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Monte Carlo Method

Task:
Compute expectation of some function g with respect to
a distribution with density f :

Ef (g) =

∫

Rn

g( �) f( �)d �

Method: Monte Carlo Integration

Ef (g) ≈
1

N

N
∑

i=1

g(

�

i) where

�

i ∼ f

Problem: Generation of

�

i ∼ f
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Generation of IID Random Vectors

In high dimension it is very difficult to generate RVs.

The conditional distribution method requires
knowledge of all full conditional distribution functions.
(multivariate inversion method)

The rejection method does not work well in higher
(> 10) dimensions, since rejection constant and/or the
memory requirements explode exponentially.

E.g. Generate points uniformly distributed in a ball by
rejection from the hypercube. For dimension 50 the
acceptance probability is about 10−28.

However, there is no necessity for IID random vectors.
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Markov Chain Monte Carlo

Run a Markov chain whose stationary distribution is the
required distribution.

Many such methods exist:

Metropolis-Hastings algorithm

Random walk sampler

Independence sampler

Gibbs sampler

Do not confuse with the task of simulating a Markov chain.
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Markov Chain Sampler

Advantages:

Algorithms are much simplier.

More generally applicable.

Disadvantages:

No IID random vectors.

The generated points are dependent and follow the
desired distribution only approximately.

Rate of convergence of the Markov chain is a problem.
Only heurist rules for convergence exist.
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Markov Chain Sampler

From the WinBUGS manual:

Beware!

MCMC can be dangerous!
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Metropolis-Hastings Algorithm

Such a Markov chain can be generated by means of
proposal densities q(x|

�

).

Algorithm:

Choose a starting point

�

0; set t← 0.

Generate proposal ˜ �

with density q(x|

�

t)

Generate U ∼ U(0, 1).

If U ≤
f(˜ �

)

f(

�

t)

q(

�

t|˜

�

)

q(˜ �

|
�

t)
set

�

t+1 ← ˜ �

Otherwise set
�

t+1 ←

�

t.

Increment t and continue.
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Gibbs Sampler

Use full conditional distributions.

Algorithm:

Choose a starting point

�

0; set t← 0.

Foreach i = 1, . . . , d generate Xt+1,i from density
f(xi|Xt+1,1, . . . , Xt+1,i−1, Xt,i+1, . . . , Xt,d).

Increment t and continue.

Problem:
How to sample from conditional distributions?
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Automatic MCMC Sampler

The above methods are “recipes” for the design of a
Markov chain that converges to the desired distribution.
They have to be adjusted to the particular generation
problem.

A MCMC sampler that runs the Hit-and-Run sampler in
combination with the Ratio-of-Uniforms method is much
simpler and works for many distributions with given density
out of the box.
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Hit-and-Run Sampler

Gerate a sample of random points uniformly distributed in
some fixed but arbitrary bounded open set S ∈ R

n:

Choose a starting point

�

0 ∈ S and set k = 0.

◦ Generate a random direction

�

k with distribution D.

◦ Generate λk uniformly distributed in
Λk = S ∩ { � : � = �

k + λ

�

k}.

◦ Set

�

k+1 =

�

k + λk

�

k and k = k + 1.

◦ Repeat from Step 2 �

0

[Smith, 1984]
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Hit-and-Run Sampler

The Markov chain generated by the Hit-and-Run Algorithm
over converges geometrically fast to the target distribution.
[Smith, 1984]
Important choices for the directional distribution D are

Hypersphere sampling:
D is the uniform distribution over the sphere.

Coordinate direction sampling:
D is the discrete uniform distribution over the axes.

Gibbs sampling:
Go through all axes in a fixed order.
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Ratio-of-Uniforms

Theorem:
Let f( �) be a positive integrable function on R

n. Let r > 0

and suppose the point (

�

, V ) ∈ R
n+1 with

�

= (U1, . . . , Un)
is uniformly distributed over the region

A(f) = Ar(f) =
{

( �, v) : 0 < v < rn+1
√

f( �/vr)
}

,

then

�

=

�

/V r has probability density function prop. to f( �).
[Wakefield, Gelfand, and Smith, 1991]
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Ratio-of-Uniforms

Algorithm:

Sample a point (

�

, V ) uniformly in A(f).

