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RNA Secondary Structures

A secondary structure is a list of base pairs that fulfills two constraints:

• A base may participate in at most one base pair.

• Base pairs must not cross, i.e., no two pairs (i, j) and (k, l) may have i < k < j < l.

(no pseudo-knots)

The number of secondary structures as well as the maximum number of base

pairs can be computed recursively

For sequences with equal A U G C content the number of conformations grows

as

S̄1n ∼ n−3

21.85n



Representation of RNA Secondary Structures
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Energy Landscapes

To explore the energy landscape of Biolopymers it is necessary to know the

Conformation Space.

Rquirements:

• All suboptimal structures up to a pre-defined energy level

• A definition of neighborhood among different structures: Move Set

A Move Set defines a metric on the conformation space, i.e. it defines neigh-

borhood.



Energy Barriers and Barrier Trees

Some topological definitions: A structure is a

• local minimum if its energy is lower than

the energy of all neighbors

• local maximum if its energy is higher than

the energy of all neighbors

• saddle point if there are at least two local

minima thar can be reached by a downhill

walk starting at this point



The algorithm of barriers



The flooding algorithm
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Information that can be calculated

• Local minima

• Saddle points

• Barrier heights

• Gradient basins

• Partition functions and free energies of (gradient) basins

N.B.: A gradient basin is the set of all initial points from which a gradient walk (steepest

descent) ends in the same local minimum.



Application: Barrier tree kinetics

Question:

Given an initial population distribution, how does the system

evolve in time? (What is the population distribution after n time-

steps?)

Answer:

Solve the fundamental equation d
dt

Pt = UPt

Explicit solution: Pt = etUP0

U contains elements of the form kij = Γe−β(ES−Ei) (rate i → j)

We used a Markov Process to do the simulation



Stochastic Processes: Markov Processes

Stochastic process {Xt|t ∈ T}

Xt describes a snapshot random distribution on a state space S at time t

A Markov Processs is a stochastic process that satisfies an ad-

ditional requirement.

This Markov property requires that, for any given time instant (say tn) the

future behavior, for instance the value of Xtn+1
, is totally independent of its

history, i.e. the values of Xtn−1
, Xtn−2

and so on. It only depends on the state

occupied at the current time instant tn, given by the value of Xtn



Markov Chains

A continuous time Markov chain is a Markov process with

• discrete state space

• continuous time range

let tn + ∆t > tn > tn−1 > tn−2 > ... > t0:

Prob{Xtn+∆t = P ′|Xtn = P, Xtn−1
= Ptn−1

, ..., Xt0 = Pt0}

= Prob{Xtn+∆t = P ′|Xtn = P}

= Prob{X∆t = P ′|X0 = P}

If we substitute P with i and P ′ with j then the last expression can be

rewritten as

Prob{X∆t = j|X0 = i} = pij



Markov Chains continued

A fundamental fact is that there exists a unique stationary dis-

tribution π = (πi : i ∈ S), i.e. a unique probability distribution

satisfying the balance equations

πj =
∑

i

πipij

for all j.
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RNA switch: Barrier tree dynamics
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The next step: Lattice Proteins and SAWs

Our present interest focuses on cal-
culating energy landscapes of Lattice
Proteins

• HP model (later: other models)

• Energy function: number of HH contacs

• Apropriate move set must be established

• No dynamic programing algorithm for mfe and

suboptimal folding

• Exhaustive calculation of SAWs is NP-hard
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