For Nodal Domains you need a visa

Türker Bıyıkoğlu

Department for Applied Statistics and Data Processing, University of Economics and Business Administration Institute for Theoretical Chemistry and Structural Biology,

University of Vienna

Nodal Domains

G = (V, E) a connected graph We give for each vertices a sign +, - or 0

• negative nodal domains (ND_)

 $\# ND = \# ND_{+} + \# ND_{-}$

Example

Eigenvalues
$$\lambda = 0$$
 2 4 4
Eigenvectors:
 $x_{4} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \\ -1 \\ 0 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \\ -1 \end{pmatrix}$

dipennector X4 hos 3 noclar domains

 ${\cal L}$ Laplacian matrix of a graph ${\cal G}$

$$L_{uv} = \begin{cases} d_u & \text{if } u = v \\ 0 & \text{if } u \text{ and } v \text{ are not adjacent} \\ -1 & \text{if } u \text{ and } v \text{ are adjacent} \end{cases}$$

Look at the signs of eigenvector of \boldsymbol{L}

Eigenvalues of *L* are numbered in non-decreasing order:

$$\lambda_1 \leq \cdots \leq \lambda_{k-1} < \lambda_k = \lambda_{k+1} = \cdots = \lambda_{k+r-1} < \lambda_{k+r} \leq \cdots \leq \lambda_n$$

Discrete nodal domain theory

(Davies, Gladwell, Leydold, Stadler 2001) Each eigenvectors of λ_k has at most k+r-1 nodal domains

Nodal domain theory for trees

G is a **tree**

If an eigenvector y of λ_k has no vanishing coordinate, then y has exactly k nodal domains.

Max nodal domains for a tree

Input: Tree G, eigenbasis of λ Output: Eigenvector z of λ with maximum number of nodal domains

We can find such an eigenvector z in ${\cal O}(n^2)$ time

Min nodal domains for a tree

Input: Tree G, eigenbasis of λ Output: Eigenvector z of λ with **minimum** number of nodal domains

This problem is **NP-complete**

NP-complete I

"I can't find an efficient algorithm, I guess I'm just too dumb."

NP-complete II

"I can't find an efficient algorithm, but neither can all these famous people."

A folklore observation of Laplacian

 G_1 and G_2 graphs with s and r vertices $G = G_1 \vee G_2$ (G is join of G_1 and G_2)

With folklore observation

the maximum or minimum number of nodal domains is easy to find for:

- threshold graphs
- cographs

Hypercubes (H_n)

10

min. number of nodal domains of Hypercubes

The eigenvalues λ of Hypercube H_n are:

 $\lambda = 0, 2, 4, \dots, 2n, 2n+2$

- If the eigenvalue $\lambda \leq n \Rightarrow$ λ has an eigenvector with **two** nodal domains
- All eigenvalues $\lambda \leq 2n$ has an eigenvector with **two weak** nodal domains

Weak Nodal Domains

