

Josef Leydold

leydold@statistik.wu-wien.ac.at

Department für Statistik und Mathematik, WU Wien

HITRO

A Fast Automatic MCMC Procedure

Josef Leydold

leydold@statistik.wu-wien.ac.at

Department für Statistik und Mathematik, WU Wien

Monte Carlo Method

Jask:

Compute expectation of some function g with respect to a distribution with density f:

$$\mathsf{E}_f(g) = \int_{\mathbb{R}^n} g(\mathbf{x}) \, f(\mathbf{x}) d\mathbf{x}$$

Method: Monte Carlo Integration

$$\mathsf{E}_f(g) \approx \frac{1}{N} \sum_{i=1}^N g(\mathbf{X}_i) \qquad \text{where } \mathbf{X}_i \sim f$$

Problem: Generation of $X_i \sim f$

Generation of IID Random Vectors

In high dimension it is very difficult to generate RVs.

- The conditional distribution method requires knowledge of all full conditional distribution functions. (multivariate inversion method)
- The rejection method does not work well in higher (> 10) dimensions, since rejection constant and/or the memory requirements explode exponentially.

E.g. Generate points uniformly distributed in a ball by rejection from the hypercube. For dimension 50 the acceptance probability is about 10^{-28} .

However, there is no necessity for **IID** random vectors.

Markov Chain Monte Carlo

Run a Markov chain whose stationary distribution is the required distribution.

Many such methods exist:

- Metropolis-Hastings algorithm
- Random walk sampler
- Independence sampler
- Gibbs sampler

Do not confuse with the task of simulating a Markov chain.

Markov Chain Sampler

Advantages:

- Algorithms are much simplier.
- More generally applicable.

Disadvantages:

- No IID random vectors.
- The generated points are dependent and follow the desired distribution only approximately.
- Rate of convergence of the Markov chain is a problem. Only heurist rules for convergence exist.

Markov Chain Sampler

From the WinBUGS manual:

Beware! MCMC can be dangerous!

Such a Markov chain can be generated by means of proposal densities $q(x|\mathbf{X})$.

Algorithm:

• Choose a starting point X_0 ; set $t \leftarrow 0$.

Generate proposal $\tilde{\mathbf{X}}$ with density $q(x|\mathbf{X}_t)$ Generate $U \sim \mathcal{U}(0, 1)$.

If $U \leq \frac{f(\tilde{\mathbf{X}})}{f(\mathbf{X}_t)} \frac{q(\mathbf{X}_t | \tilde{\mathbf{X}})}{q(\tilde{\mathbf{X}} | \mathbf{X}_t)}$ set $\mathbf{X}_{t+1} \leftarrow \tilde{\mathbf{X}}$

Otherwise set $X_{t+1} \leftarrow X_t$.

Such a Markov chain can be generated by means of proposal densities $q(x|\mathbf{X})$.

Algorithm:

Choose a starting point X_0 ; set $t \leftarrow 0$.

• Generate proposal $\tilde{\mathbf{X}}$ with density $q(x|\mathbf{X}_t)$

Generate $U \sim \mathcal{U}(0,1)$.

If $U \leq \frac{f(\tilde{\mathbf{X}})}{f(\mathbf{X}_t)} \frac{q(\mathbf{X}_t | \tilde{\mathbf{X}})}{q(\tilde{\mathbf{X}} | \mathbf{X}_t)}$ set $\mathbf{X}_{t+1} \leftarrow \tilde{\mathbf{X}}$

Otherwise set $X_{t+1} \leftarrow X_t$.

Such a Markov chain can be generated by means of proposal densities $q(x|\mathbf{X})$.

Algorithm:

Choose a starting point X_0 ; set $t \leftarrow 0$.

Generate proposal $\tilde{\mathbf{X}}$ with density $q(x|\mathbf{X}_t)$

• Generate $U \sim \mathcal{U}(0,1)$.

If $U \leq \frac{f(\tilde{\mathbf{X}})}{f(\mathbf{X}_t)} \frac{q(\mathbf{X}_t | \tilde{\mathbf{X}})}{q(\tilde{\mathbf{X}} | \mathbf{X}_t)}$ set $\mathbf{X}_{t+1} \leftarrow \tilde{\mathbf{X}}$

Otherwise set $X_{t+1} \leftarrow X_t$.

