Cycles and Bicycles

Peter F. STADLER
Institut für Theoretische Chemie, Universität Wien Santa Fe Institute, New Mexico

http://www.tbi.univie.ac.at/~studla

Bled, Slovenia, January 2002

Undirected Graphs

We consider cycles in simple undirected or directed graphs $G(V, E)$.
E... edge set
$V \ldots$ vertex set

In the directed case we distinguish cycles ... without orientation
circuits ... following the orientation of the edges.
$U \subseteq E \ldots|E|$-dimension vector (indexed by the edges):
A cycle (=subgraph with even vertex degrees) is an edge-disjoint union of elementary cycles.

TWO-CONNECTED GRAPHS only: every edge is contained in a cycle.

Vector Spaces of Edges

$$
U_{e}=\left\{\begin{array}{lll}
1 & \text { if } & e \in U \\
0 & \text { if } & e \notin U
\end{array}\right.
$$

Incidence matrix \mathbf{H} of G :

$$
H_{x e}=\left\{\begin{array}{lll}
1 & \text { if } & x \in e \\
0 & \text { if } & x \notin e
\end{array}\right.
$$

All cycles satisfy

$$
\mathbf{H} U=0 \text { over } \operatorname{GF}(2)=(\{0,1\}, \oplus, \cdot)
$$

Cycle space $\mathfrak{C}=$ vector space spanned by cycles
Dimension:

$$
\operatorname{dim} \mathfrak{C}=\gamma(G)=|E|-|V|+\operatorname{components}(G)
$$

Bases of a Vector Space

A set $\left\{x_{1}, \ldots, x_{L}\right\}$ of vectors is linearly independent if the linear equation

$$
\lambda_{1} x_{1}+\lambda_{2} x_{2}+\ldots \lambda_{l} x_{l}=0
$$

has no solution except $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{L}=0$.

A basis of a vector space is a maximal set of linearly independent vectors.

Each vector x can be written as a linear combination of the basis elements $\mathcal{B}=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$:

$$
x=\lambda_{1} y_{1}+\lambda_{2} y_{2}+\cdots+\lambda_{n} y_{n}
$$

Cycle Bases

Kirchhoff basis:

graph \Rightarrow spanning tree \Rightarrow cycles $C(T, e)$ for all $e \notin T$.

A basis of \mathcal{B} is a Kirchhoff basis (or a strictly fundamental basis) of \mathfrak{C} if there is a spanning tree T such that $\mathcal{B}=\{C(T, e) \mid e \in E \backslash T\}$.

Fundamental Cycle Bases

A collection of $\nu(G)$ cycles in G is called fundamental if there is an ordering of these cycles such that

$$
C_{j} \backslash\left(C_{1} \cup C_{2} \cup \cdots \cup C_{j-1}\right) \neq \emptyset \quad \text { for } 2 \leq j \leq \nu(G)
$$

Strictly Fundamental implies fundamental but not vice versa.

Every two-connected graph has an ear decomposition. Each ear decomposition defines a basis of the cycle space \mathfrak{C}.

Minimal Length Cycle Bases

Length $|C|$ of cycle $C=$ number of edges

Length of a cycle basis $\ell(\mathcal{B})=\sum_{C \in \mathcal{B}}|C|$.

Relevant Cycles (Plotkin '71, Vismara '97);
C is contained in a minimal cycle basis
\Longleftrightarrow
C cannot be written as a \oplus-sum of shorter cycles

Some Counter examples

- Not every MCB is strictly fundamental (Horton, Deo)

- Not every MCB is fundamental (examples are quite complicated)
- The MCB of a planar graph not necessarily consists of faces

Who cares about MCBs?

Chemical Ring Perception (SSSR).

Analysis of chemical reaction networks.

Reaction network of Io's athmosphere

Matroid Property

The cycles of G form a matroid \Longrightarrow
A minimal cycle basis is obtained from the set of all cycles by a greedy procedure:

1. Sort set \mathcal{C} of cycles by length

$$
\mathcal{B} \leftarrow \emptyset
$$

2. while $(\mathcal{C} \neq \emptyset)$

$$
\mathcal{C} \leftarrow \mathcal{C} \backslash\{C\}
$$

if $\mathcal{B} \cup\{C\}$ independent: $\mathcal{B} \leftarrow \mathcal{B} \cup\{C\}$.
Problem: exponentially many cycles.
Necessary conditions:
elementary (all vertices have degree 2)
short (isometric) for all vertices x, y in C, the cycle C contains a shortest paths between x and y.

