Bled, February 2006

On the (dis-)similarities of similar things!

Mihai Albu MPI-EVA & IZBI

Distance Matrices

	Paris	Leipzig	Shanghai	
Paris	0	805	9328	
Leipzig	805	0	8543	
Shanghai	9328	8543	0	

The truth...

51.0039°,12.3667° — 48.0089°,2.2000° : 805.2 km / 500.4 m (great circle distance) Based on Haversine formula using sphericel-earth model. $\textcircled{M}{\underline{M}}{\underline{I}}{\underline{I}}$

Transferring data from mt.gcogle.com..

51.0039°,12,3667° — 31.0017°,121.0056° : 8543 km / 5309 m (great circle distance) Based on Haversine formula using spherical-earth model. © <u>MTL</u>.

Transferring data from kh3.google.com...

http://www.movable-type.co.uk/scripts/LatLong.html

The hopes

- Phylogenetic trees
- Multidimensional Scaling (MDS)

Question

- How do you build a distance matrix?
 - Use km measure and walk (drive a car?)
 from each town to each town ⁽ⁱ⁾ / use latitude
 & longitude parameters together with the
 Haversine formula.
 - Good, but....
 - How to build a distance matrix for species/languages/any object of interests?

- Most of the data have contradictions because:
 - Species/languages/ etc are not towns
 - Missing data
 - 'bad' distance measurement
 - Wrong data/default mistakes.
 - Some data need rescaling
- Why is this so important?
 - Distance matrices are one of the most used input files for phylogenetic algorithms.

	Α	В	С	D		Α	В	С	D
Α	0	3	6	5	Α	0	3	1	5
В	3	0	7	6	В	3	0	7	6
С	6	7	0	3	С	1	7	0	3
D	5	6	3	0	D	5	6	3	0

Answer

- Usually distance matrices are built by comparing multiple characteristics for the objects analyzed.
- These characteristics may be:
 - Physical aspects of species
 - DNA /RNA/ Protein alignments
 - Typological features of languages
- At least two important aspects must be considered:
 - Dissimilarities
 - Similarities

Based on this...

	Feat3	Feat9	Feat13	Feat19	Feat63
German	1	2	1	3	?
English	1	2	1	4	1
Romanian	3	?	1	6	1

Feat 3	Description
1	Low (x<2.0)
2	Moderately Low (2.0 <x<2.75)< td=""></x<2.75)<>
3	Average (2.75 <x<4.5)< td=""></x<4.5)<>
4	Moderately High (4.75 <x<6.5)< td=""></x<6.5)<>
5	High (x>6.5)

Feat3: Consonant-Vowel Ratio Feat9: The Velar Nasal Feat13: Tone Feat16: Weight Factors in Weight Sensitive Stress Systems Feat63: Noun Phrase Conjunction Andoke: **10** consonants and **9** vowels Abkhaz: **58** consonants and **2** vowels

Haspelmarth, Gill, Dryer, Comrie, The World Atlas of Language Structures, 2005

Let's try it....

- Basic Hamming distance (D1)
- Treat '?' as different.
- Ignore '?' but count the available data (D2)
- Replace '?' with the most probable value
- Refine the similarities (D5)
- Refine the dissimilarities
 - NormD (D3)
 - NormDform (D6)
- Both refinements

First approaches

- Treat '?' as different.
 - D(G,E) = 0+0+0+1+1=2
 - D(G,R) = 1+1+0+1+1=4
 - D(E,R) = 1+1+0+1+0=3
- Ignore '?'.
 - D(G,E) = 0+0+0+1+0=1
 - D(G,R) = 1+0+0+1+0=2
 - D(E,R) = 1+0+0+1+0=2
- Ignore '?' but count the available data.
 - D(G,E) = 1/4 = 0.25
 - D(G,R) = 2/3 = 0.66
 - D(E,R) = 2/4 = 0.5

	Feat3	Feat9	Feat13	Feat19	Feat63
German	1	2	1	3	?
English	1	2	1	4	1
Romanian	3	?	1	6	1

One at a time

Replace '?' with the most probable value

- Look at the world wide distribution of the feature.
- Get the most probable values.
- Replace '?' with this value.
- Good' for good distribution
 - 98% = value 1
 - -2% = value2
 - => replace '?' with value1
- 'Bad 'for equal distribution
 - 51% = value 1
 - -49% = value2
 - => replace '?' with

Refinements

d(A,B) < d(C,D)

d(B,C) < d(A,B)

Refine the similarities

- For each feature
 - $-F_A$ = frequency of value A
 - F_T = frequency of available code point for all values of this feature
- The similarity is defined now as:
 - NormS = F_A/F_T
- Sample: map 51
 - value 1 = 431 cases out of 934 available. => NormS = 0.4603
 - value 2 = 35 cases out of 934 available. => NormS = 0.036
 - => two languages that share the value 2 for feature 51 are more similar than two languages that share the value 1!!!!

