

Packing and Coloring

Franziska Berger Dr. Sven de Vries Prof. Dr. Peter Gritzmann

Zentrum Mathematik TU München

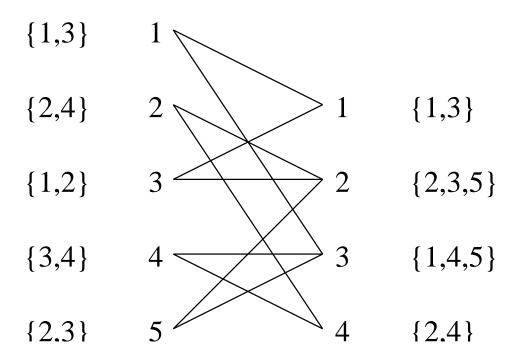
Bled – Slovenia, 2003

Let $F \subseteq \mathbb{Z}_2$ be a finite set. Let $1, \ldots, k$ be rational x-rays. $b_i(F) = |F \cap i| \in \mathbb{N}, i = 1, \dots, k$ 2

Let $F \subseteq \mathbb{Z}_2$ be a finite set. Let $1, \ldots, k$ be rational x-rays. $b_i(F) = |F \cap i| \in \mathbb{N}, i = 1, \dots, k$ 2

Goal: Reconstruct F from given values b_i !

The following bipartite graph represents the incidence structure of the problem.



Formulation as a packing problem

Let
$$C = \{\{1,3\}, \{2,3,5\}, \{1,4,5\}, \{2,4\}\}$$
 and $b^{\top} = (2,1,1,2,1)$.

Let
$$C = \{\{1,3\}, \{2,3,5\}, \{1,4,5\}, \{2,4\}\}$$
 and $b^{\top} = (2,1,1,2,1)$.

Then the reconstruction problem is to find a subset of C of maximum cardinality such that each element j is contained in at most b_j sets.

The incidence matrix:

The incidence matrix:

$$A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

The generalized packing problem:

$$\max \sum_{i=1}^{N} x_i \text{ s.t.}$$
$$Ax \le b, \text{ and } x \in \{0,1\}^{N}.$$

The generalized set multipacking

problem

$G \subseteq \mathbb{N}$ a finite ground set of p elements.

The generalized set multipacking

problem

 $G \subseteq \mathbb{N}$ a finite ground set of p elements. Choose from a collection C of weighted k-sets formed of elements in G a subset of maximum weight such that each element is contained in only a prescribed number of sets.

The generalized set multipacking

problem

 $G \subseteq \mathbb{N}$ a finite ground set of p elements. Choose from a collection C of weighted k-sets formed of elements in G a subset of maximum weight such that each element is contained in only a prescribed number of sets.

$$\max w^{\top} x \text{ s.t.}$$
$$Ax \leq b, \text{ and } x \in \{0,1\}^N,$$

where $N := |\mathcal{C}|$ and $w \in \mathbb{R}^N_+$ positive weights, $b \in \mathbb{N}^p$ capacities.

The generalized set multicovering problem

Choose from a given collection of weighted sets a subset of minimum weight which covers all elements in the union of the sets at least a prescribed number of times.

The generalized set multicovering problem

Choose from a given collection of weighted sets a subset of minimum weight which covers all elements in the union of the sets at least a prescribed number of times.

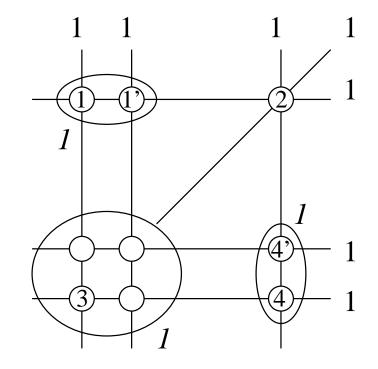
$$\min w^{\top} x \text{ s.t.}$$
$$Ax \ge b, \text{ and } x \in \{0, 1\}^N.$$

Let $C = \{\{1,3\}, \{2,3,5\}, \{1,4,5\}, \{2,4\}\}$ with weights $w^{\top} = (2,3,3,2)$ and capacities $b^{\top} = (2,1,1,2,1)$.

