 2X , (5.42a)

X
µ

−−−−→ B . (5.42b)

The rate parameters for reproduction and extinction are denoted by λ and
µ, respectively.13 The material required for reproduction is assumed to be re-
plenished as it is consumed and hence the amount of A available is constant
and assumed to be included in the birth parameter: λ = f · [A]. The degrada-
tion product B does not enter the kinetic equation because reaction (5.42b)
is irreversible. The stochastic process corresponding to equations (5.42) be-
longs to the class of linear birth-and-death processes with w+

n = λ · n and
w−
n = µ · n.14 The master equation is of the form,

∂Pn(t)

∂t
= λ (n− 1)Pn−1(t) + µ (n+ 1)Pn+1(t) − (λ+ µ)nPn(t) , (5.43)

and after introduction of the probability generating function g(s, t) gives rise
to the PDE

13 Reproduction is to be understood a asexual reproduction here. Sexual reproduc-
tion, of course, requires two partners and gives rise to a process of order 2 (table 4.1).
14 Here we use the symbols commonly applied in biology: λ(n) for birth, µ(n) for
death, and ν for immigration and ρ for emigration (tables 5.1 and 5.2). These notions
were created especially for application to biological problems, in particular for prob-
lems in theoretical ecology. Other notions and symbols are common in chemistry: A
birth corresponds to the production of a molecule, f ≡ λ, a death to its decompo-
sition or degradation through a chemical reaction, d ≡ µ. Influx and outflux are the
proper notions for immigration and emigration.
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∂g(s, t)

∂t
− (s− 1) (λs− µ) ∂g(s, t)

∂s
= 0 . (5.44)

Solution of this PDE yields different results for equal or different replication
and extinction rate coefficients, λ 6= µ and λ = µ, respectively. In the first
case we substitute γ = λ/µ (6= 1) and η(t) = exp

(
(λ− µ)t

)
, and find:

g(s, t) =

{ (
η(t)− 1

)
+
(
γ − η(t)

)
s(

γη(t)− 1
)
+ γ

(
1− η(t)

)
s

}n0

and

Pn(t) = γn
min(n,n0)∑

m=0

(−1)m
(
n0 + n−m− 1

n−m

)(
n0

m

)
×

×
(

1− η(t)
1− γη(t)

)n0+n−m
(

γ − η(t)
γ
(
1− η(t)

)
)m

.

(5.45)

In the derivation of the expression for the probability distributions we ex-
panded enumerator and denominator of the expression in the generating
function g(s, t), by using expressions for the sums (1 + s)n =

∑n
k=0

(
n
k

)
sk

and (1 + s)−n = 1 +
∑∞

k=1(−1)k
n(n+1)...(n+k−1)

k! sk, multiply, order terms
with respect to powers of s, and compare with the expansion of the generat-
ing function, g(s, t) =

∑∞
n=0 Pn(t) s

n.
Computations of expectation value and variance are straightforward:

E
(
NX(t)

)
= n0 e

(λ−µ) t and

σ2
(
NX(t)

)
= n0

λ+ µ

λ− µ e
(λ−µ) t

(
e(λ−µ) t − 1

) (5.46)

Illustrative examples of linear birth-and-death processes with growing (λ >
µ) and decaying (λ < µ) populations are shown in figures 5.9 and 5.10,
respectively.

In the degenerate case of neutrality with respect to growth, µ = λ, the
same procedure yields:

g(s, t) =

(
λt + (1− λt) s
1 + λt + λt s

)n0

, (5.47a)

Pn(t) =

(
λt

1 + λt

)n0+n min(n,n0)∑

m=0

(
n0 + n−m− 1

n−m

)(
n0

m

)(
1− λ2t2
λ2t2

)m
,

(5.47b)

E
(
NX(t)

)
= n0 , and (5.47c)

σ2
(
NX(t)

)
= 2n0 λt . (5.47d)
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Fig. 5.11 Continued on next page.
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Fig. 5.11 Probability density of a linear birth-and-death with equal birth
and death rate. The two-step reaction mechanism of the critical process is (X→ 2X,
X → ∅) with rate parameters λ = µ. The upper and the middle part show the
evolution of the probability density, Pn(t) = Prob

(

X (t) = n
)

. The initially infinitely
sharp density, P (n, 0) = δ(n, n0) becomes broader with time and flattens as the
variance increases but then sharpens again as the process approaches the absorbing
barrier at n = 0. In the lower part, we show the expectation value E

(

N (t)
)

in
the confidence interval E ± σ. The variance increases linearly with time and at t =
n0/(2λ) = 50 the standard deviation is as large as the expectation value. Parameters
used: n0 = 100, λ = 1; sampling times, upper part: t = 0 (black), 0.1 (green), 0.2
(turquoise), 0.3 (blue), 0.4 (violet), 0.49999 (magenta), 0.99999 (red), 2.0 (orange),
10 (yellow), and middle part: t = 10 (yellow), 20 (green), 50 (cyan), 100 (blue), and
limt→∞ (black).

Comparison of the last two expressions shows the inherent instability of this
reaction system. The expectation value is constant whereas the fluctuations
increase with time. The degenerate birth-and-death process is illustrated in
figure 5.11. The case of steadily increasing fluctuations is in contrast to an
equilibrium situation where both, expectation value and variance approach
constant values. Recalling the Ehrenfest urn game, where fluctuations were
negatively correlated with the deviation from equilibrium, we have here two
uncorrelated processes, replication and extinction. The particle number n
fulfils a kind of random walk on the natural numbers, and indeed in case
of the random walk (see equation (3.75) in subsection 3.2.3.6 we had also
obtained a constant expectation value E = n0 and a variance that increases
linearly with time, σ2(t) = 2ϑ(t− t0)).

5.2.2.2 Sequential extinction times

A constant expectation value accompanied by a variance that increases with
time has an easy to recognize consequence: At some critical time above which
the standard deviation exceeds the expectation, tcr = n0

/
(2λ). From this

instant on predictions on the evolution of the system based on the expectation
value become obsolete. Then we have to rely on individual probabilities or
other quantities. Useful in this context is the probability of extinction of all
particles, which can be readily computed:

P0(t) =

(
λt

1 + λt

)n0

. (5.48)

Provided we wait long enough, the system will die out with probability one,
since we have limt→∞ P0(t) = 1. This seems to be a contradiction to the con-
stant expectation value. As a matter of fact it is not: In almost all individual
runs the system will go extinct, but there are very few cases of probability
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measure zero where the particle number grows to infinity for t → ∞. These
rare cases are responsible for the finite expectation value.

Equation (5.48) can be used to derive a simple model for random selection

[256]. We assume a population of n different species

A + Xj
λ

−−−−→ 2Xj , j = 1, . . . , n , (5.42a’)

Xj
µ

−−−−→ B , j = 1, . . . , n . (5.42b’)

The probability joint distribution of the population is described by

Px1...xn = P
(
X1(t) = x1, . . . ,Xn(t) = xn

)
= P (1)

x1
· . . . · P (n)

xn
, (5.49)

wherein all probability distribution for individual species are given by equa-
tion (5.47b) and independence of individual birth events as well as death
events allows for the simple product expression. In the spirit of Motoo
Kimura’s neutral theory of evolution [164] all birth and all death parame-
ters are assumed to be equal, λj = λ and µj = µ for all j = 1, . . . , n. For
convenience we assume that every species is initially present in a single copy:
Pnj (0) = δnj,1. We introduce a new random variable that has the nature
of a first passage time: Tk is the time up to the extinction of n − k species
and characterize it as sequential extinction time. Accordingly, n species are
present in the population between Tn, which fulfils Tn ≡ 0 by definition, Tn−1,
n−1 species between Tn−1 and Tn−2, and eventually a single species between
T1 and T0, which is the moment of extinction of the entire population. After
T0 no particle X exists any more.

Next we consider the probability distribution of the sequential extinction
times

Hk(t) = P (Tk < t) . (5.50)

The probability of extinction of the population is readily calculated: Since
individual reproduction and extinction events are independent we find

H0 = P0,...,0 = P
(1)
0 · . . . · P (n)

0 =

(
λt

1 + λt

)n
.

The event T1 < t can happen in several ways: Either X1 is present and all
other species have become extinct already, or only X2 is present, or only X3,
and so on, but T1 < t is also fulfilled if the whole population has died out:

H1 = Px1 6=0,0,...,0 + P0,x2 6=0,...,0 + P0,0,...,xn 6=0 + H0 .

The probability that a given species has not yet disappeared is obtained by
exclusion since existence and nonexistence are complementary,

Px 6=0 = 1 − P0 = 1 − λt

1 + λt
=

1

1 + λt
,
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Fig. 5.12 The distribution of sequential extinction times Tk. Shown are the
expectation values E(Tk) for n = 20 according to equation(5.51). Since E(T0) di-
verges, T1 is the extinction that appears on the average at a finite value. A single
species is present above T1 and random selection has occurred in the population.

which yields the expression for the presence of a single species

H1(t) = (n+ λt)
(λt)n−1

(1 + λt)n
,

and by similar arguments a recursion formula is found for the extinction
probabilities with higher indices

Hk(t) =

(
n

k

)
(λt)n−k

(1 + λt)n
+ Hk−1(t) ,

that eventually leads to the expression

Hk(t) =

k∑

j=0

(
n

j

)
(λt)n−j

(1 + λt)n
.