Such a Markov chain can be generated by means of proposal densities $q(x|\mathbf{X})$.

Algorithm:

Choose a starting point X_0 ; set $t \leftarrow 0$. Generate proposal \tilde{X} with density $q(x|X_t)$ Generate $U \sim \mathcal{U}(0, 1)$.

• If
$$U \leq \frac{f(\tilde{\mathbf{X}})}{f(\mathbf{X}_t)} \frac{q(\mathbf{X}_t | \tilde{\mathbf{X}})}{q(\tilde{\mathbf{X}} | \mathbf{X}_t)}$$
 set $\mathbf{X}_{t+1} \leftarrow \tilde{\mathbf{X}}$

Otherwise set $X_{t+1} \leftarrow X_t$. Increment *t* and continue.

Such a Markov chain can be generated by means of proposal densities $q(x|\mathbf{X})$.

Algorithm:

Choose a starting point X_0 ; set $t \leftarrow 0$. Generate proposal \tilde{X} with density $q(x|X_t)$ Generate $U \sim \mathcal{U}(0, 1)$.

$$\text{If } U \leq \frac{f(\tilde{\mathbf{X}})}{f(\mathbf{X}_t)} \frac{q(\mathbf{X}_t | \tilde{\mathbf{X}})}{q(\tilde{\mathbf{X}} | \mathbf{X}_t)} \quad \text{set } \mathbf{X}_{t+1} \leftarrow \tilde{\mathbf{X}}$$

• Otherwise set $X_{t+1} \leftarrow X_t$.

Such a Markov chain can be generated by means of proposal densities $q(x|\mathbf{X})$.

Algorithm:

Choose a starting point X_0 ; set $t \leftarrow 0$. Generate proposal \tilde{X} with density $q(x|X_t)$ Generate $U \sim \mathcal{U}(0, 1)$.

$$\text{If } U \leq \frac{f(\tilde{\mathbf{X}})}{f(\mathbf{X}_t)} \frac{q(\mathbf{X}_t | \tilde{\mathbf{X}})}{q(\tilde{\mathbf{X}} | \mathbf{X}_t)} \quad \text{set } \mathbf{X}_{t+1} \leftarrow \tilde{\mathbf{X}}$$

Otherwise set $X_{t+1} \leftarrow X_t$.

Use full conditional distributions.

Algorithm:

• Choose a starting point X_0 ; set $t \leftarrow 0$.

Foreach i = 1, ..., d generate $X_{t+1,i}$ from density $f(x_i | X_{t+1,1}, ..., X_{t+1,i-1}, X_{t,i+1}, ..., X_{t,d})$.

Use full conditional distributions.

Algorithm:

Choose a starting point X_0 ; set $t \leftarrow 0$.

• Foreach i = 1, ..., d generate $X_{t+1,i}$ from density $f(x_i | X_{t+1,1}, ..., X_{t+1,i-1}, X_{t,i+1}, ..., X_{t,d})$.

Use full conditional distributions.

Algorithm:

Choose a starting point X_0 ; set $t \leftarrow 0$.

Foreach i = 1, ..., d generate $X_{t+1,i}$ from density $f(x_i | X_{t+1,1}, ..., X_{t+1,i-1}, X_{t,i+1}, ..., X_{t,d})$.

Use full conditional distributions.

Algorithm:

Choose a starting point X_0 ; set $t \leftarrow 0$.

Foreach i = 1, ..., d generate $X_{t+1,i}$ from density $f(x_i | X_{t+1,1}, ..., X_{t+1,i-1}, X_{t,i+1}, ..., X_{t,d})$.

Increment t and continue.

Problem:

How to sample from conditional distributions?

Automatic MCMC Sampler

The above methods are "**recipes**" for the design of a Markov chain that converges to the desired distribution. They have to be **adjusted** to the particular generation problem.

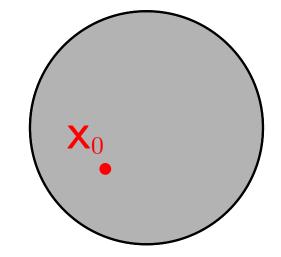
Automatic MCMC Sampler

The above methods are "**recipes**" for the design of a Markov chain that converges to the desired distribution. They have to be **adjusted** to the particular generation problem.