• How well does a local search algorithm work?

- How well does a local search algorithm work?
- Idea: Reduce weighted problems to simple problems, for which estimations are known

- How well does a local search algorithm work?
- Idea: Reduce weighted problems to simple problems, for which estimations are known
- Result: For the generalized set multipacking problem, we obtain the same ratio as in the simple case



 $\{1, 4, 5\}$ is transformed to $\{1, 4, 5, v_2\}, \{1', 4, 5, v_2\}, \{1, 4', 5, v_2\}, \{1', 4', 5, v_2\}.$

We assign to C_j all those sets that can be formed by all combinations of the copies of each element. Finally, to every set, we add the element v_j .

 $G = (g_1, \ldots, g_p)$. Let $q := \sum_{i=1}^p b_i$ d := number of sets $C_j \in C$ that contain an element g_i with capacity $b_i > 1$ $y \mapsto y' \in \mathbb{N}^{q+d} =$ $(y_1, y'_1, \ldots, y^{(b_1-1)}, \ldots, y_p, y'_p, \ldots, y^{(b_p-1)}, v_1, \ldots, v_d)^\top$. $b \mapsto b' = 1_{q+d}$.

LP Formulation of the transformed

problem

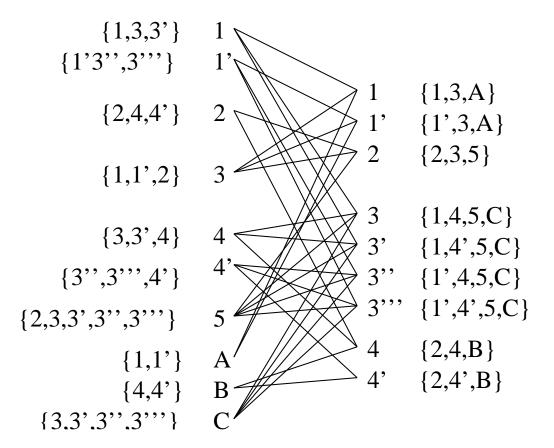
$$\max w'^{\top} x \text{ s.t.}$$
$$A' x \leq b', \text{ and } x \in \{0,1\}^{N'}.$$

$$\min w'^{\top} x \text{ s.t.}$$
$$A' x \ge b', \text{ and } x \in \{0, 1\}^{N'}.$$

$$q = 10$$
 and $N' = 9$. $w'^{\top} = (2, 2, 3, 3, 3, 3, 3, 2, 2)$ and

Bled – p.13/33

Example



Lemma: Let $b^* = \max_i b_i$. Then the transformed problem has at most $b^* \cdot p + N$ elements and at most $N \cdot k^{b^*}$ sets.

Lemma: Let $b^* = \max_i b_i$. Then the transformed problem has at most $b^* \cdot p + N$ elements and at most $N \cdot k^{b^*}$ sets.

It follows from the construction that the new sets contain at most k + 1 elements, since each changed set C_j contains one additional element v_j .

Lemma: Let $b^* = \max_i b_i$. Then the transformed problem has at most $b^* \cdot p + N$ elements and at most $N \cdot k^{b^*}$ sets.

It follows from the construction that the new sets contain at most k + 1 elements, since each changed set C_j contains one additional element v_j .

The weights of the solutions of the original and the transformed problem coincide because each copied set can belong at most once to a solution.

Let *U* be an optimal solution of the generalized set multipacking problem. A solution *V* is *t*-optimal for t > 0 if no subset of $r \le t$ sets in *U* can replace sets in *V* such that the solution is feasible and has strictly greater weight.

• V t-optimal for the original problem. Then all solutions V' of the transformed problem which correspond to V are t-optimal.

