Determination of Thermodynamic

Parameters of RNA Loop-Loop

Interactions

- Introduction on secondary structure prediction
- Design of the RNA molecules
- <u>K_D</u>-Determination with native Gels
- UV-Melting Experiments
- <u>Results and Problems</u>

RNA Folding as a 2-Step Process

The RNA secondary structure is the base pair pattern of a folded molecule

Energy Model

stacking pair

hairpin loop

multi-loop

closing base pair

interior loop

bulge

Partition Function

$$Q = \sum_{i=1}^{n} e^{-\frac{E_i}{kT}}$$

Boltzmann-weight of structure j

$$p_{E_j} = \frac{e^{-\frac{E_j}{kT}}}{\sum_{i=1}^n e^{-\frac{E_i}{kT}}}$$

$$0 \leq p_{E_j} \leq 1$$

Gibbs free energy

$$\Delta G = \Delta H - T \Delta S$$

$\frac{\text{Melting temperature}}{T_m} = \frac{\Delta H}{\Delta S + Rln(\frac{C_T}{4})}$ $\frac{\text{Van't Hoff analysis}}{\Delta S + Rln(\frac{C_T}{4})}$

$$T_m^{-1} = \frac{R}{\Delta H} ln C_T + \frac{\Delta S}{\Delta H}$$

Structure of Loop-Loop-Complex

5' 3' G C G C G C C G C G G C A A N N N N N N N N A G C G C G C G C G C 3' 5'

Distribution of Sequence-combinations

Total complex energy / kcal/mol

- 5'-GGGCCGAA<u>CUAAAC</u>ACGGCCC-3' = St1CUAAAC
- 5'-CCCGGCAA<u>GUUUAG</u>AGCCGGG-3' = St2GUUUAG
- 5'-<u>GUUUAG</u>-3' = OliGUUUAG
- 5'-**CUAAAC**-3' = OliCUAAAC

K _{D theoretical}	10°C	20°C	30°C
dangling A's	1.957 μM	26.70 μM	703.26 μM
no dangling A's	12.15 μM	130.02 μM	1.190 mM

St2GUUUAG + OliCUAAAC*

- 5'-GGGCCGAA<u>CCGACC</u>ACGGCCC-3' = St1CCGACC
- 5'-CCCGGCAAGGUCGGAGCCGGG-3' = St2GGUCGG
- 5'-<u>GGUCGG</u>-3' = OliGGUCGG
- 5'-<u>CCGACC</u>-3' = OliCCGACC

<u>K_{D theoretical}</u>	10°C	20°C	30°C
dangling A's	13.38 pM	0.5 nM	2.84 nM
no dangling A's	83.03 pM	2.461 nM	12.307 nM

100nM 50nM 25nM 15nM 10nM 5nM 1nM 500pM 250pM M

Bindung St2GGUCGG + St1CCGACC*

Bindung St2GGUCGG + St1CCGACC*

Bindung St2GGUCGG + St1CCGACC*

Bindung St2GGUCGG + St1CCGACC*

K_D-Determination-Gel of St2GGUCGG + St1CCGACC*(10°C)

M 50 25 15 10 5 2,5 1 0,75 0,5 0,25 nM

K_D-Determination-Gel of St2GGUCGG + St1CCGACC* (20°C)

K_D-Determination-Gel of St2GGUCGG + St1CCGACC* (30°C)

M 50 25 15 10 5 2,5 1 0,75 0,5 0,25 nM

Derivative St1CCGACC + St2GGUCGG (each 2uM)

Derivative St1CCGACC + St2GGUCGG (each 2uM)

Derivative St1CCGACC + St2GGUCGG (each 2uM)

Derivative St1CCGACC + St2GGUCGG (each 2uM) 10mM NaCacodylate pH 6.8, 1M Sodium f.c.

Superposition of St1CCGACC + St2GGUCGG

Results so far

- No complex-formation observable between St1CUAAAC and St2GUUUAC
- Only binding between Oligo and Hairpin detectable
- Complex forms between St1CCGACC and St2GGUCGG
- K_D of formation is around 1 to 1.5 nM
- Melting temperature higher as expected
- No difference in K_D at different temperatures
- Competitive binding of 6mer very slow
- UV-Melting Experiments show that Mg²⁺ increases stability of Kissing-Complex much more than for the Reference Duplex
- Kissing-Complex is much more stable at 1M Na⁺ than the Reference Duplex
- Unexpected Behavior of ΔH and ΔS with increasing Mg^{2^+}
- ΔG does not reflect previously determined K_D