The moments of the sequential extinction times are computed straightfor-
wardly by means of a handy trick: Hk is partitioned into terms for the indi-
vidual powers of λt, Hk(t) =

∑k
j=0 hj(t) and then differentiated with respect

to time t
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hj(t) =

(
n

j

)
(λt)n−k

(1 + λt)n
,

dhj(t)

dt
= h′j =

λ

(1 + λt)n+1

((
n

j

)
(n− j)(λt)n−j−1 −

(
n

j

)
j(λt)n−j

)
.

The summation of the derivatives is simple because h′k + h′k−1 + . . .+ h′0 is a
telescopic sum and we find

dHk(t)

dt
=

(
n

k

)
(n− k)λn−k tn−k−1

(1 + λt)n+1
.

Making use of the definite integral [109, p.338]

∫ ∞

0

tn−k

(1 + λt)n+1
dt =

λ−(n−k+1)

(
n
k

)
k

,

we finally obtain for the expectation values of the sequential extinction times

E(Tk) =

∫ ∞

0

dHk(t)

dt
t dt =

n− k
k
· 1
λ
, n ≥ k ≥ 1 , (5.51)

and E(T0) = ∞ (see figure ). It is worth recognizing here another paradox
of probability theory: Although extinction is certain, the expectation value
for the time to extinction diverges. Similarly as the expectation values, we
calculate the variances of the sequential extinction times:

σ2(Tk) =
n(n− k)
k2(k − 1)

· 1

λ2
, n ≥ k ≥ 2 , (5.52)

from which we see that the variances diverges for k = 0 and k = 1.
For distinct birth parameters, λ1, . . . , λn, and different initial particle num-

bers, x1(0), . . . , xn(0), the expressions for the expectation values become con-
siderably more complicated, but the main conclusion remains unaffected:
E(T1) is finite whereas E(T0) diverges.

5.2.2.3 Boundaries of birth-and-death processes

One step birth-and-death processes have been studied extensively and analyt-
ical solutions are available in table form [108]. For transition probabilities at
most linear in n, w+

n = ν +λn and w−
n = ρ+µn, one distinguishes birth (λ),

death (µ), immigration (ν), and emigration (ρ) terms. Analytical solutions
for the probability distributions were derived for all one step birth-and-death
processes whose transitions probabilities are constant or maximally linear in
the numbers of individuals n.
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It is necessary, however, to consider also the influence of boundaries on
these stochastic processes. For this goal we define an interval [a, b] as domain
of the stochastic variable N (t). Here we are dealing with classes of boundary
conditions, absorbing and reflecting boundaries. In the former case, a par-
ticle that left the interval is not allowed to return, whereas the latter class
of boundary implies that it is forbidden to exit from the interval. Bound-
ary conditions can be easily implemented by ad hoc definitions of transition
probabilities:

Reflecting Absorbing

Boundary at a w−
a = 0 w+

a−1 = 0

Boundary at b w+
b = 0 w−

b+1 = 0

The reversible chemical reaction with w−
n = k1 n and w+

n = k2 (n0 − n), for
example, had two reflecting barriers at a = 0 and b = n0. Among the examples
we have studied so far we were dealing with an absorbing boundary in the
replication-extinction process between N = 1 and N = 0 that is tantamount
to the lower barrier at a = 1 fulfilling w+

0 = 0: The state n = 0 is the end
point or ω-limit of all trajectories reaching it.

Compared, for example, to an unrestricted random walk on positive and
negative integers, n ∈ Z, a chemical reaction or a biological process has to
be restricted by definition, n ∈ N0, since negative particle numbers are not
allowed. In general, the one step birth-and-death master Equ. (3.98),

∂Pn(t)

∂t
= w+

n−1 Pn−1(t) + w−
n+1 Pn+1(t) −

(
(w+

n + w−
n )
)
Pn(t) ,

is not restricted to n ∈ N0 and thus does not automatically fulfil the proper
boundary conditions to model a chemical reaction. A modification of the
equation at n = 0 is required, which introduces a proper boundary of the
process:

∂P0(t)

∂t
= w−

1 P1(t) − w+
0 P0(t) . (3.98’)

This occurs naturally if w−
n vanishes for n = 0, which is always the case when

the constant term referring to migration vanishes, ν = 0. With w−
0 = 0 we

only need to make sure that P−1(t) = 0 and obtain equation (3.98’). This
will be so whenever we take an initial state with Pn(0) = 0 ∀n < 0, and it
is certainly true for our conventional initial condition, Pn(0) = δn,n0 with
n0 ≥ 0. By the same token we prove that the upper reflecting boundary
for chemical reactions, b = n0, fulfils the conditions of being natural too.
Equipped with natural boundary conditions the stochastic process can be
solved for the entire integer range, n ∈ Z, and this is often much easier than
with artificial boundaries. All the barriers we have encountered so far were
natural.

An overview over a few selected birth-and-death processes is given in ta-
bles 5.1 and 5.2. Commonly, unrestricted and restricted processes are dis-
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Table 5.1 Comparison of of results for some unrestricted processes. Data are taken from [108, pp.10,11]. Abbreviation and
notations: γ ≡ λ/µ, σ ≡ e(λ−µ)t, (n, n0) ≡ min{n, n0}, and In(x) is the modified Bessel function.

Process λn µn gn0
(s, t) Pn,n0

(t) Mean Variance Ref.

Poisson ν 0 sn0 eν(s−1) t (νt)n−n0 eν t

(n−n0)!
, n ≥ n0; n0 > (0, n) n0 + νt νt [41]

Poisson 0 ρ sn0 eρ(1−s) t/s (ρt)n−n0 eρ t

(n0−n)!
, n ≤ n0; n0 < (0, n) n0 − ρt ρt [41]

ν ρ sn0 e−(ν+ρ)t+(νs+ρ/s)t
(

ν
ρ

)(n−n0)/2 In0−n(2t
√
νρ) e−(ν+ρ)t n0 + (ν − ρ)t (ν + ρ)t [126]

Birth λn 0
(

1− eλt(1 − 1/s)
)−n0 (

n
n0

)

e−n0λ t(1 − e−λ t)n−n0 , n ≥ n0; n0 > (0, n) n0 eλt n0 eλt(eλt − 1) [11]

Death 0 µn

(

1− e−µt(1− s)
)n0 (

n0

n

)

e−nµ t(1 − e−µ t)n0−n , n ≤ n0; n0 < (0, n) n0 e−µt n0 e−µt(1− e−µt) [11]

ν µn

(

1− e−µt(1 − s)
)n0 × exp

(

− ν
µ
(1 − e−µt)

)

× n0 e−µt+
(

ν
µ
+ n0e−µt

)

× [41]

× exp
(

ν(s− 1)(1 − e−µt)/µ
)

×
(n,n0)
∑

k=0

e−µtk(1−e−µt)n+n0−2k

(n−k)!

(

ν
µ

)n−k
+ν(1−e−µt)

µ
×(1− e−µt)

Birth& λn µn

(

(σ−1)+(γ−σ)s

(γσ−1)γ(1−σ)s

)n0

γn
(n,n0)
∑

k=0

(−1)k
(

n+n0−k−1
n−k

)(

n0

k

)

× n0 σ n0σ(γ+1)(σ−1)

γ−1
[11]

Death ×
(

1−σ
1−γσ

)n+n0−k (1−σ/γ

1−σ

)k

λn λn

(

λt+(1−λt)s

1+λt−λt s

)n (

λt
1+λt

)n+n0 ∑(n,n0)
k=0

(

n0

k

)

× n0 2n0λ t

×
(n+n0−k−1

n−k

)

(

1−λ2t2

λ2t2

)k



5
.2

S
to
ch

a
sticity

in
b
io
lo
g
y

3
9
5

Table 5.2 Comparison of of results for some restricted processes. Data are taken from [108, pp.16,17]. Abbreviation and notations
used in the table are: γ ≡ λ/µ, σ ≡ e(λ−µ)t, α ≡ (ν/ρ)(n−n0)/2e(ν+ρ)t; In = I−n ≡ In

(

2(νρ)1/2t
)

where In(x) is a modified Bessel

function; Gn ≡ Gn(ξj , γ) where Gn is a Gottlieb polynomial, Ĝn ≡ Gn(ξ̂j , γ),

Gn(x, γ) ≡ γn
∑

n
k=0(1 − γ−1)k

(

n
k

)(

x−k+1
k

)

= γnF (−n,−x, 1, 1− γ−1) where F is a hypergeometric function, ξj and ξ̂j are the roots of

Gu−l(ξj , γ) = 0, j = 0, . . . , u− l − 1 and Gu−l+1(ξ̂j , γ) = γ Gu−l(ξ̂j , γ), j = 0, . . . , u − l, respectively; Hn ≡ Hn(ζj , γ), Ĥn ≡ Hn(ζ̂j , γ),

Hn(x, γ) = Gn(x, γ−1), Hu−l(ζj , γ) = 0, j = 0, . . . , u− l− 1 and Hu+l−1(ζ̂j , γ) = Hu−l(ζ̂j , γ)/γ, respectively.