Return

�

=

�

/V r.
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Ratio-of-Uniforms

A(f) for standard bivariate normal distribution and r = 1.
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Ratio-of-Uniforms

Theorem:
For a density f and r = 1 the region A(f) ⊂ R

n+1 is convex
if and only if the transformed density
T (f( �)) = −(f( �))−1/(n+1) is concave. [L, 2000]

Notice that this holds, e.g., for all log-concave densities.

As a consequence of the Ratio-of-Uniforms methods the
unbounded region below the graph of the density f is often
mapped into a bounded and convex set.

The Hit-and-Run sampler is well suited to sample uniformly
from A(f).
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Adaptive Sampling from Line Segment Λk

Sampling from Λk by adaptive rejection:

◦ Compute a bounding rectangle.

◦ Compute intersection Lk of line with rectangle.

◦ Sample point

�

in Lk.

◦ If

�

∈ Λk accept

�

.

◦ Else shrink segment Lk

and try again.

The expected number of iterations is

1− log(µ(Lk)/µ(Λk)) ·
e

1−log 2
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Performance: Calls to Density f

dim

1 10 100
0

5

10

15

20

non adaptive
adaptive

hypersphere sampling, multinormal distribution
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Alternative Methods

Computing a bound rectangle is very expensive in higher
dimensions. This can be avoided:

Only use an upper bound for f .
(Thus the bounding rectangle is a plate.)

The expected number of iterations is only slightly
increased in higher dimension.

Or:

Compute Lk by a simple search algorithm.
(This works when A(f) is convex.)
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Performance: Calls to Density f

dim

1 10 100
0

2

4

6

8
adaptive, strip
adaptive, rectangle

hypersphere sampling, multinormal distribution
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Performance: MSE compared to Gibbs Sampler

Mean of marginal distributions

dim

0 5 10 15 20

M
S

E

0.000

0.002

0.004

0.006

0.008

0.010

GIBBS
HITROU

CD sampling, N = 10
4, multi-student distribution (ν = 8)
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Performance: MSE compared to Gibbs Sampler

Variance of marginal distributions

CD sampling, N = 10
4, multi-student distribution (ν = 8)
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Performance: MSE compared to Gibbs Sampler

Variance of marginal distributions

dim

0 5 10 15 20

M
S

E

0.000

0.002

0.004

0.006

0.008

GIBBS
HITROU

CD sampling, N = 10
4, multinormal distribution
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Non-unimodal Density
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Conclusion

The HITRO (Hit-and-run-Ratio-Of-uniforms) sampler is

simple;

easy to implement;

relatively fast;

works for many (not necessarily unimodal) distributions
out of the box;

performs similar to the Gibbs sampler
(in terms of MSE)
but does not need a special and/or expensive generator
for conditional distributions.
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Thank you!

Leydold – 2006/02/20 – Hitro – p.23/24



References

R. L. Smith. Efficient Monte Carlo procedures for generating points uniformly distributed over
bounded regions. Operations Research, 32:1296–1308, 1984.

J. C. Wakefield, A. E. Gelfand, and A. F. M. Smith. Efficient generation of random variates via
the ratio-of-uniforms method. Statist. Comput., 1(2):129–133, 1991.

Leydold – 2006/02/20 – Hitro – p.24/24


	Monte Carlo Method
	Generation of IID Random Vectors
	Markov Chain Monte Carlo
	Markov Chain Sampler
	Markov Chain Sampler
	Metropolis-Hastings Algorithm
	Gibbs Sampler
	Automatic MCMC Sampler
	Hit-and-Run Sampler
	Hit-and-Run Sampler
	Ratio-of-Uniforms
	Ratio-of-Uniforms
	Ratio-of-Uniforms
	Ratio-of-Uniforms
	Adaptive Sampling from Line Segment $�oldsymbol {Lambda _k}$
	Performance: Calls to Density $�oldsymbol {f}$
	Alternative Methods
	Performance: Calls to Density $�oldsymbol {f}$
	Performance: MSE compared to Gibbs Sampler
	Non-unimodal Density
	Conclusion
	
	References