A MCMC sampler that runs the **Hit-and-Run** sampler in combination with the **Ratio-of-Uniforms** method is much simpler and works for many distributions with given density out of the box.

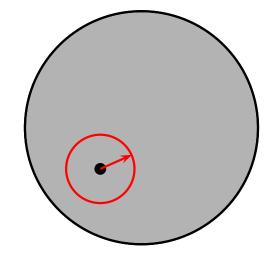
Gerate a sample of random points uniformly distributed in some fixed but arbitrary bounded open set $S \in \mathbb{R}^n$:

- Choose a starting point $X_0 \in S$ and set k = 0.
- Generate a random direction d_k with distribution \mathcal{D} .
- Generate λ_k uniformly distributed in $\Lambda_k = S \cap \{ \mathbf{x} : \mathbf{x} = \mathbf{x}_k + \lambda \mathbf{d}_k \}.$
- Set $\mathbf{X}_{k+1} = \mathbf{X}_k + \lambda_k \mathbf{d}_k$ and k = k + 1.
- Repeat from Step 2



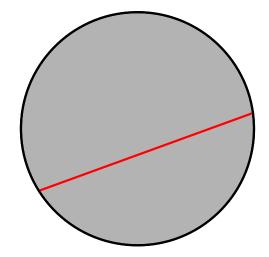
Gerate a sample of random points uniformly distributed in some fixed but arbitrary bounded open set $S \in \mathbb{R}^n$:

- Choose a starting point $X_0 \in S$ and set k = 0.
- Generate a random direction d_k with distribution \mathcal{D} .
- Generate λ_k uniformly distributed in $\Lambda_k = S \cap \{ \mathbf{x} : \mathbf{x} = \mathbf{x}_k + \lambda \mathbf{d}_k \}.$
- Set $\mathbf{X}_{k+1} = \mathbf{X}_k + \lambda_k \mathbf{d}_k$ and k = k + 1.
- Repeat from Step 2



Gerate a sample of random points uniformly distributed in some fixed but arbitrary bounded open set $S \in \mathbb{R}^n$:

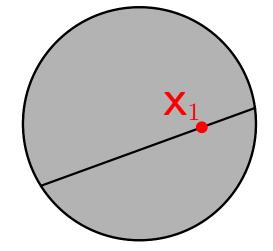
- Choose a starting point $X_0 \in S$ and set k = 0.
- Generate a random direction d_k with distribution \mathcal{D} .
- Generate λ_k uniformly distributed in $\Lambda_k = S \cap \{ \mathbf{x} : \mathbf{x} = \mathbf{x}_k + \lambda \mathbf{d}_k \}.$
- Set $\mathbf{X}_{k+1} = \mathbf{X}_k + \lambda_k \mathbf{d}_k$ and k = k + 1.
- Repeat from Step 2



Gerate a sample of random points uniformly distributed in some fixed but arbitrary bounded open set $S \in \mathbb{R}^n$:

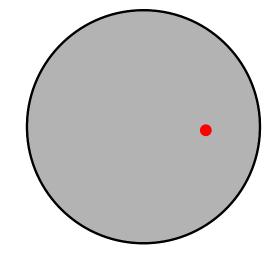
- Choose a starting point $X_0 \in S$ and set k = 0.
- Generate a random direction d_k with distribution \mathcal{D} .
- Generate λ_k uniformly distributed in $\Lambda_k = S \cap \{ \mathbf{x} : \mathbf{x} = \mathbf{x}_k + \lambda \mathbf{d}_k \}.$
- Set $\mathbf{X}_{k+1} = \mathbf{X}_k + \lambda_k \mathbf{d}_k$ and k = k + 1.