λn µn Boundaries Pn,n0
(t) Ref.

ν ρ u : abs; l : −∞ α
(

In−n0
− I2u−n−n0

)

[41, 217]

ν ρ u : +∞; l : abs α
(

In−n0
− In+n0−2l

)

[41, 217]

ν ρ u : refl; l : −∞ α

(

In−n0
+
(

ν
ρ
1/2 I2u+l−n−n0

+
(

1− ρ
ν

)

)

·∑∞
j=2

(

ν
ρ

)j/2
I2u−n−n0+j

)

[41, 217]

ν ρ u : +∞; l : refl α

(

In−n0
+
(

ν
ρ
1/2 In+n0+l−2u +

(

1− ρ
ν

)

)

·∑∞
j=2

(

ν
ρ

)j/2
In+n0−2l+j

)

[41, 217]

ν ρ u : abs; l : abs α

(

∑∞
k=−∞ In−n0+2k(u−l) −

∑∞
k=0

(

In+n0−2l+2k(u−l) + I2l−n−n0+2k(u−l)

)

)

[41, 217]

λ(n− l + 1) µ(n − l) u : abs; l : refl γl−n
∑u−l−1

k=0 Gn0−lGn−l σξk

(

∑u−l−1
j=0

Gj

γj

)−1
[219, 265]

λ(n− l + 1) µ(n − l) u : refl; l : refl γl−n
∑u−l

k=0 Ĝn0−lĜn−l σξ̂k

(

∑u−l
j=0

Ĝj

γj

)−1
[219, 265]

λ(u− n) µ(u− n+ 1) u : refl; l : abs γu−n
∑u−l−1

k=0 Hu−n0
Hu−nσ−ζk

(

∑u−l−1
j=0 Hjγj

)−1
[219, 265]

λ(u− n) µ(u− n+ 1) u : refl; l : refl γu−n
∑u−l

k=0 Ĥu−n0
Ĥu−nσ−ζ̂k

(

∑u−l
j=0 Ĥjγj

)−1
[219, 265]
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tinguished [108]. An unrestricted process is characterized by the possibility
to reach all states N (t) = n. A requirement imposed by physics demands
that all changes in state space are finite for finite times, and hence the prob-
abilities to reach infinity at finite times must vanish: limn→±∞ Pn,n0 = 0.
The linear birth and death process in table 5.1 is unrestricted only in the
positive direction and the state N (t) = 0 is special because it represents an
absorbing barrier. The restriction is here hidden and met by the condition
Pn,n0(t) = 0 ∀ n < 0.

5.2.3 The Wright-Fisher and the Moran process

Here we shall introduce two common stochastic models in population biology,
the Wright-Fisher model named after Sewall Wright and Ronald Fisher and
the Moran model named after the Australian statistician Pat Moran. The
Wright-Fisher model and the Moran model are stochastic models for evolu-
tion of allele distributions in populations with constant population size [21].
The first model [83, 304] also addressed as beanbag population genetics is pre-
sumably the simplest process for the illustration of genetic drift and definitely
the most popular one [45, 67, 121, 197] deals with strictly separated gener-
ations, whereas the Moran process [222, 223] based on continuous time and
overlapping generations is generally more appealing to statistical physicists.
Both processes are introduced here for the simplest scenarios: haploid organ-
isms, two alleles of the gene under consideration and no mutation. Extension
to more complicated cases is readily possible. The primary question that was
thought to be addressed by the two models is the evolution of populations in
case of neutrality for selection.

5.2.3.1 The Wright-Fisher process

The Wright-Fisher process is illustrated in figure 5.13. A single reproduction
event is modeled by a sequence of four steps: (i) A gene is randomly chosen
from the gene pool of generation T containing exactly N genes distributed
over M alleles, (ii) it is replicated, (iii) the original is put back into the gene
pool T , and (iv) the copy is put into the gene pool of the next generation
T + 1. The process is terminated when the next generation gene pool has
exactly N genes. Since filling the gene pool of the T + 1 generation depends
exclusively on the distribution of genes in the pool of generation T , and earlier
gene distributions have no influence on the process the Wright-Fisher model
is Markovian.

In order to simplify the analysis we assume two alleles A and B, which are
present in aT and bT copies in the gene pool at generation T . Since the total
number of genes is constant, aT + bT = N and bT = N − aT , we are dealing
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Fig. 5.13 The Wright-Fisher model of beanbag genetics. The gene pool of
generation T contains N gene copies chosen from m alleles. Generation T +1 is built
from generation T through ordered cyclic repetition of a four step event: (1) random
selection of one gene from the gene pool T , (2) error-free copying of the gene, (3)
putting back the original into gene pool T , and (4) placing the copy into the gene
pool of the next generation T +1. The procedure is repeated until the gene pool T +1
contains exactly N genes. No mixing of generations is allowed.

with a single discrete variable, aT , T ∈ N. A new generation T+1 is produced
from the gene pool at generation T through picking with replacementN times
a gene. The probability to obtain n = aT+1 alleles A in the new gene pool is
given by the binomial distribution:

Prob (aT+1 = n) =

(
N

n

)
pnA p

N−n
B ,

pA = aT /N and pB = bT /N = (N−aT )/N with pA+pB = 1 are the individual
probabilities of picking A or B, respectively. The transition probability from
m alleles A at time T to n alleles A at time T + 1 is simply given by15,16

Wnm =

(
N

n

) (m
N

)n (
1− m

N

)N−n
. (5.53)

Since the construction of the gene pool at generation T+1 is fully determined
by the gene distribution at generation T , the process is Markovian.

15 The notation applied here is the conventional way of writing transitions in physics:
Wnm is the probability of the transition n← m, whereas many mathematicians would
write pmn indicating m→ n.
16 For doing actual calculations one has to recall the convention 00 = 1 used in
probability theory and combinatorics but commonly not in analysis where 00 is an
indefinite expression.
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In order to study the evolution of populations an initial state has to be
specified. We assume that the number of alleles A has been n0 at genera-
tion T = 0 and accordingly we are calculating the probability P (n, T |n0, 0),
which we denote by pn(T ). Since the Wright-Fisher model does not contain
any interactions between alleles or mutual dependencies between processes
involving alleles, the process can be modeled best by means of linear algebra.
We define a probability vector p and a transition matrix, W:

p(T ) =
(
p0(T ), p1(T ), . . . , pN(T )

)
and

W =




W00 W01 · · · W0N

W10 W11 · · · W1N

...
...

. . .
...

WN0 WN1 · · · WNN


 =




1 W01 · · · 0
0 W11 · · · 0
...

...
. . .

...
0 WN1 · · · 1


 .

(5.54)

Conservation of probability provides two conditions: (i) The probability vec-
tor has be normalized to a L1-norm,

∑
n pn(T ) = 1, and (ii) it has to remain

normalized in future generations,
∑

nWnm = 1.17 The evolution is now sim-
ply described by the matrix equation

p(T + 1)t = W · p(T )t or p(T )t = WT · p(0)t . (5.55)

Equation (5.55) is identical with the matrix formulation of linear difference

equations , pt
k+1 = W · pt

k, which have been used in section 5.2.1.2 to discuss
multitype branching, and which are presented and analyzed, for example, in
the monograph [46, pp.179-216].

Solutions of (5.55) are known in the from of an analytical expression for
the eigenvalues of the transition matrix W [75]:

λk =

(
N

k

)
k!

Nk
; k = 0, 1, 2, . . . . (5.56)

Although we do not have analytical expressions for the eigenvectors of tran-
sition matrix W at hand, the stationary state of the Wright-Fisher process
can be deduced from the properties of a Markov chain by asking what the
system might look like in the limit of an infinite number of generations when
the probability density might adopt a stationary distribution p̄. If such a
stationary state exists the density must fulfil the equation W · p̄ = p̄ or in
other words p̄ is a right eigenvector of W with the eigenvalue λ = 1.

By intuition we guess that a final absorbing state of the system must be
either all B corresponding to n̄ = 0 and fixation of allele B or all A with
n̄ = N and fixation of allele A. Such a steady state would correspond to a
probability density

p̄ = (1 − π, 0, . . . , 0, π) , (5.57)

17 A matrix W with this property is called a stochastic matrix.
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which fulfils W · p̄ = p̄ as is easily confirmed by inserting W from equa-
tion (5.54).