Horton's Polynomial Time Algorithm

A cycle is edge short if C contains an edge $e=\{x, y\}$ and a vertex z such that

$$
C=\{x, y\} \cup P(x, z) \cup P(y, z)
$$

where $P(x, z)$ and $P(y, z)$ are shortest paths.
If C is relevant then it is edge-short (Horton'87).

Construct (at most) $|E| \times|V|$ edge-short cycles.
Horton showed that even if $P(x, z)$ is not unique one may choose any shortest path, i.e., the $|E| \times|V|$ cycles contain a minimal cycle basis.

Alternative trick [Hartvigsen'94]: small perturbation of edge length to make minimum weight cycle basis unique.

Graph Operations

The length of minimal cycle bases does not behave "well" under many simple graph operations:

G_{1}

G_{2}
G_{1} has $\nu\left(G_{1}\right)=3$ and $\ell\left(G_{1}\right)=38$. Deletion of a single edge leads to G_{2} with $\nu\left(G_{2}\right)=2$ but $\ell\left(G_{2}\right)=44$.

Similar: other graph minor operations.

Cartesian and Strong Graph Products

Given two non-empty graphs $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right)$:

Cartesian product $G \square H$:

Vertex set $V_{G} \times V_{H}$
Edges: $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$ is an edge in $E_{G \square H}$ iff either $x_{2}=y_{2}$ and $x_{1} y_{1} \in E_{G}$ or if $x_{1}=y_{1}$ and $x_{2} y_{2} \in E_{H}$

Direct product $G \times H$:
Vertex set $V_{G} \times V_{H}$
Edges: $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$ is an edge if $x_{1} y_{1} \in E_{G}$ and $x_{2} y_{2} \in E_{H}$

Strong product $G \boxtimes H$:
Vertex set $V_{G} \times V_{H}$
Edges: those of the direct product and those of the Cartesian product

Relevant Cycles in Product Graphs

$G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right)$ be two non-empty graphs, T_{G} and T_{H} spanning trees, \mathcal{B}_{G} and \mathcal{B}_{H} cycle bases of G and H.

Hammack's Basis for Cartesian Products (1999):

$$
\begin{aligned}
\mathcal{H}_{1} & =\left\{e \square f \mid e \in T_{G}, f \in T_{H}\right\} \\
\mathcal{H}_{2} & =\left\{C^{y} \mid C \in \mathcal{B}_{G}, y \in V_{H}\right\} \\
\mathcal{H}_{3} & =\left\{{ }^{x} C \mid x \in V_{G}, C \in \mathcal{B}_{H}\right\} \\
\mathcal{B}^{*} & =\mathcal{H}_{1} \cup \mathcal{H}_{2} \cup \mathcal{H}_{3}
\end{aligned}
$$

\mathcal{B}^{*} is i general not minimal even if \mathcal{B}_{G} and \mathcal{B}_{H} are minimal.

- Counterexample: $C_{5} \square K_{2}$

Hammack basis: 4 squares and 2 pentagons.
Minimal length basis: 5 squares and 1 pentagon.

Hammack's basis is minimal if \mathcal{B}_{G} and \mathcal{B}_{H} consist of triangles and squares only.

Consider a triangle-free graph for the moment.

Idea. Start with the Hammack basis and replace as many cycles in the fibres as possible by squares from
$\mathcal{C}_{\square}=\left\{e \square f \mid e \in E_{G}, f \in E_{H}\right\}$.
Lemma. For all $C \in \mathcal{B}_{G}$ and all $x, y \in V_{H}$ there is a collection of squares in \mathcal{C}_{\square} such that $C^{x}=C^{y} \oplus$ squares.

It is hence sufficient to have one copy \mathcal{B}_{G} and one copy of \mathcal{B}_{H} in one G and one H-fibre. The rest of the basis can be completed from \mathcal{C}_{\square}.