• Repeat from Step 2



Gerate a sample of random points uniformly distributed in some fixed but arbitrary bounded open set $S \in \mathbb{R}^n$:

- Choose a starting point $X_0 \in S$ and set k = 0.
- Generate a random direction d_k with distribution \mathcal{D} .
- Generate λ_k uniformly distributed in $\Lambda_k = S \cap \{ \mathbf{x} : \mathbf{x} = \mathbf{x}_k + \lambda \mathbf{d}_k \}.$
- Set $\mathbf{X}_{k+1} = \mathbf{X}_k + \lambda_k \mathbf{d}_k$ and k = k + 1.
- Repeat from Step 2



The Markov chain generated by the Hit-and-Run Algorithm over converges geometrically fast to the target distribution. [Smith, 1984]

Important choices for the directional distribution $\ensuremath{\mathcal{D}}$ are

Hypersphere sampling:

 $\ensuremath{\mathcal{D}}$ is the uniform distribution over the sphere.

- Coordinate direction sampling:
 D is the discrete uniform distribution over the axes.
- **Gibbs sampling:**

Go through all axes in a fixed order.

Theorem:

Let $f(\mathbf{x})$ be a positive integrable function on \mathbb{R}^n . Let r > 0and suppose the point $(\mathbf{U}, V) \in \mathbb{R}^{n+1}$ with $\mathbf{U} = (U_1, \dots, U_n)$ is uniformly distributed over the region

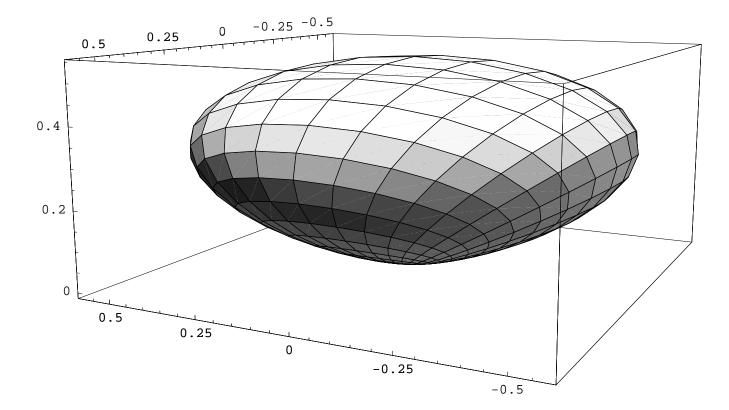
$$\mathcal{A}(f) = \mathcal{A}_r(f) = \left\{ (\mathbf{u}, v) \colon 0 < v < \sqrt[rn+1]{f(\mathbf{u}/v^r)} \right\},$$

then $X = U/V^r$ has probability density function prop. to f(x). [Wakefield, Gelfand, and Smith, 1991]

Algorithm:

- **Sample a point** (\mathbf{U}, V) **uniformly in** $\mathcal{A}(f)$ **.**
- Return $\mathbf{X} = \mathbf{U}/V^r$.

 $\mathcal{A}(f)$ for standard bivariate normal distribution and r = 1.



Theorem:

For a density f and r = 1 the region $\mathcal{A}(f) \subset \mathbb{R}^{n+1}$ is convex if and only if the transformed density $T(f(\mathbf{x})) = -(f(\mathbf{x}))^{-1/(n+1)}$ is concave. [L, 2000]

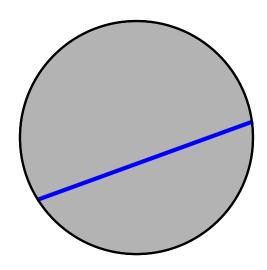
Notice that this holds, e.g., for all log-concave densities.

As a consequence of the Ratio-of-Uniforms methods the unbounded region below the graph of the density f is often mapped into a **bounded** and **convex** set.

The Hit-and-Run sampler is well suited to sample uniformly from $\mathcal{A}(f).$

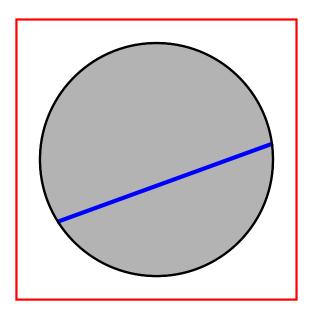
Adaptive Sampling from Line Segment Λ_k

- Compute a bounding rectangle.
- Compute intersection L_k of line with rectangle.
- Sample point X in L_k .
- If $\mathbf{X} \in \Lambda_k$ accept \mathbf{X} .
- Else shrink segment L_k and try again.



