On the (dis-)similarities of similar things!

Mihai Albu
MPI-EVA \& IZBI

Distance Matrices

	Paris	Leipzig	Shanghai
Paris	0	805	9328
Leipzig	805	0	8543
Shanghai	9328	8543	0

The truth...

$51.00339^{\circ}, 12.3667^{\circ}-48 .\left[069^{\circ}, 2.2000^{\circ}: 805.2 \mathrm{~km} / 500.4 \mathrm{~m}\right.$ (great circle distance) Based on haversine iormula using sphencel-aath model OMIL

$51.0039^{\circ} \cdot 12.3667^{\circ}-31.0017^{\circ} \cdot 121.0056^{\circ}: 8543 \mathrm{~km} / 5309 \mathrm{~m}$ (great circle distance) Based on Haversine formula using sphericaleath model. MTL.

Iransfering dxas fiom kk3,gooole con

$48.0089^{\circ}, 22000^{\circ}-31.0017^{\circ}, 121.00566^{\circ}: 9328 \mathrm{~km} / 5797 \mathrm{~m}$ (great circle distance) Based on Haversine formula using sphericat-eath model. OMTL

The hopes

- Phylogenetic trees
- Multidimensional Scaling (MDS)

Question

- How do you build a distance matrix?
- Use km measure and walk (drive a car?) from each town to each town © / use latitude \& longitude parameters together with the Haversine formula.
- Good, but....
- How to build a distance matrix for species/languages/any object of interests?

Problems....:

- Most of the data have contradictions because:
- Species/languages/ etc are not towns
- Missing data
- 'bad' distance measurement
- Wrong data/default mistakes.
- Some data need rescaling
- Why is this so important?
- Distance matrices are one of the most used input files for phylogenetic algorithms.

	A	B	C	D
A	0	3	6	5
B	3	0	7	6
C	6	7	0	3
D	5	6	3	0

	A	B	C	D
A	0	3	1	5
B	3	0	7	6
C	1	7	0	3
D	5	6	3	0

Answer

- Usually distance matrices are built by comparing multiple characteristics for the objects analyzed.
- These characteristics may be:
- Physical aspects of species
- DNA /RNA/ Protein alignments
- Typological features of languages
- At least two important aspects must be considered:
- Dissimilarities
- Similarities

Based on this...

	Feat3	Feat9	Feat13	Feat19	Feat63
German	1	2	1	3	$?$
English	1	2	1	4	1
Romanian	3	$?$	1	6	1

Feat 3	Description
1	Low $(x<2.0)$
2	Moderately Low $(2.0<x<2.75)$
3	Average $(2.75<x<4.5)$
4	Moderately High $(4.75<x<6.5)$
5	High $(x>6.5)$

Feat3: Consonant-Vowel Ratio
Feat9: The Velar Nasal
Feat13: Tone
Andoke: 10 consonants and 9 vowels
Abkhaz: 58 consonants and $\mathbf{2}$ vowels
Feat16: Weight Factors in Weight
Sensitive Stress Systems
Feat63: Noun Phrase Conjunction
Haspelmarth, Gill, Dryer, Comrie, The World Atlas of Language Structures, 2005

Let's try it....

- Basic Hamming distance (D1)
- Treat '?' as different.
- Ignore '?' but count the available data (D2)
- Replace '?' with the most probable value
- Refine the similarities (D5)
- Refine the dissimilarities
- NormD (D3)
- NormDform (D6)
- Both refinements

First approaches

- Treat '?' as different.

$$
\begin{array}{ll}
-\quad D(G, E)=0+0+0+1+1=2 \\
- & D(G, R)=1+1+0+1+1=4 \\
-\quad D(E, R)=1+1+0+1+0=3
\end{array}
$$

	Feat3	Feat9	Feat13	Feat19	Feat63
German	1	2	1	3	$?$
English	1	2	1	4	1
Romanian	3	$?$	1	6	1

- Ignore '?'.
- $\quad D(G, E)=0+0+0+1+0=1$
- $D(G, R)=1+0+0+1+0=2$
- $\quad D(E, R)=1+0+0+1+0=2$
- Ignore '?' but count the available data.
- $\quad D(G, E)=1 / 4=0.25$
- $\quad D(G, R)=2 / 3=0.66$
- $\quad D(E, R)=2 / 4=0.5$

One at a time

Replace '?' with the most probable value

- Look at the world wide distribution of the feature.
- Get the most probable values.
- Replace '?' with this value.
- 'Good’ for good distribution
-98% = value 1
- 2% = value2
- => replace '?' with value1
- 'Bad 'for equal distribution
-51% = value 1
- 49\% = value2
- => replace '?' with

Refinements

Refine the similarities

- For each feature
- $F_{A}=$ frequency of value A
- $F_{T}=$ frequency of available code point for all values of this feature
- The similarity is defined now as:
- NormS $=F_{A} / F_{T}$
- Sample: map 51
- value 1 = 431 cases out of 934 available. => NormS $=0.4603$
- value 2 = 35 cases out of 934 available. => NormS $=0.036$
- => two languages that share the value 2 for feature 51 are more similar than two languages that share the value 1!!!!