To show that there are no relevant cycles that are not contained in \mathcal{C}_{\square} or a fibre we consider the following procedure:

Set $\delta(x)=$ sum of distance of $x \in G \square H$ from two fixed fibres. Define for any cycle C^{*} in $\square H$:

$$
\delta\left(C^{*}\right)=\sum_{x \in V_{C^{*}}} \frac{\operatorname{deg}_{C^{*}}(x)}{2} \delta(x),
$$

We show that we keep adding squares from \mathcal{C}_{\square} to C^{*} until we arrive at $\delta\left(C^{(k)}\right)=0$ and $\left|C^{(k)}\right| \leq\left|C^{*}\right|$. Since C^{*} is either strictly shorter than C^{*} or it is the edge-disjoint union of a cycle in ${ }^{x} H$ and a cycle in $G^{y} C^{*}$ cannot be relevant.

It remains to show that it is impossible to replace any further basis cycle by squares from $\mathcal{C}_{\square} .($ not hard)

For graphs with triangles: retain triangles in each fibre and use the longer basis cycles in a single fibre only.

Total Basis Length in Iterated Products

$$
\begin{aligned}
& \ell(G \square H)=\ell(G)+\ell(H)+ \\
& \quad 3\left[t_{G}\left(\left|V_{H}\right|-1\right)+3 t_{H}\left(\left|V_{G}\right|-1\right)\right] \\
& \quad+4\left[\left(\left|E_{G}\right|-t_{G}\right)\left(\left|V_{H}\right|-1\right)+\left|E_{H}\right|-t_{H}\right)\left(\left|V_{G}\right|-1\right)- \\
& \left.\quad\left(\left|V_{H}\right|-1\right)\left(\left|V_{G}\right|-1\right)\right]
\end{aligned}
$$

Substitute

$$
G^{n}=G \square G^{n-1} \simeq G^{n-1} \square G, \quad G^{1}=G
$$

and set $a=|E| /|V|$ and $\tau=t_{G} /|V|$, where t_{G} is the number of triangles in the MCB of G.

$$
\begin{gathered}
\ell\left(G^{n+1}\right)=\ell(G)+\ell\left(G^{n}\right)+3 \tau\left[|V|\left(\left|V^{n}\right|-1\right)+n|V|^{n}(|V|-1)\right] \\
+4(a-\tau)\left[|V|\left(|V|^{n}-1\right)+n|V|^{n}(|V|-1)\right. \\
\left.-\left(|V|^{n}-1\right)(|V|-1)\right]
\end{gathered}
$$

Dividing by $\nu\left(G^{n+1}\right)$ and setting $\xi=1 / V$ eventually yields:

$$
L_{\infty}=\lim _{n \rightarrow \infty} L_{n}=3 \frac{\tau}{a}+4 \frac{a-\tau}{a}
$$

Graphs with a Unique MCB

Outerplanar graphs

Two-connected o.p. graphs have a Hamiltonian Cycle H and each chord separates G into 2 two-connected outerplanar graphs G_{1} and G_{2}.

Take an edge e in H. The shortest cycle C through e contains at least one chord, hence C is a member of the MCB. Split C along the chords and repeat.

RNA Secondary Structures

outerplanar.
"loops" = cycles of the unique MCB.

Pseudoknots: MCB usually not unique.

tmRNA from E.coli with its pseudoknots

Exchangability of Relevant Cycles

Set \mathcal{R} of relevant cycles of an undirected graph can be computed efficiently by Vismara's algortithm (1997).

Def.: $C, C^{\prime} \in \mathcal{R}$ are exchangable, $C \leftrightarrow C^{\prime}$, if there is a set \mathcal{Q} of relevant cycles such that
(i) $\left|C^{\prime \prime}\right| \leq|C|=\left|C^{\prime}\right|$ for all $C^{\prime \prime} \in \mathcal{Q}$,
(ii) $\mathcal{Q} \cup\left\{C^{\prime}\right\}$ is linearly independent, and
(iii) $C^{\prime}=C \cup \oplus \mathcal{Q}$.

Theorem. $C \leftrightarrow C^{\prime}$ is an equivalence relation.

Surprisingly tedious to prove ...
uses explicitly that we work over GF(2), i.e., does not work for general matroids.

Theorem. Let \mathcal{W} be a \leftrightarrow-class and let \mathcal{M} be a minimal cycle basis. Then

$$
\operatorname{knar}(\mathcal{W})=|\mathcal{M} \cap \mathcal{W}|
$$

is independent of the choice of the minimal cycle basis \mathcal{M}.