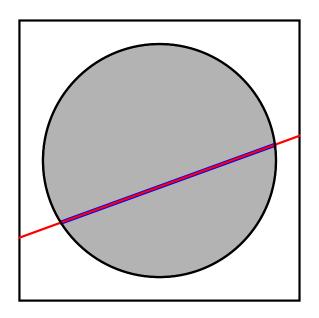
Adaptive Sampling from Line Segment Λ_k

- Compute a bounding rectangle.
- Compute intersection L_k of line with rectangle.
- Sample point X in L_k .
- If $\mathbf{X} \in \Lambda_k$ accept \mathbf{X} .
- Else shrink segment L_k and try again.



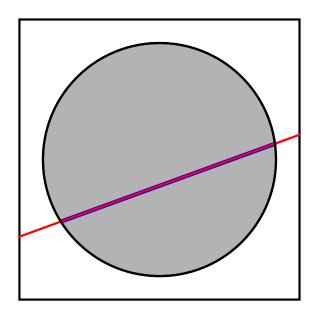
Adaptive Sampling from Line Segment Λ_k

- Compute a bounding rectangle.
- Compute intersection L_k of line with rectangle.
- Sample point X in L_k .
- If $\mathbf{X} \in \Lambda_k$ accept \mathbf{X} .
- Else shrink segment L_k and try again.



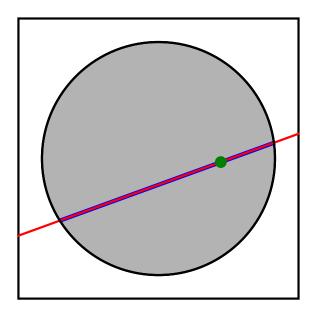
Adaptive Sampling from Line Segment Λ_k

- Compute a bounding rectangle.
- Compute intersection L_k of line with rectangle.
- **Sample point X** in L_k .
- If $\mathbf{X} \in \Lambda_k$ accept \mathbf{X} .
- Else shrink segment L_k and try again.



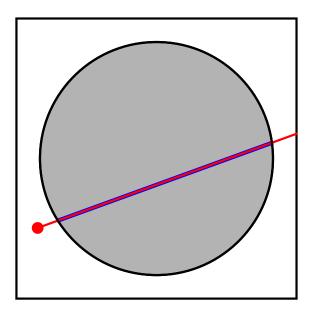
Adaptive Sampling from Line Segment Λ_k

- Compute a bounding rectangle.
- Compute intersection L_k of line with rectangle.
- Sample point X in L_k .
- If $\mathbf{X} \in \Lambda_k$ accept \mathbf{X} .
- Else shrink segment L_k and try again.



Adaptive Sampling from Line Segment Λ_k

- Compute a bounding rectangle.
- Compute intersection L_k of line with rectangle.
- Sample point X in L_k .
- If $\mathbf{X} \in \Lambda_k$ accept \mathbf{X} .
- Else shrink segment L_k and try again.



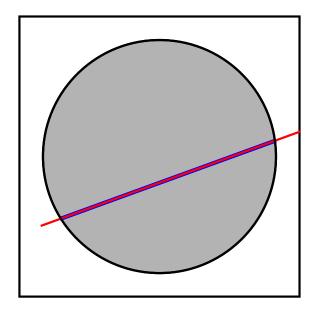
Adaptive Sampling from Line Segment Λ_k

Sampling from Λ_k by adaptive rejection:

- Compute a bounding rectangle.
- Compute intersection L_k of line with rectangle.
- Sample point X in L_k .
- If $\mathbf{X} \in \Lambda_k$ accept \mathbf{X} .
- Else shrink segment L_k and try again.