Let *U* be an optimal solution of the generalized set multipacking problem. A solution *V* is *t*-optimal for t > 0 if no subset of $r \le t$ sets in *U* can replace sets in *V* such that the solution is feasible and has strictly greater weight.

- V t-optimal for the original problem. Then all solutions V' of the transformed problem which correspond to V are t-optimal.
- Every set in V' may have k + 1 elements.

[Gritzmann-de Vries-Wiegelmann-99], [Arkin-Hassin-98], [Hurkens-Schrijver-89]: Corollary: The ratio of a weighted t-optimal solution V and an optimal solution U of the weighted k-set multipacking problem is at most

$$\frac{w(U)}{w(V)} \le k + \frac{1}{t}$$

Corollary: In the unweighted case, the ratio of a t-optimal solution *V* and an optimal solution *U* are

$$\frac{|U|}{|V|} \le \begin{cases} \frac{(k+1)k^s - k - 1}{2k^s - k - 1} & :t+1 = 2s - 1\\ \frac{(k+1)k^s - 2}{2k^s - 2} & :t+1 = 2s \end{cases}$$

Bled - p.17/33

We find a solution V^* corresponding to V in which every set has at most k neighbors.

Lemma: Let C be a set belonging to both solutions U' and V'. Then the ratio

$$\frac{w(U')}{w(V')} \le \frac{w(U') - w(C)}{w(V') - w(C)},$$

if $w(U') \ge w(V')$.

• Only case where $C_j \cap C'_j = \{v_j\}$, since otherwise both sets have less than k + 1 neighbors

- Only case where $C_j \cap C'_j = \{v_j\}$, since otherwise both sets have less than k + 1 neighbors
- Call N_{C_j}(V') the solution obtained by replacing a set C'_j by C_j and replacing the elements of C_j if present in V' by the elements of C'_j

- Only case where $C_j \cap C'_j = \{v_j\}$, since otherwise both sets have less than k + 1 neighbors
- Call N_{C_j}(V') the solution obtained by replacing a set C'_j by C_j and replacing the elements of C_j if present in V' by the elements of C'_j
- N_{C_j}(V') is feasible and has the same weight as V';
 both solutions correspond to V.

 The procedure is repeated. It terminates after at most min{|V'|, |U'|} steps with no element having more than k neighbors, in a solution V*.

- The procedure is repeated. It terminates after at most min{|V'|, |U'|} steps with no element having more than k neighbors, in a solution V*.
- Since V is assumed to be t-optimal, V* is t-optimal.
 Using the Lemma, we can remove equal sets.

Corollary: The ratio of a weighted t-optimal solution *V* and an optimal solution *U* of the generalized set multipacking problem is at most

$$\frac{w(U)}{w(V)} \le k - 1 + \frac{1}{t}$$

Corollary: In the unweighted case, the ratio of a t-optimal solution V and an optimal solution U are

$$\frac{|U|}{|V|} \le \begin{cases} \frac{k(k-1)^s - k}{2(k-1)^s - k} & :t+1 = 2s - 1\\ \frac{k(k-1)^s - 2}{2(k-1)^s - 2} & :t+1 = 2s \end{cases}$$

It is open whether the performance ratio for the covering problem is equal to that of the simple case.

- The transformed problem is a mixed problem
- In many respects, this problem is more difficult to handle
- Good algorithms are known for special cases

Packing and Coloring

Franziska Berger Drago Bokal

Bled – Slovenia, 2003

Vertex *n*-coloring of a digraph D = (V, A): $c: D \rightarrow [n], \forall i \in [n]: c^{-1}(i)$ is acyclic.

Vertex *n*-coloring of a digraph D = (V, A): $c: D \rightarrow [n], \forall i \in [n]: c^{-1}(i)$ is acyclic.