Directed Graphs

Let $G(V, A)$ be a directed graph and a U a cycle in G. Associated vector:

$$
U_{e}=\left\{\begin{array}{ccc}
+1 & \text { if } & e \in U \quad \text { in forward direction } \\
-1 & \text { if } & e \in U \text { in backward direction } \\
0 & \text { if } & e \notin U
\end{array}\right.
$$

Incidence matrix \mathbf{H} of G :

$$
H_{x e}=\left\{\begin{array}{ccc}
-1 & \text { if } & x \text { is inital point of arc } e \\
+1 & \text { if } & x \text { is terminal point of arc } e \\
0 & \text { if } & x \notin e
\end{array}\right.
$$

All cycles satisfy

$$
\mathbf{H} U=0 \text { over } \mathbb{R}
$$

Circuit cycle in forward direction, $C_{e}=0,+1$.

Circuit Bases

Theorem. (Berge) If $G(V, A)$ is strongly connected if it has a cycle basis consisting of (elementary) circuits.

Remark. Elementary circuits generate the extremal rays of the convex cone

$$
\mathbb{K}:=\{U: \mathbf{H} U=0 \quad \text { and } \quad U(e) \geq 0\}
$$

How to compute a minimum length circuit basis?
Circuits again form a matroid (linear independence over \mathbb{R}).
\Longrightarrow Greedy Algorithm.
Again exponentially many circuits.

Def. A circuit C is short if for all vertices x and y it contains a shortest path $S[x, y]$ or a shortest path $S[y, x]$.

Def.: A circuit C is arc-short if C contains a vertex x and an arc $e=(v, w)$ such that $C=P[w, x]+P[x, v]+(v, w)$ where $P[w, x]$ and $P[x, v]$ are shortest directed paths.

Lemma. If C is short, it is arc-short
Proof.

Lemma. If C is relevant, then C is short.
Proof. C relevant but not short \Longrightarrow
$\exists x, y$ in C : C contains neither shortest paths $S[x, y]$ nor $S[y, x]$. Then $C^{1}=C[x, y]+S[y, x]$, $C^{2}=S[x, y]+S[y, x]$, and $C^{3}=S[x, y]+S[y, x]$ are closed paths in G and hence are sums of (shorter) circuits. Furtermore

$$
C=C[x, y]+C[y, x]=C^{1}+C^{2}-C^{3}
$$

and $\left|C^{i}\right|<|C|$

Minimum Circuit Base

1: Compute directed distances and shortest paths with perturbed edge length. $\mathcal{O}\left(|V|^{3}\right)$

2: Construct $|A| \times|V|$ candidates for arc-short cycles.

3: Check that the cycles are elementary. $\mathcal{O}(|V|)$ for each cycle, i.e., $\mathcal{O}\left(|A| \times|V|^{2}\right)$

4: Greedy step. At most $|A| \times|V|$ Gauss eliminations on a $(\nu(G)+1) \times|E|$ matrix, i.e., at most $\mathcal{O}\left(\nu(G)|E|^{2} \times|V|\right)$.

For most graphs probably much faster.

Cuts

Let $\left(V_{1}, V_{2}\right)$ be a partition of the vertex set V, i.e., $V_{1}, V_{2} \neq \emptyset$ and $V_{1} \cup V_{2}=V$.

A cut or cocycle $K=\left\langle V_{1}, V_{2}\right\rangle$ is the set of all edges in G that have one end in V_{1} and one end in V_{2}.

The cuts form a vector space \mathfrak{K} over $(\{0,1\}, \oplus, \cdot)$ with dimension $|V|-1$.

Fundamental Cuts

A basis is again obtained from a spanning tree: Let $b \in T$. Removal of b disconnects the tree T into exactly two subtrees with vertex sets $V_{1}^{T, b}$ and $V_{2}^{T, b}$. The cut

$$
\operatorname{cut}(T, b):=\left\langle V_{1}^{T, b}, V_{2}^{T, b}\right\rangle
$$

is fundamental cut of G.

T has $|V|-1$ edges, thus there are $|V|-1$ linearly independent fundamental cuts.