Refine the dissimilarities

- N = the number of genera for which we have information on multiple languages.
- G_A = the number of genera in N that contain a language with value A
- G_B = the number of genera in N that contain a language with value B
- G_{AB} = the number of genera in N that contain both A and B
- Expected coincidence $E = G_A * G_B / N$
- Standard deviation S = Sqrt(E * (N-E)/N)
- Difference value $D = (G_{AB}-E)/S$
- NormD = 1 ((D Dmin)/(Dmax-Dmin))

Dissimilarities -formula

- N = the number of genera for which we have information on multiple languages.
- G_A = the number of genera in N that contain a language with value A
- G_B = the number of genera in N that contain a language with value B
- G_{AB} = the number of genera in N that contain both A and B
- $E = G_A * G_B / N$
- NewNormD=(E G_{AB} * Log(E) * Log(G_{AB}!)) / Log(N)

Different methods / different results

Improvement measurement

- 6 distance measurements x 5 families x 2 based comparison matrices (P,G) = 30 x 2
- Build geographical and phylogenetic distance matrices
- Calculate the Pearson correlation coefficient for each distance measurement versus each of E/G matrices
- The coefficient is still appropriate, as we don't need the significance of the measurements, just how much better they became.

Geographical distances

- Haversine formula
 - $-\Delta lat = lat2 lat1$
 - $-\Delta long = long2 long1$
 - $-a = \sin^2(\Delta \text{lat}/2) + \cos(\text{lat}1) * \cos(\text{lat}2) * \sin^2(\Delta \text{long}/2)$
 - $-C = 2 \operatorname{atan2}(\sqrt{a}, \sqrt{1-a}))$
 - D = R * C, R = 6.371km
- Very appropriate also for small distances.

R.W.Sinnott, "Virtues of the Haversine", Sky and Telescope, vo.68, no.2, 1984, p.159

Phylogenetic distances

Indo-European (443)

- Albanian (4)
- - Gheg (1)
- - ALBANIAN, GHEG [ALS] Yugoslavia
- - Tosk (3)
- - ALBANIAN, TOSK [ALN] Albania
- Armenian (2)
- - ARMENIAN [ARM] Armenia
- Baltic (3)
- - Eastern (2)
- - LATVIAN [LAT] Latvia
- - LITHUANIAN [LIT] Lithuania
- - Western (1)
- Celtic (7)
- - Insular (7)
- - Brythonic (3)
- - BRETON [BRT] France
- - CORNISH [CRN] United Kingdom
- - WELSH [WLS] United Kingdom
- - Goidelic (4)
- - GAELIC, IRISH [GLI] Ireland
- - GAELIC, SCOTS [GLS] United Kingdom
- - MANX [MJD] United Kingdom

D(ALS,ALN)=2 D(ALS,ARM)=3 D(ARM,LAT)=3

. . . .

How much better are the methods? Comparison with the typological distance matrix

How much better are the methods? Comparison with the geographical distance matrix

Conclusions part 1

Family	Number of data points for the languages analyzed
Sino-Tibetan	1340
Afro-Asiatic	1536
Niger-Congo	1752
Austronesian	1932
Indo-European	1980

- Indo-European (most datapoints) is the most 'resistant' to different methods
- Distance measure 2(Hamm depending on the available data) seems to be from the beginning one of the best
- Distance measure 5(measuring the similarities) slightly better
- Distance measure 6 approaches the geographical (it really depends on the data)
- Austronesian has the largest geographical distances.

Conclusions part2

- The methods relate different to the two types of matrices (E&G).
- We still need to understand better why some measurements are getting closer.
- 'Cleaner' results might be obtained if different phylogenetic measurement will be applied.
- We need to realize the important of the number of datapoints. Based on this, we should be able to specify the appropriate method depending on each data set.
- Why similarity measure improves the results might be explained because we are analyzing languages located in the same family, so they should have mostly the same feature values.
- Combining both similarities and dissimilarities measurements might produce an even better result.
 *D = ΣNormD/(ΣNormD+ Σ(1-NormS))

Thanks to...

- MPI-EVA
- IZBI
- YOU
- Sebastian for accepting my sleeping habits ;-)

albu@eva.mpg.de