Next we compute the expected number of alleles A as a function of the
generation number

〈n(T + 1)〉 =
N
∑

n=0

n pn(T + 1) =
N
∑

n=0

n
N
∑

m=0

Wnm pm(T ) =

=
N
∑

m=0

pm(T )
N
∑

n=0

nWnm =
N
∑

m=0

mpm(T ) = 〈n(T )〉 ,

(5.58)

where we have used the expectation value of the binomial distribution (2.34a)
in the last line

N∑

n=0

nWnm =
N∑

n=0

n

(
N

n

)(m
N

)n (
1− m

N

)N−n
= N

m

N
= m .

The expectation values of the numbers of alleles is independent of the gen-
eration T and this implies 〈n(T )〉 = 〈n(0)〉 = n0. This result enables us to
determine the probability π for the fixation of allele A. From equation (5.57)
we deduce two possible states in the limit T →∞: (i) n = N with probability
π and (ii) n = 0 with probability 1− π and accordingly we have

lim
T→∞

〈n(T )〉 = πN + (1− π)0 =⇒ n0 = πN and π =
n0

N
. (5.59)

Eventually, we found the complete expression for the stationary state of
the Wright-Fisher process and the probability of fixation of allele A, which
amounts to π = n0/N .

5.2.3.2 The Moran process

The Moran process introduced by Pat Moran [222] is a continuous time pro-
cess and deals with transitions that are defined for single events. As in the
Wright-Fisher model we are dealing with two alleles, A and B, in a haploid
population of population size N and the probabilities for choosing A or B are
pA and pB, respectively. Unlike the Wright-Fisher model there is no defined
previous generation from which a next generation is formed by sampling N
genes and therefore overlapping generations make it difficult – if not impos-
sible – to define generations unambiguously. The event in the Moran process
is a combined birth-and-death step: Two genes are picked, one is copied and
both template and copy are put back into the urn, and the second one is
deleted (see figure 5.14). The probabilities are calculated form the state of
the urn just before the event pA = m(t)/N and pB =

(
N −m(t)

)
/N where

n(t) is the number of alleles A, N −m(t) the number of alleles B, and N is
the constant total number of genes. After the event we have exactly n alleles
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Fig. 5.14 The Moran process. The Moran process is a continuous time model for
the same problem handled by the Wright-Fisher model (figure 5.13). The gene pool
of a population of N genes chosen from m alleles is represented by the urn in the
figure. Evolution proceeds via successive repetition of a four step process: (1) One
gene is chosen from the gene pool at random, (2) a second gene is randomly chosen
and deleted, (3) the first gene is copied, and (4) both genes, original and copy, are
put back into the urn. The Moran process has overlapping generations and moreover
the notion of generation is not well defined.

of type A and N − n alleles of type B with ∆n = n −m = ±1, 0 depending
on the nature of the process. In particular, two different ways of picking two
genes are commonly used in the literature: (i) In the more intelligible first
counting one considers explicitly the reduction in numbers by one as a con-
sequence of the first pick [235] and (ii) in the second procedure the changes
introduced in the urn by picking the first gene are ignored in the second
draw (see, e.g., [21]).18 We shall present the (almost identical) results of both
picking procedures here and start with the second perhaps easier to motivate
count first.

Before the combined birth-death event we have m genes with allele A out
of N genes in total. Because of the first pick the total number of genes and
the number of the genes with allele A are reduced by one for the coupled
second pick, N → N − 1 and m→ m− 1, respectively. In case the first pick
chose a B allele the changes in the numbers of genes were: N → N − 1 and
N−m→ N−m−1. After the event the numbers have been change to n and
N − n, respectively, and n −m = 0,±1. Now we compute the probabilities
for the four possible sequential draws and find:

(i) A + A: pA+A =
(
m
N

) (
m−1
N−1

)
contributing to n = m,

18 It is fair to say that the same model results from an accurate but a little bit strange
assumption: After the replication event the parent but not the offspring is put back
into the pool from which the individual is chosen, which is doomed to die.
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(ii) A + B: pA+B =
(
m
N

) (
1− m−1

N−1

)
contributing to n = m+ 1,

(iii) B + A: pB+A =
(
1− m

N

) (
m
N−1

)
contributing to n = m− 1, and

(iv) B + B: pB+B =
(
1− m

N

) (
1− m

N−1

)
contributing to n = m.

It is readily verified that the four probabilities of the four possible events sum
up to one: pA+A + pA+B + pB+A + pB+B = 1. The elements of the transition
matrix can be written as

Wnm =





m
N

m−N
N−1 if n = m+ 1

m(m−1)+(N−m)(N−m−1)
N(N−1) if n = m

m
N

m−N
N−1 if n = m− 1

. (5.60)

We check easily that W is a stochastic matrix,
∑
nWnm = 1. The transition

matrix W of the Moran model is tridiagonal since only the changes ∆n =
0,±1 can occur.

In the slightly modified version of the model – procedure (ii) – we assume
that the replicated individual – but nor the offspring – is returned to the pool
from which the dying individual is chosen after the replication event. Then
the elements of the transition matrix are:

Wnm =





m (m−N)
N2 if n = m+ 1

m2+(N−m)2

N2 if n = m

m (m−N)
N2 if n = m− 1

. (5.60’)

Clearly,
∑

nWnm = 1 is fulfilled as in procedure (i).
The transition matrix W = {Wnm} has tridiagonal form and eigenvalues

and eigenvectors are readily calculated [67, 222, 223]. The results for the
different picking procedures are almost the same. For procedure (i) we find

λk = 1 − k(k − 1)

N(N − 1)
; k = 0, 1, 2, . . . , (5.61)

and for procedure (ii) we get

λk = 1 − k(k − 1)

N2
; k = 0, 1, 2, . . . . (5.61’)

For the Moran model the eigenvectors are the same for both procedures,
(i) and (ii), and they are available in analytical form [223]. The first two
eigenvectors belong to the doubly degenerate largest eigenvalue λ0 = λ1 = 1,

ζ0 = (1, 0, 0, 0, 0, . . . , 0)t and

ζ1 = (0, 0, 0, 0, 0, . . . , 1)t ,
(5.62)
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and they describe the long time behavior of the Moran process since station-
arity indeed implies p(T + 1)t = p(T )t = p̄, or W p̄t = p̄t, and hence λ = 1.
As in the Wright-Fisher model we are dealing here with twofold degeneracy
and we recall that in such a case any properly normalized linear combination
of the eigenvectors is a legitimate solution of the eigenvalue problem. Here
we have to apply the L1-norm and obtain

η = α ζ0 + β ζ1 and α+ β = 1 ,

and accordingly we find for the general solution of the stationary state

η = (1− π, 0, 0, 0, 0, . . . , π)t . (5.63)

The interpretation of the stationary state, which is identical with the result for
the Wright-Fisher process, is straightforward: The allele A goes into fixation
in the population with probability π and it is lost with probability 1 − π,
and the Moran model as well as the Wright-Fisher model provides a simple
explanation for gene fixation by random drift. The calculation of the value
for π that depends on the initial conditions,19 which are again assumed to be
n(0) = n0, follows the same argumentation as for the Wright-Fisher model in
equations (5.58) and (5.59) and from the generation independent expectation
value 〈n(T )〉 = n0 we obtain:

lim
T→∞

〈n(T )〉 = N π = n0 and π =
n0

N
(5.59’)

and the probability for the fixation of A finally is n0/N . From the value of π
follows immediately α = 1− π = (N − n0)/N and β = π = n0/N .

The third eigenvector belonging to the eigenvalue λ2 = 1− 2/
(
N(N − 1)

)

can be used to calculate the evolution towards fixation [21]:

p(t) ≈




1− n0

N
0
...
0
n0

N




+
6n0(N − n0)

N(N2 − 1)




N−1
2
−1
...
−1
N−1
2




(
1− 2

N2

)T
.

After sufficiently long time the probability density function becomes com-
pletely flat except at the two boundaries, n = 0 and n = N . We shall en-
counter the same form of the density for continuous time with the master
equation and with the Fokker-Planck approximation (section 5.3).

19 In the nondegenerate case stationary states do not depend on initial conditions
but this is no longer true for linear combinations of degenerate eigenvectors: α and
β, and π are functions of the initial state.
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5.3 Master and Fokker-Planck equations in biology

In section 5.2.2 we used master equations to find solutions for simple birth-
and-death processes. Here we consider more general models and start out
from the standard Markov chain

P (n, t+ 1) =
∑

m

pnmP (m, t) and

P (n, t+ 1)− P (n, t) =
∑

m

pnmP (m, t)−
∑

m

pmnP (n, t) ,
(5.64)

where we used the relation
∑

m pmn = 1 in the last term on the right hand
side. The two terms with m = n can be omitted because of cancelation, and t
that could be considered as an integer label for generations is now interpreted
as time. Then the intervals∆t have to be taken sufficiently small that at most
one sampling event occurs between t and t+∆t. Division by ∆t yields

P (n, t+∆t)− (n, t)

∆t
=
∑

m

(pnm
∆t

)
P (m, t) −

∑

m

(pmn
∆t

)
P (n, t) .