Chromatic number: $\chi(D) := \min\{n \mid \exists n \text{-coloring of } D\}$

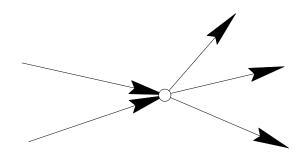
Vertex *n*-coloring of a digraph D = (V, A): $c: D \rightarrow [n], \forall i \in [n]: c^{-1}(i)$ is acyclic.

Chromatic number: $\chi(D) := \min\{n \mid \exists n \text{-coloring of } D\}$

Basic property Let G(D) be the underlying undirected graph of D. Then

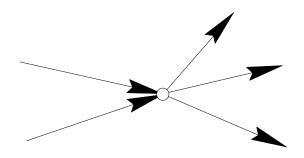
 $\chi(G(D)) \ge \chi(D).$

Proposition: All simple planar digraphs are 3-colorable.



There are simple planar graphs with arboricity 3.

Proposition: All simple planar digraphs are 3-colorable.



There are simple planar graphs with arboricity 3.

Conjecture (Škrekovski): All simple planar digraphs are 2-colorable.

D can be chosen to have the following properties:

• G is a plane triangulation \Rightarrow G is 3-connected.

D can be chosen to have the following properties:

- G is a plane triangulation \Rightarrow G is 3-connected.
- Each vertex v of D lies on two directed cycles C_1, C_2 ; $C_1 \cap C_2 = \{v\} \Rightarrow v$ has in- and out-degree ≥ 2 .

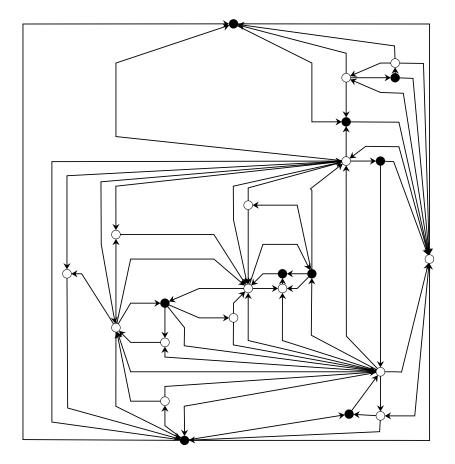
D can be chosen to have the following properties:

- G is a plane triangulation \Rightarrow G is 3-connected.
- Each vertex v of D lies on two directed cycles C_1, C_2 ; $C_1 \cap C_2 = \{v\} \Rightarrow v$ has in- and out-degree ≥ 2 .
- Dual of *G* has no hamiltonian cycle

D can be chosen to have the following properties:

- G is a plane triangulation \Rightarrow G is 3-connected.
- Each vertex v of D lies on two directed cycles C_1, C_2 ; $C_1 \cap C_2 = \{v\} \Rightarrow v$ has in- and out-degree ≥ 2 .
- Dual of *G* has no hamiltonian cycle
- *G* is not perfect.

These properties are not sufficient!



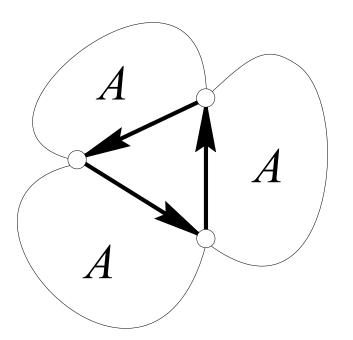
An equivalence relation: u ~ v iff for every coloring
 c: V(D) → [n] of D the value |c(u) - c(v)| =: k_{uv} is
 independent of c.

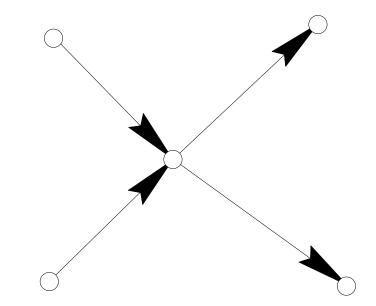
- An equivalence relation: u ~ v iff for every coloring
 c: V(D) → [n] of D the value |c(u) c(v)| =: k_{uv} is
 independent of c.
- Digraph D is a gadget for the surface Σ, if there exists an embedding of D in Σ such that one of D's ~-equivalence classes contains two vertices of the same face.