Cut Sets

A cut is a cut set of G if both V_{1} and V_{2} are connected.
\Rightarrow every fundamental cut $\operatorname{cut}(T, b)$ is a cut set of G. ($T \backslash\{b\}$ consists of two trees)

Size of a cut: $|K|$
Length of a cut basis $\ell(\mathcal{B})=\sum_{K \in \mathcal{B}}|K|$
Minimal basis of the cut space?

The Cut Tree

Let $G(V, E)$ be a graph, possibly with edge weights $w(e)$.

A cut tree $T^{\#}$ of G is a tree with vertex set V with the following property:
For every pair of distinct vertices $s, t \in V$, let e be a minimum weight edge on the unique path from s to t in $T^{\#}$. Deleting e from $T^{\#}$ separates $T^{\#}$ into two connected components $V_{1}^{\text {st,e }}$ and $V_{2}^{s t, e}$ such that

$$
\operatorname{cut}\left(T^{\#} ; e\right)=\left\langle V_{1}^{s t, e}, V_{2}^{s t, e}\right\rangle
$$

is a minimum weight cut separating s, t.
The algorithms by Gomory and Hu (1961) and Gusfield (1991) compute a cut tree $T^{\#}$ and the sets cut $\left(T^{\#} ; e\right)$ in $\mathcal{O}\left(|E||V|^{2} \log |V|\right)$ steps.

The Gomory-Hu Algorithm

In a nutshell:
(1) Pick two vertices s and t (at random) and find the minimum weight cut (V_{1}, V_{2}) that separates s and t.
(2) Form two graphs G_{1} and G_{2} by contracting V_{2} and V_{1}, repectively.
(3) Repeat with both graphs until only graphs with two vertices as left.

Lemma. (see e.g. Golynski, Horton 2001) If $T^{\#}$ is a cut tree then

$$
\mathcal{M}=\left\{\operatorname{cut}\left(T^{\#} ; e\right) \mid e \in T^{\#}\right\}
$$

is a minimum weight basis of the cut space \mathfrak{K}.
Proof. We use the edge-weight perturbation trick to make the Gomory-Hu tree and all cut weights unique.

Suppose \mathcal{Q} is a minimal cut basis and let $H=\operatorname{cut}\left(T^{\#} ; e\right)$ be the minimum weight cut separating s and t. Then H is a \oplus-sum of cuts in \mathcal{Q}. This sum must contain a cut H^{\prime} which separates s and t. Suppose $H \neq H^{\prime}$. Of course, H^{\prime} cannot be shorter than the cut H, hence $\mathcal{Q}^{\prime}=\mathcal{Q} \backslash\left\{H^{\prime}\right\} \cup\{H\}$ is shorter than \mathcal{Q}, a contradiction to minimality. Thus $\operatorname{cut}\left(T^{\#} ; e\right) \in \mathcal{Q}$. This holds for each of the $|V|-1$ cuts associated with $T^{\#}$, which are linearly independent, and the lemma follows from $\operatorname{dim} \mathfrak{K}=|V|-1$.

Open Question: How to compute the set of relevant cuts in the unweighted (or degenerate) case?

Relationships of Cycles and Cuts

$C \in \mathfrak{C}$ if $|C \cap K|$ is even for all $K \in \mathfrak{K}$.
$K \in \mathfrak{K}$ if $|C \cap K|$ is even for all $C \in \mathfrak{C}$.

Thus, for all $C \in \mathfrak{C}$ and all $K \in \mathfrak{K}|C \cap K|$ is even, i.e.,

$$
\bigoplus_{e \in E} C_{e} \cdot K_{e}=0
$$

In other words \mathfrak{C} and \mathfrak{K} are "orthogonal" over GF(2).
\mathfrak{C} and \mathfrak{K} are orthogonal complements iff $\mathfrak{C} \cap \mathfrak{K}=\{\emptyset\}$.

So what is a "bicycle"?

Def. A bicycle B is a subset of E that is both a cycle and a cocycle (cut).

Thus the bicycle space is $\mathfrak{B}=\mathfrak{C} \cap \mathfrak{K}$.

Some graphs have bicycles, some don't ...

QUESTION: How can we compute (minimal) Bicycle Bases ???

Thanx!

Joint work with

Petra Gleiss
(Uni Wien, Dept. of Theoretical Chemistry)
Josef Leydold
(WU Wien, Dept. of Statistics)
\section*{Wilfried Imrich}
(Montan Uni Leoben, Dept. of Mathematics)