Instead of assuming that exactly one sampling event – including n → n
where no actual transition occurs – happens per generation we consider now
sampling events at unit rate such that one event on average takes place per
generation. If t is sufficiently large, the by far most likely number of events
that will have occurred is equal to t and we can expect that continuous time
and discrete time processes will occur at large times.

The transition probability is replaced by the transition rate per unit time

pnm = W (n|m)∆t + O(∆t)2 for n 6= m , (5.65)

where the terms of order (∆t)2 and higher express the probabilities that two
or more events take place during the time interval ∆t. Performing the limit
∆t→ 0 yields the familiar master equation

∂P (n, t)

∂t
=
∑

m 6=n

(
W (n|m)P (m, t) − W (m|n)P (n, t)

)
. (4.28)

The only difference to the general form of the master equation is the assump-
tion that the transition rates per unit time are rate parameters, which are
independent of time. Accordingly, we can replace the conditional probabilities
by the elements of a square matrix W = {Wnm =W (n|m)}.

For the purpose of illustration we consider two suitable examples: We de-
rive solutions for the Moran model by means of a master equation. Analytical
solutions of master equations are rare and therefore often approximations are
made, which convert the master equations into Fokker-Planck equations. Our
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example for diffusion in population space described by means of a Fokker-
Planck equation is again the Moran model and, in particular, Motoo Kimura’s
solution for neutral evolution.

5.3.1 The master equation of the Moran process

Revisiting the two-allele Moran model (section 5.2.3.2 and figure 5.14) we
construct a master equation for the continuous time process and then make
the approximations for large population sizes in the sense of a Fokker-Planck
equation. We recall the probabilities for the different combinations of choos-
ing genes from the pool and adopt the simpler to calculate procedure (ii)
(section 5.2.3.2). Again we have a gene pool of N genes, exactly m alleles of
type A and N −m alleles of type B before the picking event. After the event
the numbers have been changed to n and N − n, respectively:
(i) A + A: pA+A = m2

N2 contributing to n = m,

(ii) A + B: pA+B = m(N−m)
N2 contributing to n = m+ 1,

(iii) B + A: pB+A = (N−m)m
N2 contributing to n = m− 1, and

(iv) B + B: pB+B = (N−m)2

N2 contributing to n = m.

These probabilities give rise to the same transition rates as before

W (n+ 1|n) = κ
m(N −m)

N2
,

W (n|n) = κ
m2 + (N −m)2

N2
, and

W (n− 1|n) = κ
(N −m)m

N2
,

(5.66)

where κ is a rate parameter. Apart from the two choices that don’t change
the composition of the urn we have only two allowed processes (see also
equation (3.96)): (i) n → n + 1 with w+

n as transition probability and (ii)
n→ n−1 with w−

n as transition probability (see section 3.2.5.2), and moreover
the analytical expressions are the same for both. Therefore we are dealing
with a symmetric one-step process :

w+
n = w−

n = κ
n(n−N)

N2
. (5.67)

It is of advantage to handle the selection case simultaneously and therefore
we introduce a selective advantage for allele A in the form of a factor (1 + r)
and then have for the reproduction of the fitter variant A20

20 In population genetics the fitness parameter is conventionally denoted by s but
use here r in order to avoid confusion with the auxiliary variable s.
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w+
n = κ

n(n−N)

N2
(1 + r) , (5.67’)

the process is no longer symmetric but can return to the neutral case by
putting r = 0. The constant factor κ/N2 can be absorbed in the time, which
is measured in units [N2/κ]. Then the master equation is of the form21

∂P (n, t)

∂t
= w−

n+1P (n+ 1, t) + w+
n−1P (n− 1, t) − (w−

n + w+
n )P (n, t) =

= (n + 1)(N − n+ 1)(1 + r)P (n+ 1, t)+

+ (n − 1)(N − n− 1)P (n − 1, t) − n(N − n)(2 + r)P (n, t) .

(5.68)

An exact solution of the master equation (5.68) has been derived [135] for
the neutral (r = 0) and the selective case (r 6= 0). It does not only provide
an exact reference it gives also unambiguous answers to a number of open
questions. The approach to find the analytical solution of equation (5.68) is
the conventional one based on generating functions and partial differential
equations as used for the solution of chemical master equations (section 4.3).
We repeat the somewhat technical procedure here, because it has general
applicability and one more example is quite illustrative.

First the usual probability generating function (2.24) is defined as

g(s, t) =
∑N

n=0
sn P (n, t) (2.24’)

and the following PDE is obtained in the conventional way:

∂g(s, t)

∂t
= (1 − s)

(
1− (1 + r)s

) ∂
∂s

(
Ng(s, t)− s∂g(s, t)

∂s

)
. (5.69)

Equation (5.69) has to be solved now for a given initial condition, for example
exactly n0 alleles of type A at time t = 0:

P (n, 0) = δn,n0 or g(s, 0) = sn0 . (5.70)

From the definition of the probability generating function follow the boundary
conditions

g(1, t) = 1 and (5.71a)

if r = 0 and therefore w+
n = w−

n and 〈n(t)〉 = n0, then

∂g(s, t)

∂s

∣∣∣∣
s=1

= n0 or , (5.71b)

if r 6= 0 then s = σ is a fixed point of the PDE (5.69) and therefore

21 In order to make the transformation of the master equation into a Fokker-Planck
equation in a more transparent way we change notation and write P (n, t) instead of
Pn(t). Formally we consider n as a second variable and apply partial differentiation.
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g(σ, t) = g(σ, 0) = σn0 . (5.71b’)

The beauty of this approach [135] is that the PDE (5.69) with the initial
condition (5.70) and the boundary conditions (5.71) constitute a well defined
problem in contrast to the stochastic diffusion equation used in population
genetics, which requires separate ad hoc assumptions for the limiting gene
frequencies x = 0 and x = 1 (see section 5.3.2 or [45, pp. 379-380]).

The neutral case: r = 0. A general solution of the master equation of the
kind 5.68 is of the form

P (n, t) =
∑N−1

k=0
β
(n)
k eλkt , (5.72)

since it can visualized as a system of N + 1 first order linear differential
equations with the constraint

∑N
n=0 P (n, t) = 1. The probability generating

function g(s, t) is just a combination of these probabilities with the weighting
factors sn and therefore it is suggestive to search for solutions among the lin-
ear combinations of the functions φn(s)e

λnt where ψn(s) and λn are solutions
of the eigensystem

λn ψn(s) = (1− s)2 d

ds

(
Nψn(s) − s

dψn(s)

ds

)
. (5.73)

Solutions of (5.73) can be given in terms of hypergeometric functions 2F1(y)
with y = 1/(s − 1), which will be dome in the discussion of the diffusion
approximation in section 5.3.2. Here we present the direct derivation, which
makes use of the polynomial character of the solutions.

The equation λ = 0 is fulfilled by the stationary solution (see paragraph
stationary solution):

λ0 = 0 : ψ0(s) = π0 + πN s
N = ḡ(s) .

For λ 6= 0 we search for solutions that are polynomials in (1− s) like

ψ(s) =
∑N−1

k=0
ak (1 − s)k+1 , (5.74)

because s = 1 is a double root of ψ(s) = 0. The first coefficient has to be zero,
a0 = 0, as the lowest term in the polynomial is the coefficient of (1− s)2, a1,
and the other coefficients fulfil the recursion:

(
λ + k(k + 1)

)
ak = k (k −N) ak−1 ; k = 1, . . . , N − 1 .

The relation for the first coefficient, a0 = 0, implies that nontrivial solutions
exist only if λ = −n(n+1) for some integer n, and we make use of this integer
to label the eigenvalues λn and the eigenfunctions ψn(s):
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λn = −n (n+ 1) ; n = 1, 2, . . . , N − 1 , (5.75a)

ψn(s) =
∑N−1

k=n
a
(n)
k (1− s)k+1 , and (5.75b)

a(n)n = 1 and

a
(n)
k =

k (N − k)
n(n+ 1)− k(k + 1)

a
(n)
k−1 ; k = n+ 1, . . . , N − 1 .

(5.75c)

The probability generating function can be expressed now in terms of these
eigenfunctions

g(s, t) = π0 + πNs
N +

N−1∑

n=1

Cn ψn(s) e
λnt , (5.76)

with the coefficients Cn to be determined from the initial conditions, e.g. from
g(s, 0) = sn0 . The probabilities P (n, t) follow then in the conventional way
from the expansion of the probability generating function g(s, t) in powers of
the variable s and identification of coeffi +++++cients:

P (n, t) = π0δn,0 + πN δn,N + (−1)n
N∑

k=n

(
n

k

)
αk−1(t) where

αk−1(t) =

N−1∑

n=1

Cn a
(n)
k eλnt ; k = 1, . . . , N − 1 ,

(5.77)

with α−1(t)α0(t) = 0. What remains still to be done is the derivation of

compact expressions of the coefficients a
(n)
k and Cn.