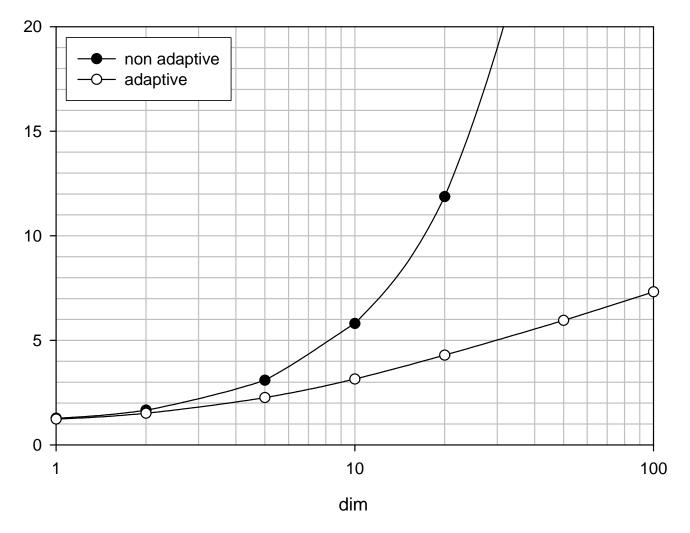
The expected number of iterations is

$$1 - \log(\mu(L_k)/\mu(\Lambda_k)) \cdot \frac{e}{1 - \log 2}$$



Performance: Calls to Density *f*

ARVAG



hypersphere sampling, multinormal distribution

Alternative Methods

Computing a bound rectangle is very expensive in higher dimensions. This can be avoided:

Only use an upper bound for *f*.
 (Thus the bounding rectangle is a plate.)

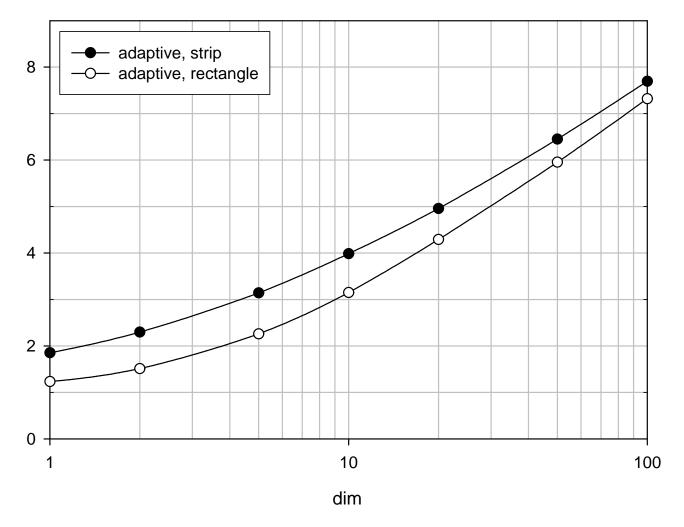
The expected number of iterations is only slightly increased in higher dimension.

Or:

• Compute L_k by a simple search algorithm. (This works when $\mathcal{A}(f)$ is convex.)