- An equivalence relation: u ~ v iff for every coloring
 c: V(D) → [n] of D the value |c(u) c(v)| =: k_{uv} is
 independent of c.
- Digraph *D* is a gadget for the surface ∑, if there exists an embedding of *D* in ∑ such that one of *D*'s ~-equivalence classes contains two vertices of the same face.
- Four equivalent types of a planar gadget:

Proposition: A simple planar gadget exists if and only if there exists a planar digraph D with $\chi(D) = 3$.

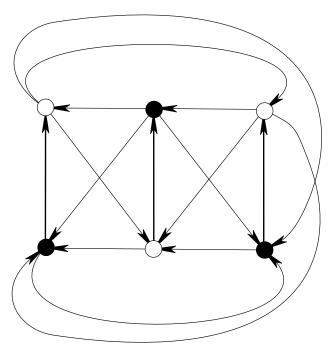
Proposition: A simple planar gadget exists if and only if there exists a planar digraph D with $\chi(D) = 3$. Proof:





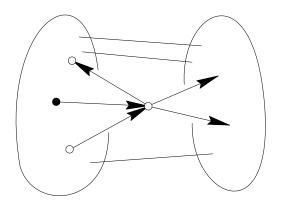
Conjecture: A simple planar gadget does not exist.

Nonplanar gadget:

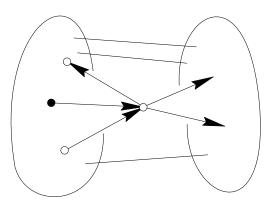


Let f(v) be a linear ordering of the vertices of D. Greedy coloring: Color vertices of D according to f with the smallest feasible color with respect to the already colored part of D.

Let f(v) be a linear ordering of the vertices of *D*. Greedy coloring: Color vertices of *D* according to *f* with the smallest feasible color with respect to the already colored part of *D*.



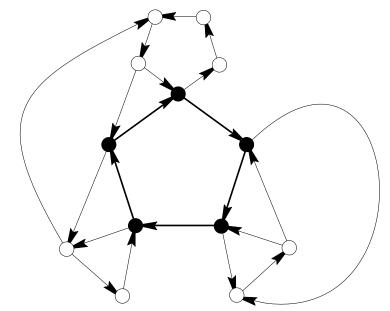
Let f(v) be a linear ordering of the vertices of D. Greedy coloring: Color vertices of D according to f with the smallest feasible color with respect to the already colored part of D.



Proposition: A digraph is *k*-colorable if and only if it is greedily *k*-colorable.

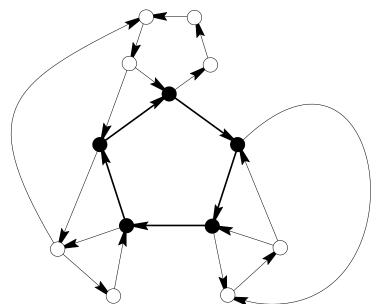
Conjecture: All simple planar digraphs are greedily 2-colorable.

Conjecture: All simple planar digraphs are greedily 2-colorable.



An obstruction

Conjecture: All simple planar digraphs are greedily 2-colorable.



An obstruction

Proposition: Simple D can be colored greedily with ≥ 3 colors if and only if there exists an obstruction O in D and f(v) < f(w) for all outer vertices v and inner vertices w of O.

- Generalized set multipacking problem may be approximated as well/as bad as the normal packing problem
- Generalized set multicover problem???
- Planar digraphs may be acyclically colored with three colors
- Do two colors always suffice?

- Generalized set multipacking problem may be approximated as well/as bad as the normal packing problem
- Generalized set multicover problem???
- Planar digraphs may be acyclically colored with three colors
- Do two colors always suffice?

Thank you for your attention!