The recurrence relation (5.75c) allows also for direct computation of the
coefficients:

a
(n)
k =

(
k

n

)
(1−N + n)k−n
(2n+ 2)k−n

, (5.75c’)

where the binomial coefficients
(
k
n

)
= 0 ∀ k < n and (x)n is the rising

Pochhammer symbol: Γ (x+ n)/Γ (x)22 The coefficients a
(n)
k are zero except

22 The definition of the Pochhammer symbol ambiguous [165, p. 414]. In the theory
of special functions (x)n is used for the rising factorial

(x)n ≡ x(n) = x(x+ 1)(x + 2) · · · (x+ n− 1) =
Γ (x + n)

Γ (x)
,

whereas the same symbol is used in combinatorics for the falling factorial

(x)n = x(x − 1)(x− 2) · · · (x − n + 1) =
Γ (x + 1)

Γ (x − n+ 1)
,

The expression in terms of the Gamma function is unambiguous.
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in the range k ≥ n and hence the relevant values fill an upper triangular

(N − 1)× (N − 1) matrix A = {ank = a
(n)
k } with all diagonal elements being

equal to unity, a
(n)
n = 1. In order to determine the coefficients Cn we apply

the initial condition g(s, 0) = sn0 and obtain from equations (5.75b) and
(5.76) for t = 0:

sn0 = π0 + πNs
N +

N−1∑

n=1

Cn

N−1∑

k=1

a
(n)
k (1− s)k+1 and

N−1∑

n=1

N−1∑

k=1

Cna
(n)
k (1− s)k+1 = sn0 − π0 − πN sN =

N−1∑

k=1

bk(1 − s)k+1 ,

where bk results from a binomial expansion of the expression in the last
equation

bk = (−1)k
((

N

k + 1

)
πN −

(
n0

k + 1

))
,

and the coefficients Cn are then calculated from the linear triangular system

N−1∑

n=1

a
(n)
k Cn = bk ; k = 1, . . . , N − 1 .

Alternatively, the Ck’s can be calculated directly by means of a hypergeo-
metric function

Cn = (−1)n+1 n0
(1−N)n
(n+ 1)n

3F2(1− n0,−n, n+ 1; 2, 1−N ; 1) , (5.75d)

which completes the exact solution of the neutral Moran master equation.

The selection case: r 6= 0. In the presence of selection we have r 6= 0 and
the eigenvalue equation is change to

λn σ ψn(s) = (1− s)(σ − s) d
ds

(
Nψn(s) − s

dψn(s)

ds

)
(5.78)

with σ = 1/(1 + r). This ODE is known as Heun’s equation [8]. The Heun
polynomials, their eigenvalues have not yet been investigated as, for example,
the hypergeometric functions and there are no explicit formulas for Heun’s
polynomials [135]. Nevertheless, knowledge of the results for the small r limit
is often sufficient and then solutions of equation (5.78) can be obtained by
perturbation theory on powers of r. Results in first order can be obtained by
proper scaling from the solution of pure genetic drift (r = 0). A change in
the auxiliary variable, s ⇒ y = 1− s/√σ, is appropriate and leads to23

23 The result for ε is easily obtained by making use of the infinite series for small x:√
1 + x = 1 + 1

2x−
1
8x

2 + 1
16x

3 . . . and 1/
√
1 + x = 1− 1

2x+ 3
8x

2 − 5
16x

3 . . ..
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−√σ λψ =
(
y2 − ǫ(y − 1)

) d

dy

(
Nψ + (1− y)dψ

ds

)
where

ǫ = σ +
1√
σ
− 2 =

r2

4
+O(r3) .

(5.79)

Since the first non-vanishing term in the perturbation expansion of ǫ is ∝r2,
it is neglected in the first order perturbation calculation. After neglect of
the O(ǫ) term equation (5.79) takes on the same formal structure as the
equation (5.73) for pure genetic drift that has been solved already and the
probability generating function is now of the form

g(s, t) = π0 + πNs
N

N−1∑

n=1

C(1)
n ψ(1)

n e−n(n+1)t/
√
σ + O(r2) with

ψ(1)
n =

N−1∑

k=1

a
(n)
k

(
1− s√

σ

)k+1

with λ(1)n = −n(n+ 1)√
σ

.

(5.80)

The coefficients a
(n)
k are the same as before and given in equation (5.75c’) and

the amplitudes C
(1)
n are obtained again for the initial condition g(s, 0 = sn0

leading to

bk = (−1)k
((

N

k + 1

)
πNσ

N/2 −
(

n0

k + 1

)
σn0/2

)
.

Second and higher order perturbation theory can be used to extend the range
of validity of the approach but gives rise to quite clumsy expressions.

Another approximation is valid for large values of Ns and is base on the
fact that then the term s ∂g(s, t)/∂s in comparable in size to N g(s) only in
the immediate neighborhood of s = 1 and can be neglected therefore in the
range s ∈ [0, σ]. The remaining approximate equation

σ
∂g

∂t
= N(1− s)(σ − s)∂g

∂s
(5.81)

can be solved exactly and yields

g(s, t) =

(
(σ − s)e−Ns t − σ(1− s)
(σ − s)e−Ns t − (1− s)

)n0

. (5.82)

This equation was found to be a good approximation for the probability
generating function for Ns ≥ 2 on the interval [0, σ] but equation (5.82) is
not polynomial for g(s, t and the determination of the probabilities P (n, t) is
numerically ill-conditioned except for small n. In particular, the expression
for the probability of the loss of the allele A is very accurate:
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P (0, t) =

(
1 − e−Nr t

1 + r − e−Nr t

)n0

. (5.83)

The stationary solution: lim t → ∞. The stationary solution of equa-
tion (5.69) fulfils the first order ODE

N ḡ(s) − s
dḡ(s)

ds
= K = const.

that can be solved exactly and has the solution

ḡ(s) = πN s
N + π0 with

πN =
n0

N
and π0 =

N − n0

N

(5.84)

in the neutral case, r = 0, where the two constants are determined by the
two boundary conditions (5.71).

For the non-neutral condition, r 6= 0, the boundary condition (5.71b) has
to replaced by (5.71b’) and we obtain for the two constants:

πN =
1− σn0

1− σN and π0 =
σn0 − σN
1− σN , (5.84’)

where σ = 1/(1 + r) as before. The stationary probability can be calculated
by comparison of coefficients:

lim
t→∞

P (n, t) = P̄ (n) = πN δn,N + π0 δn,0 , (5.85)

where we can now identify πN and π0 as the total probability of fixation and
the total probability for the loss of allele A, respectively.

5.3.2 Diffusion and neutral evolution

Again we choose the simple Moran model of pure genetic drift, r = 0, as
an example. For large population sizes N it is appropriate to consider a new
variable, x ≡ n/N , whereby n = 0, 1, 2, . . . is changed into x = 0

N ,
1
N ,

2
N , . . .,

and in the limit limn → ∞ the variable x becomes continuous. By this
transformation the system space has become continuous on x ∈ [0, 1]. Next,
we make a Taylor expansion of the probabilities of the master equation

P (n+1, t) =⇒ P
(
x+

1

N
, t
)
= P (x, t) +

1

N

∂P (x, t)

∂x
+

1

2N2

∂2P (x, t)

∂x2
+ . . .

and obtain for the complete r.h.s. of equation (5.68):
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(
x+

1

N

)
(1 − x− 1

N
)

(
P +

1

N

∂P

∂x
+

1

2N2

∂2P

∂x2
+ . . .

)
+

+
(
x− 1

N

)
(1− x+

1

N
)

(
P +

1

N

∂P

∂x
− 1

2N2

∂2P

∂x2
+ . . .

)
−

− 2x(1− x)P .

Insertion into (5.68) and expansion yields

∂P (x, t)

∂t
=

1

N2

∂2

∂x2

(
x(1 − x)P (x, t)

)
+ O

( 1

N3

)
.

The factor 1/N2 can be absorbed through a redefinition of time: τ ≡ 2t/N2

and in the limit N →∞ we obtain:

∂P (x, τ)

∂τ
=

1

2

∂2

∂x2

(
x(1 − x)P (x, τ)

)
. (5.86)

By means of the substitution the master equation (5.68) is changed into a
standard Fokker-Planck equation with vanishing drift term: A(x) = 0 and
B(x) = x(1 − x).

A consideration of the selection term, r 6= 0, as in equation (5.68), intro-
duces a drift term into the Fokker-Planck equation

∂P (x, τ)

∂τ
= −N̺

2

∂

∂x

(

x(1− x)P (x, τ)
)

+
1

2

∂2

∂x2

(

x(1− x)P (x, τ)
)

, (5.87)

with ̺ = r/(1 + r/2) and τ = (1 + r/2)2t/N2. Now the equation contains a
drift term A(x) = N̺ x(1− x)/2.