Performance: Calls to Density *f*

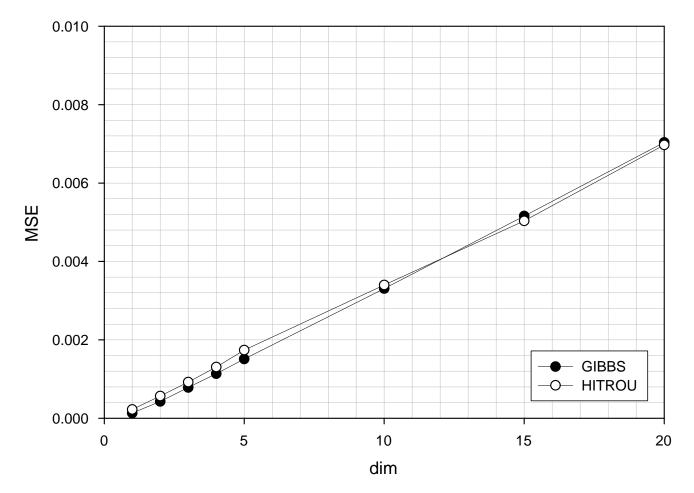
ARVAG



hypersphere sampling, multinormal distribution

Performance: MSE compared to Gibbs Sampler

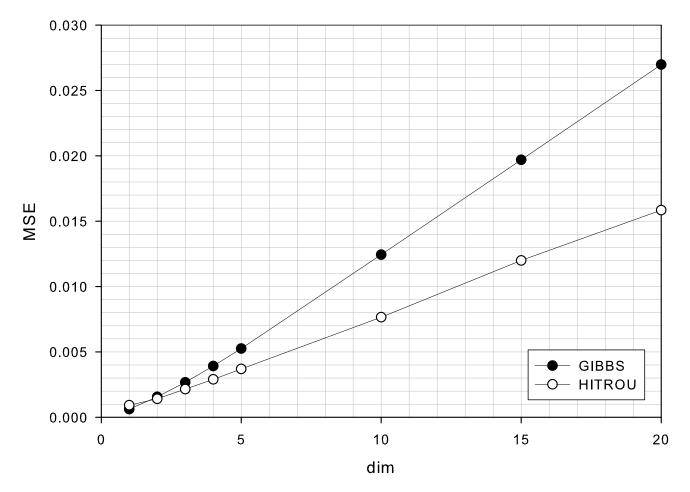
Mean of marginal distributions



CD sampling, $N = 10^4$, multi-student distribution ($\nu = 8$)

Performance: MSE compared to Gibbs Sampler

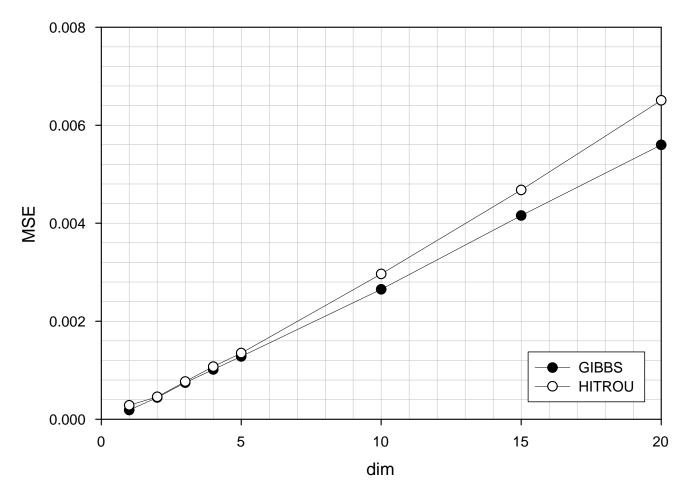
Variance of marginal distributions



CD sampling, $N = 10^4$, multi-student distribution ($\nu = 8$)

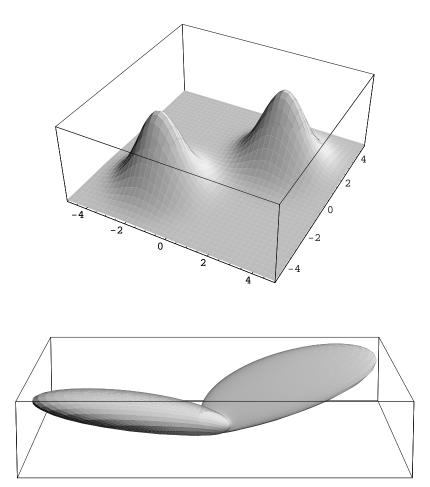
Performance: MSE compared to Gibbs Sampler

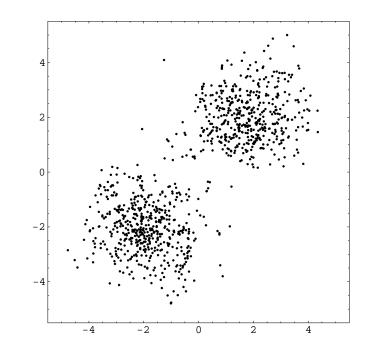
Variance of marginal distributions



CD sampling, $N = 10^4$, multinormal distribution

Non-unimodal Density





Conclusion

The HITRO (Hit-and-run-Ratio-Of-uniforms) sampler is

- simple;
- easy to implement;
- relatively fast;
- works for many (not necessarily unimodal) distributions out of the box;
- performs similar to the Gibbs sampler (in terms of MSE) but does not need a special and/or expensive generator for conditional distributions.

Thank you!

- R. L. Smith. Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions. *Operations Research*, 32:1296–1308, 1984.
- J. C. Wakefi eld, A. E. Gelfand, and A. F. M. Smith. Effi cient generation of random variates via the ratio-of-uniforms method. *Statist. Comput.*, 1(2):129–133, 1991.