# Hairpins in a Haystack

#### Jana Hertel

Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University Leipzig

Leipzig, February 22, 2006

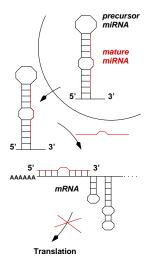
# Outline

#### Introduction

Background Detection Basis Purpose

#### Methods

Hairpin filter Descriptors and SVM SVM training


#### Application

Homo sapiens Nematodes Seasquirts

Background

# **MicroRNAs - Background**

- class of noncoding RNAs
- important regulatory functions
- ▷ longer transcripts (pre-miRNAs)  $\rightarrow \sim 100$ nt
- $\triangleright\,$  functional mature miRNA in one stem side  $\rightarrow \sim 22 nt$
- mature miRNA highly conserved
- bind to 3'UTRs of mRNA targets
  - supress expression
  - mark for degradation



-Detection

# **MicroRNAs - Detection**

candidates homologous to miRNAs

candidates adjacent to known miRNAs

Problem:

candidates that do not feature these facts can not be found

-Detection

# **MicroRNAs - Detection**

several approaches for detecting novel miRNA genes secondary structure, 3' and 5' patterns in stem loop

Examples:

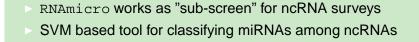
- miRscan<sup>1</sup> (nematodes), miRseeker<sup>2</sup> (insects), miralign<sup>3</sup> (vertebrates)
- candidate search, classifying by features partly machine learning

<sup>1</sup>Lim *et al.* 2003 <sup>2</sup>Lai *et al.* 2003 <sup>3</sup>Wang *et al.* 2005

| Hairpins in a Haysta | ack |
|----------------------|-----|
|----------------------|-----|

Basis

## **Basis of this approach**


- genome-wide screens for ncRNAs
- RNAz<sup>4</sup> → evolutionary conserved secondary structure in multiple sequence alignments
- automatic tools neccessary to assign candidates to ncRNA classes

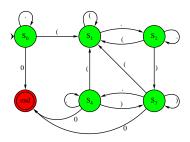
<sup>4</sup>Washietl et al. 2005

| Hair | pins | in a | Hav | stack |
|------|------|------|-----|-------|
|      |      |      |     |       |

Purpose

#### Purpose of RNAmicro




| Hairp | ins in | a Hay | stack |
|-------|--------|-------|-------|
|-------|--------|-------|-------|

### **Paritcular steps**

- 1. detect almost hairpins
- 2. computation of descriptors
- 3. SVM classification

—Hairpin filter

# Detecting almost hairpins



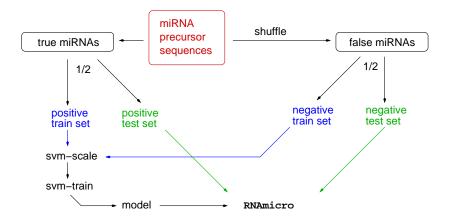
- specify window of alignment
- consensus sequence and structure
- dot-parantheses string read by automaton
- start and length of each stem loop stored
- accept structure if
  - exactly 1 stem loop > 10nt
  - other smaller stem loop <= 4 nt</p>

Descriptors and SVM

# **Computation of Descriptors**

| stem length |                 | consensus mfe            |
|-------------|-----------------|--------------------------|
| loop length | mean single mfe | 3'/5' stem, loop entropy |
| G+C content | adjusted mfe    | 23nt block entropy       |
|             | mfe index       |                          |

Descriptors and SVM


# **SVM** implementation

- ▶ SVM from libsvm<sup>5</sup>
- scale descriptors to [-1, +1]
- model: rbf kernel, probability estimates

<sup>5</sup>Chang and Lin, 2001

SVM training

# **Initial training**



-SVM training

# **Results of initial training**

- 134/147 (90%) sensitivity, 381/383 (99%) specificity
- train SVM again with entire datasets
- test on RNAz screens of nematodes and seasquirts
  → significant number of known ncRNAs false classified
  - $\rightarrow$  initial negative set not sufficiently good

Hairpins in a Haystack

-Methods

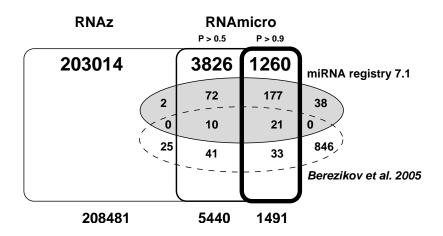
-SVM training

## **Retraining the SVM**

- ncRNA alignments extracted from Rfam database
- add known false positives to negative train set
- iterate process of adding false positives and retraining until no significant improvement on the Rfam dataset

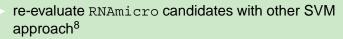
| Hairpins in a Hays | stack |  |  |
|--------------------|-------|--|--|
|                    |       |  |  |
|                    |       |  |  |




- vertebrate genomes<sup>6</sup>, nematode and urochordate<sup>7</sup> ncRNA alignments
  - screen with 70,100 and 130 nt window
  - retaining best (p!) non-overlapping hits of each alignment

<sup>6</sup>Washietl *et al.* 2005 <sup>7</sup>Missal *et al.* 2005




Homo sapiens

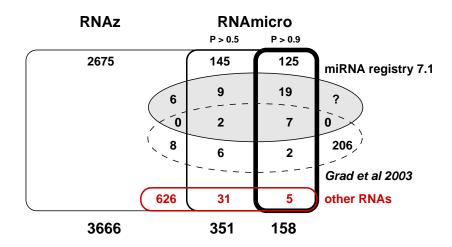
### **General results**



| Hairpins in a Haystack |  |  |
|------------------------|--|--|
|                        |  |  |
| Homo sapiens           |  |  |
|                        |  |  |





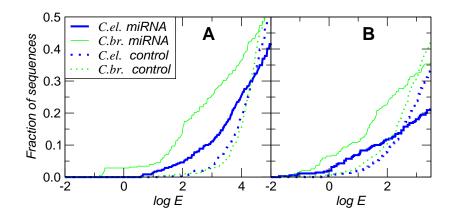

- very restrictive hairpin filter
  - $\sim$  3077 / 5440 with P > 0.5 passed fi lter, 1590 recognized
  - > 953 / 1481 with P > 0.9 passed fi lter, 657 recognized
- 4245 / 5440 candidates not associated with protein coding genes
- 1107 candidates located within introns (36 known)



Application

-Nematodes

### **General results**

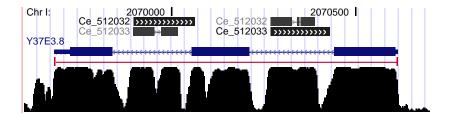





-Application

-Nematodes

## **Upstream motif**



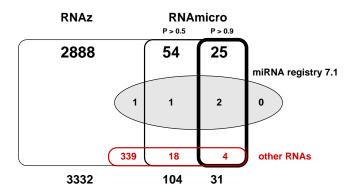



-Application

-Nematodes

### Intronic and clustered miRNAs




- 176 / 351 intronic candidates
- > 30 clusters with 131 members



Application

Seasquirts

### **General results**



5 clusters with 10 members

-Discussion

## Summary

- RNAmicro designed for classification of ncRNA alignments
- applied to 3 recent RNAz based studies
- large number of novel miRNA candidates
- verification through
  - comparison with other approaches and annotations
  - anaylising genomic location to other candidates
  - location in introns
- large number of RNAmicro predictions correspond to real miRNAs
- only small fraction of true miRNA repertoire known