Refine the dissimilarities

- $\mathrm{N}=$ the number of genera for which we have information on multiple languages.
- $\mathrm{G}_{\mathrm{A}}=$ the number of genera in N that contain a language with value A
- $G_{B}=$ the number of genera in N that contain a language with value B
- $\mathrm{G}_{\mathrm{AB}}=$ the number of genera in N that contain both A and B
- Expected coincidence $\mathrm{E}=\mathrm{G}_{\mathrm{A}}{ }^{*} \mathrm{G}_{\mathrm{B}} / \mathrm{N}$
- Standard deviation $S=\operatorname{Sqrt}\left(\mathrm{E}^{*}(\mathrm{~N}-\mathrm{E}) / \mathrm{N}\right)$
- Difference value $\mathrm{D}=\left(\mathrm{G}_{\mathrm{AB}}-\mathrm{E}\right) / \mathrm{S}$
- NormD $=1$ - ((D - Dmin)/(Dmax-Dmin))

Dissimilarities -formula

- $\mathrm{N}=$ the number of genera for which we have information on multiple languages.
- $\mathrm{G}_{\mathrm{A}}=$ the number of genera in N that contain a language with value A
- $G_{B}=$ the number of genera in N that contain a language with value B
- $\mathrm{G}_{\mathrm{AB}}=$ the number of genera in N that contain both A and B
- $E=G_{A}{ }^{*} G_{B} / N$
- NewNormD=(E-G $\left.\mathrm{AB}^{*} \log (\mathrm{E}){ }^{*} \log \left(\mathrm{G}_{\mathrm{AB}}!\right)\right) / \log (\mathrm{N})$

Different methods / different results

Improvement measurement

- 6 distance measurements $\times 5$ families $\times 2$ based comparison matrices (P,G) $=30 \times 2$
- Build geographical and phylogenetic distance matrices
- Calculate the Pearson correlation coefficient for each distance measurement versus each of E/G matrices
- The coefficient is still appropriate, as we don't need the significance of the measurements, just how much better they became.

Geographical distances

- Haversine formula
$-\Delta$ lat $=$ lat2 - lat1
$-\Delta$ long $=$ long2 - long1
$-a=\sin ^{2}(\Delta$ lat/2 $)+\cos ($ lat1 $) ~ * \cos ($ lat2 $) ~ * \sin ^{2}(\Delta$ long/2)
$-C=2$ atan2 $(\sqrt{a}, \sqrt{(1-a)})$
- $D=R^{*} C, R=6.371 \mathrm{~km}$
- Very appropriate also for small distances.
R.W.Sinnott, "Virtues of the Haversine", Sky and Telescope, vo.68, no.2, 1984, p. 159

Phylogenetic distances

Indo-European (443)

- Albanian (4)
- - Gheg (1)
- - - ALBANIAN, GHEG [ALS] Yugoslavia
- - Tosk (3)
- - - ALBANIAN, TOSK [ALN] Albania
- Armenian (2)
- - ARMENIAN [ARM] Armenia
- Baltic (3)
- - Eastern (2)
- - - LATVIAN [LAT] Latvia
- - - LITHUANIAN [LIT] Lithuania
- - Western (1)
- Celtic (7)
- - Insular (7)
- - - Brythonic (3)
- - - BRETON [BRT] France
- - - CORNISH [CRN] United Kingdom
- - - - WELSH [WLS] United Kingdom
- - - Goidelic (4)
- - - - GAELIC, IRISH [GLI] Ireland
- - - - GAELIC, SCOTS [GLS] United Kingdom
- - - MANX [MJD] United Kingdom

D(ALS,ALN)=2
D(ALS,ARM)=3
D(ARM,LAT $)=3$

How much better are the methods?

 Comparison with the typological distance matrix

How much better are the methods?

Comparison with the geographical distance matrix

Conclusions part 1

Family	Number of data points for the languages analyzed
Sino-Tibetan	1340
Afro-Asiatic	1536
Niger-Congo	1752
Austronesian	1932
Indo-European	1980

- Indo-European (most datapoints) is the most 'resistant' to different methods
- Distance measure 2(Hamm depending on the available data) seems to be from the beginning one of the best
- Distance measure 5(measuring the similarities) slightly better
- Distance measure 6 approaches the geographical (it really depends on the data)
- Austronesian has the largest geographical distances.

Conclusions part2

- The methods relate different to the two types of matrices (E\&G).
- We still need to understand better why some measurements are getting closer.
- 'Cleaner' results might be obtained if different phylogenetic measurement will be applied.
- We need to realize the important of the number of datapoints. Based on this, we should be able to specify the appropriate method depending on each data set.
- Why similarity measure improves the results might be explained because we are analyzing languages located in the same family, so they should have mostly the same feature values.
- Combining both similarities and dissimilarities measurements might produce an even better result.
* D = $\boldsymbol{\Sigma N o r m D / (\Sigma N o r m D + \boldsymbol { \Sigma } (1 - N o r m S)) ~}$

Thanks to...

- MPI-EVA
- IZBI
- YOU
- Sebastian for accepting my sleeping habits ;-)
albu@eva.mpg.de