The interpretation of the transformation to continuous space is straight-
forward: The transformed population is considered as a probability density
P (x, t), which migrates on a continuous state space, selection gives rise to a
directed drift towards higher mean fitness of the population. The diffusion
term describes the stochastic spreading.

Motoo Kimura [162, 163, 164] proposed the pure drift Fokker-Planck equa-
tion (5.86) for the stochastic evolution of a population of two alleles by ran-
dom drift

∂P (x, t)

∂t
=

1

4N

∂2

∂x2

(
x(1 − x)P (x, t)

)
, x ∈]0, 1[ , (5.86’)

which uses a slightly different transformation of the time axis. Kimura pro-
vides solution curves for the initial conditions P (x, 0) = δx,x0:

P (x, t|x0, 0) =
∞∑

i=1

x0(1 − x0)i(i + 1)(2i+ 1) 2F1(1− i, i+ 2, 2, x0) ·

· 2F1(1− i, i+ 2, 2, x) e−i(i+1) t/(4N) ,

(5.88)
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where 2F1 is the conventional hypergeometric function. Despite the fact that
equation (5.88) involves an infinite series convergence is commonly fast after
a rather weakly converging first group of elements.

5.3.3 Comparison of Wright-Fisher and Moran models

A general comment of the often highly sophisticated analytical solutions of
master and Fokker-Planck equations is appropriate at the end of this section:

5.4 Coalescent theory and backward equations

5.5 Stochastic modeling by numerical simulation



Chapter 6

Perspectives

Nothing in biology makes sense except in the light of
evolution.
Theodosius Dobzhansky, 1972.

Abstract .
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18. Bienaymé, I.J.: Da la loi de Multiplication et de la durée des familles.
Soc. Philomath. Paris Extraits Ser. 5, 37–39 (1845)

19. Billingsley, P.: Probability and Measure, third edn. Wiley-Interscience, New
York (1995)

20. Billingsley, P.: Probability and Measure, anniversary edn. Wiley-Interscience,
Hoboken, NJ (2012)

21. Blythe, R.A., McKane, A.J.: Stochastic models of evolution in genetics,
ecology and linguistics. J. Stat.Mech,: Theor. Exp. (2007). P07018

22. Boas, M.L.: Mathematical Methods in the Physical Sciences, third edn. John
Wiley & Sons, Hoboken, NJ (2006)

23. Boole, G.: An Investigation of the Laws of Thought on which are Founded the
Mathematical Theories of Logic and Probabilities. MacMillan, London (1854).
Reprinted by Dover Publ. Co., New York, 1958

24. Born, M., Oppenheimer, R.: Zur Quantentheorie der Moleküle. Annalen der
Physik 84, 457–484 (1927). In German

25. Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered madia:
Statistical mechanisms, models and physical applications. Physics Reports
195, 127–293 (1990)

26. Brenner, S.: Theoretical biology in the third millenium.
Phil.Trans.Roy. Soc. London B 354, 1963–1965 (1999)

27. Brown, R.: A brief description of microscopical observations made in the
months of June, July and August 1827, on the particles contained in the pollen
of plants, and on the general existence of active molecules in organic and
inorganic bodies. Phil.Mag., Series 2 4, 161–173 (1828). First Publication: The
Edinburgh New Philosophical Journal. July-September 1828, pp.358-371.

28. Calaprice, A. (ed.): The Ultimate Quotable Einstein. Princeton University
Press, Princeton, NJ (2010)

29. de Candolle, A.: Zur Geschichte der Wissenschaften und Gelehrten seit zwei
Jahrhunderten nebst anderen Studien über wissenschaftliche Gegenstände
insbesondere über Vererbung und Selektion beim Menschen. Akademische
Verlagsgesellschaft, Leipzig, DE (1921). Deutsche Übersetzung der
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geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen.
Annal. Phys. (Leipzig) 17, 549–560 (1905)

59. Einstein, A.: Investigations on the Theory of the Brownian Movement. Dover
Publications, New York (1956). Five original publications by Albert Einstein
edited with notes by R.Fürth

60. Elliot, R.J., Anderson, B.D.O.: Reverse-time diffusions. Stochastic Processes
and Applications 19, 327–339 (1985)
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hebdomadaires des Séances de L’Academié des Sceinces 146, 530–533 (1908)

174. Laplace, P.S.: Essai philosophique les probabililtés. Courcies Imprimeur, Paris
(1814). English edition: A Philosophical Eaasay on Probabilties. Dover
Publications, New York, 1951

175. Lauritzen, S.L.: Time series analysis in 1880: A discussion of contributions
made by t. n, thiele. International Statistical Review 49, 319–331 (1981)

176. Lee, P.M.: Bayesian Statistics, third edn. Hodder Arnold, London (2004)
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Journal de Mathématiques pure et appliquées 3, 342–349 (1838). In French.
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187. Lu, J., Engl, H.W., Rainer Machné, Schuster, P.: Inverse bifurcation analysis
of a model for the mammalian G1/S regulatory module. Lecture Notes in

Computer Science 4414, 168Ű184 (2007)
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Bull.Acad. Imp. Sci. St. Pétersbourg 13, 359–386 (1900)
190. Lyapunov, A.M.: Nouvelle forme du théorème sur la limite des probabilités.
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Glossary

The glossary provides short explanations for alphabetically ordered notions
used frequently in the text.

Bijection: one-to-one correspondence

Closure:

Commensurability: Two non-zero real numbers a and b are commensu-
rable if and only if a/b is rational number implying the existence of some real
number γ such that a = mγ and b = nγ with m and n being integers.

Epigenetics, see genetics and epigenetics.

Force: The notion of force became quantifiable through the second law of
Newtonian mechanics: f = ma, force is a vector and the acceleration a =
d2r/d t2 of a particle caused by the force f is proportional to the particle’s
mass and points into the same direction. Generalized forces

Genetics and epigenetics: Genetic inheritance is dealing with transfer of
biological information encoded on DNA molecules. In case of sexual repro-
duction it follows approximately the Mendelian rules.

Linearity: Linear functions are defined by a relation of the type y′ = T ·
x′, or in components of the vectors yj =

∑n
i=1 tjixi, where T is called the

transformation matrix.

Macroscopic level:

Mesoscopic level:

Microscopic level:

Neutrality Two genotypes are called neutral when selection is unable to
distinguish between them.

Null hypothesis

Rank of a matrix: The rank of a matrix is the dimension of the row space.

Support
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Notation

building blocks and degradation products A,B, . . . ,

numbers of particles of A,B, . . . , NA, NB, . . . ,

concentrations of A,B, . . . , [A] = a, [B] = b, . . . ,

replicating molecular species I1, I2, . . . ,

numbers of particles of I1, I2, . . . , N1, N2, . . . ,

concentrations of I1, I2, . . . , [I1] = c1, [I2] = c2, . . . ,

relative concentrations of I1, I2, . . . , [I1] = x1, [I2] = x2, . . . ,

partial sums of relative concentrations yk =
∑

i xi ,

flow rate in the CSTR r ,

influx concentration into the CSTR a0 ,

rate parameters di, ki, fi, . . . i = 1, 2, . . . ,

global regulation flux Φ(t) ,

chain length of polynucleotides ν ,

superiority of the master sequence Im σm = fm (1−xm)
∑

i 6=m fi
,

population entropy S =
∑

i xi lnxi .
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432 Notation

logical operators: ∀, →, =⇒
scaling parameter: σ
support: ’supp’, for example in

⋃
supp

definition: ’:=’
vectors and matrices: transposition ’t’

linear span: ’span’: span(S) =
{∑k

i=1 λiui|k ∈ N, ui ∈ S, λi ∈ K
}
, S is a

finite subset of a vector space U over a field K.
concentration vectors: x = (a, b, . . .) = ([A], [B], . . .)
reaction rate: v

(
x(t)

)
, v
(
x(t)

)



Index

σ-additivity, 24, 44
σ-algebra, 47, 64

assumption
scaling, 207

asymptotic frequencies, 375
Avogadro’s constant, 3, 5

barrier, see boundary
Bernoulli trials, 168
bifurcation
subcritical, 360
transcritical, 360

bit, 84
boundary
absorbing, 302
natural, 230

boundary, absorbing, 228
boundary, reflecting, 228
Brownian motion, 4, 189
buffer, 311, 328

cardinality (set theory), 19
closure, 25
collision theory, 284
collisions
classical theory, 284
nonreactive, 285
reactive, 285

collisions, molecular, 258
compatibility class
stoichiometric, 269

complement (set theory), 20
condition
final, 173, 224
growth, 247
initial, 163, 173, 224
Lindeberg’s, 114
Lipschitz, 247
Lyapunov’s, 113

pseudo first order, 311
confidence interval, 102, 301
convergence
pointwise, 52, 58
uniform, 52

correction
Bessel, 145

correlation
coefficient, 77

covariance, 77
sample, 146

deficiency, 276
density
joint, 75, 166
spectral, 193

density matrix
classical, 184

detailed balance, 221
deterministic chaos, 6
diagram
Venn, 21

difference (set theory), 20
difference equation, 396
diffusion, 187
anomalous, 217

diffusion coefficient, 4, 206
disjoint sets (set theory), 21
distrbution
stable, 142

distribution
Bernoulli, 99
bimodal, 78
binomial, 99
chi-squared, 123
exponential, 132
geometric, 133
heavy-tailed, 138
joint, 38, 104
log-normal, 122
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logistic, 135
marginal, 39, 42, 69
Maxwell-Boltzmann, 285
normal, 65, 82, 100, 187
Poisson, 96, 132
stable, 100, 213
strictly stable, 213
Student’s, 127
symmetric stable, 213
uniform, 26, 44

dynamics
complex, 6

ensemble average, 194
entropy
information, 84
thermodynamic, 84

eqation
stoichiometric, 261

equation
backward, 223, 225
Chapman-Kolmogorov, 176, 236
chemical master, 341
differential C.K., 178
diffusion, 182, 186
Fokker-Planck, 182, 236, 259
forward, 223
Langevin, 180, 222, 234
Liouville, 183
master, 182, 259, 279
reaction-diffusion, 165

equilibrium
constant, 263, 301
thermal, 285

ergodicity, 194
error function, 67
estimator, 144
event, 7, 25
space, 47
system, 46

exit problem, 223
expectation value, 56, 74
exponent
characteristic, 213

fluctuations

natural, 3, 5
flux
dilution, 378

frequentism
finite, 13
hypothetical, 13

function
autocorrelation, 192
characteristic, 90, 93
cumulant generating, 90
cumulative distribution, 29, 34,

36, 78
density, 64, 71, 185
Dirac delta, 34
distribution, 65
Gamma, 125
Heaviside, 31
indicator, 57, 212
logistic, 135
measurable, 57
Mittag-Leffler, 216
moment generating, 90, 92
nonanticipating, 241
probability generating, 90
probability mass, 28, 33
signum, 31
simple, 57

generator
infinitesimal, 377
random number, 195, 344
set theory, 47

genetics
Mendelian, 10

half-life, 132
homogeneity, spatial, 285

independence
stochastic, 39, 69, 105

inequality
Cauchy-Schwarz, 77
median-mean, 78, 133

infinite divisibility, 212
information
content, 84
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inhibition
product, 264

integral
improper, 56, 60
Itō, 63
Lebesgue, 53
Riemann, 53
Stieltjes, 53, 237
stochastic, 237
Stratonovich, 242

integrand, 53
integration
Cauchy-Euler, 246

integrator, 53
intersection (set theory), 20

jump length, 208

Khinchin, Aleksandr, 193
kinetic theory
gases, 286

kinetics
higher level, 264
mass action, 261
Michaelis-Menten, 264

kinetics, fractional, 210
Kleene star, 25
Kronecker delta, 198
kurtosis, 80
excess, 80

Lévy flights, 217
law
deterministic, 9
large numbers, 117
statistical, 10

limit
almost certain, 51
in distribution, 52, 112
mean square, 51, 239
stochastic, 51

linkage class, 271
location parameter, 213
logarithm
law of iterated, 118

Loschmidt’s constant, 3

Markov process
homogeneous, 172, 210
stationary, 172

martingale, 168, 202
local, 239

mass action, 338
matrix
complex, 269
fitness, 378
idempotent, 375
mean, 373
mutation, 378
stochastic, 378
stoichiometric, 270
value, 378

matrix, bistochastic, 378
maximum likelihood, 156
mean
sample, 144

mean displacement, 5
measure
Borel, 43
complete, 43
Lebesgue, 43, 49

mechanics, statistical, 257
median, 78
memory effect, 166
memorylessness, 133
mode, 78
molecularity, 296
moment
centered, 76
factorial, 98
jump, 280
low, 251
raw, 76, 103
sample, unbiased, 145

motion
Brownian, 234

noise
additive, 235
colored, 194
multiplicative, 245
real, 245
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small, 322
white, 194, 245

null hypothesis, 8, 26
numbers
irrational, 43
natural, 22
rational, 22, 43, 50
real, 22

operator
linear, 74

p-value, 151
parameter
rate, 132
survival, 132

Penney’s game, 9
pivotal quantity, 129
Pochhammer symbol, 91
powerset, 24, 26, 44, 46
pre-image, 57
principle of
indifference, 13, 26, 85
maximum entropy, 87

probability
classical, 13
conditional, 36
density, 26, 56, 64
distribution, 55, 56, 65
elementary, 67
evidential, 13
frequency, 13
inverse, 18, 157
joint, 38, 69
measure, 24
physical, 13
posterior, 18, 157
prior, 18, 157
propensity, 15
triple, 29, 64

process
Lévy, 209
adapted, 171, 241
ambivalent, 214
AR(1), 197

Bernoulli, 24, 99
birth-and-death, 219, 260
càdlàg, 32
death-and-birth, 218
diffusion, 250
elementary, 259
Galton-Watson, 365
Gaussian, 188, 197
Markov, 166, 171, 236, 259
nonanticipating, 171, 241
Poisson, 97, 132, 199
recurrent, 191
transient, 191
Wiener, 185, 194, 222, 240, 246

process ambivalent, 217
product, reaction, 261, 269, 337
property
extensive, 89, 324
intensive, 89, 324

quantile, 78

random drift, 4
random walk
one-sided, 199
continuous time, 202
one dimension, 202

rate law
mass action, 262

rate parameter
probabilistic, 283

reactant, 261, 269, 337
reaction
bimolecular, 261
complex, 269
coordinate, 291
molecularity of, 259
monomolecular, 261, 292
order, 296
termolecular, 261
vector, 275
zero-molecular, 261

reaction rate
constant, 263, 301

reaction system, 270
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real time, 173
reversibility
strong, 271
weak, 275

sample
point, 19, 46
space, 19, 46

sample path, see trajectory
scale parameter, 213
scaling, 317
selection
random, 388

self-information, 84
semimartingale, 32, 239
sequence
random, 14

sets
Borel, 44, 48
Cantor, 50
countable, 22
dense, 43
disjoint, 21
empty, 19
uncountable, 22
Vitali, 46, 50

shape parameter, 214
singleton, 35
skewness, 80
skewness parameter, 213
slowing down
critical, 370

space
concentration, 268
genotype, 165
phase, 183
state, 218

spectrum, 192
stability (distribution), 212
standard deviation, 76
sample, 144

statistics
Bayesian, 16
inferential, 123

step

elementary, 259
stochastic process, 164
independent, 168
separable, 167
stationary, 172, 197

string
empty, 25

submartingale, 171
subset, 19
supermartingales, 171
symbol
Pochhammer, 405

symmetric difference (set theory),
21

system
closed, 277, 301, 305
isolated, 89, 301
open, 261, 277, 298, 358

test statistic, 150
theorem
central limit, 33, 67, 100, 113,

139
compound probabilities, 38
de Moivre-Laplace, 110
deficiency one, 277
deficiency zero, 276
mutliplication, 75
Perron-Frobenius, 374
Wiener-Khinchin, 193

theory
large sample, 116, 119

time
arrival, 201
computational, 222
first passage, 223, 388
real, 222
sequential extinction, 388

time homogeneity, 218
time series, 192
trajectory, 164
transition state, 290
translation, 49
trimolecular, see termolecular

uncertainty
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determnistic, 6
quantum mechanical, 5

uncorrelatedness, 105
unimolecular, see monomolecular
union (set theory), 20

variable
continuous, 65
discrete, 65
random, 29
stochastic, 28

variance, 76
sample, 144

vector
random, 104
rate, 339

volume
generalized, 49

waiting time, 205, 208



Author Index

Arnold, Ludwig, 189
Arrhenius, Svante, 288
Avogadro, Amedeo, 3

Bachelier, Louis, 4, 234
Bartholomay, Anthony, 260
Bayes, Thomas, 17
Belousov, Boris Pavlovich, 354
Bernoulli, Jakob, 13, 99, 168
Bernstein, Sergei Natanovich, 40
Bessel, Friedrich, 145
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Montroll, Elliot, 216
Moore, Gordon, vi
Moran, Patrick, 394, 397
Moyal, José Enrique, 320

Newton, Isaac, 178
Neyman, Jerzy, 13

Oppenheimer, Julius Robert, 290
Ornstein, Leonard Salomon, 161,

195
Ostwald, Wilhelm, 6

Pareto, Vilfredo, 101
Pascal, Blaise, 7
Pearson, Egon Sharpe, 13
Pearson, Karl, 128, 144, 148
Peirce, Charles Sanders, 15
Penney, Walter, 9
Perron, Oskar, 374
Planck, Max, 88, 163, 182
Pochhammer, Leo August, 91, 405
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