Detection of noncoding RNAs by comparative sequence analysis

A mRNA model for RNAz

Stefan Washietl
Institute for Theoretical Chemistry
University of Vienna
Bled, February 2006

The challenge of comparative genomics

Mouse	ACTGCTGGGCCTGGACCAGGGGGTGTGCTGTCGGGTACTGGGGGGTG-CT
Cow	ACGGCTGGGCCTGGACCAGGGGGTGTGCTGTCGGGTACTGGGGGGCG-CC
Dog	ACTGCTGGGCCTGGACCAGGGGGTGTGCTGTCGGGTACTGGGGGGTG-CT
Rat	ACTGCTGGGCCTGGACCAGGGGGTGTGCTGTCGGGTACTGGGGGGTG-CT
Rhesus	ACTGCTGGGCCTGGACCAGGGGGTGTGCTGTCGGGTACTGGGGGGTG-CT
Chimp	ACTGCTGGGCCTGGACCAGGGGGTGTGCTGTCGGGTACTGGGGGGTG-CT
Human	ACTGCTGGGCCTGGACCAGGGGGTGTGCTGTCGGGTACTGGGGGGTG-CT
Elephant	ACTGCTGGGCCTGTACTAGAGGGTGTGCTGTCGGGTACTGGGGGGTG-CT
Tenrec	ACTGCTGGGCTTGTACTAGAGGGTGTGCTGATGGGTACTGGGGGGTG-CT
Armadillo	ACTGCTGGG-CTGCATCAGGGGGTGTGCTGTCGGGTACTGGGGAGTG-CC
Opossum	ACTGCTGAGCTTGCACCAAATGATGCGCTGTCGGGTACTGAGGGGTG-CT
Chicken	ATTGCTGCGCCTGTACCAAGTGGTGCGCTGTGGGGTACTGGGGGCTG-CC
Frog	AGTGTTGGGCTTGCACCAAGTGATGTGCTGTAGGGTACTGGGCGTTA-CT
Fugu	ACTGTTGCGTCTGCACCAAGTGATGCGCTGTCGGGAACTGTGGCGTG-GC
Tetraodon	ACTGCTGCGTCTGCACCAGGTGATGCGCTGTCGGGAACTGCGGCGTG-GC
Zebrafish	ATGGCTGCATGTGGCCCAGATGAT----TGACAGATGATGTCAGATGTGT

The challenge of comparative genomics

Mouse
Cow
Dog
Rat
Rhesus
Chimp
Human
Elephant
Tenrec
Armadillo
Opossum
Chicken
Frog
Fugu ACTGTTGCGTCTGCACCAAGTGATGCGCTGTCGGGAACTGTGGCGTG-GC Tetraodon ACTGCTGCGTCTGCACCAGGTGATGCGCTGTCGGGAACTGCGGCGTG-GC
Zebrafish ATGGCTGCATGTGGCCCAGATGAT----TGACAGATGATGTCAGATGTGT

- Protein coding?
- ncRNA?
- Regulatory or other functional element?

Outline

- Motivation
- Review of available methods
- A simple new scoring scheme
- Shuffling
- Exact
- Benchmark of some available and the new method
- Significance measure
- Currently only pairwise, ungapped global case without stop codons: Hofstadter's law

Outline

- Motivation
- Review of available methods
- A simple new scoring scheme
- Shuffling
- Exact
- Benchmark of some available and the new method
- Significance measure
- Currently only pairwise, ungapped global case without stop codons: Hofstadter's law

$$
\begin{aligned}
& \text { It always takes longer than you expect, even when } \\
& \text { you take into account Hofstadter's Law }
\end{aligned}
$$

Motivation

- Why a coding model in RNAz?
- Get rid of the "false positives" in mRNAs
- Increase the information content of the output

Motivation

- Why a coding model in RNAz?
- Get rid of the "false positives" in mRNAs
- Increase the information content of the output
- Why yet another protein gene finder: Sturgeon's law

Motivation

- Why a coding model in RNAz?
- Get rid of the "false positives" in mRNAs
- Increase the information content of the output
- Why yet another protein gene finder: Sturgeon's law

$$
90 \% \text { of everything is crap }
$$

Motivation

- Why a coding model in RNAz?
- Get rid of the "false positives" in mRNAs
- Increase the information content of the output
- Why yet another protein gene finder: Sturgeon's law

$$
90 \% \text { of everything is crap }
$$

- Limitations of current coding potential detection approaches
- Limited to pairwise alignments
- Simplified models which do not include all available information
- Ad hoc scores, poor statistics

Requirements

- Lightweight
- General
- Accurate
- Robust statistics
- Fast

Plenty of Protein gene finders

- Full featured gene prediction
- Genscan, Twinscan, N-Scan
- SLAM
- SGP2
- Exoniphy

Plenty of Protein gene finders

- Full featured gene prediction
- Genscan, Twinscan, N-Scan
- SLAM
- SGP2
- Exoniphy
- Detection of coding potential
- ETOPE (Ka/Ks ratio test)
- CSTfinder
- CRITICA
- QRNA

K_{a} / K_{s} ratio test

1. Count synonymous and non-synonymous sites in both sequences.
2. Count synonymous and non-synonymous differences
3. Correct the observed differences and estimate the ratio of synonymous $\left(K_{s}\right)$ and non-synonymous $\left(K_{a}\right)$ substitiutions per site:
4. $K_{a} / K_{s}<1 \Rightarrow$ purifying evolution

Nei \& Gojobori Mol. Biol. Evol. 3:418 (1986), Nekrutenko et al. Nucl. Acids. Res. 31:3564 (2003)

K_{a} / K_{s} ratio test

1. Count synonymous and non-synonymous sites in both sequences.
2. Count synonymous and non-synonymous differences
3. Correct the observed differences and estimate the ratio of synonymous $\left(K_{s}\right)$ and non-synonymous $\left(K_{a}\right)$ substitiutions per site:
4. $K_{a} / K_{s}<1 \Rightarrow$ purifying evolution

+ Properly normalized score
- Only considers synonymous changes (no conservative changes)

Nei \& Gojobori Mol. Biol. Evol. 3:418 (1986), Nekrutenko et al. Nucl. Acids. Res. 31:3564 (2003)

CRITICA

- Scoring scheme based on theoretical considerations
- Positive score for synonymous substitutions
- Negative score for non-synonymous substitutions
- Also includes non-comperative score (di-nucleotide model)

Badger \& Olsen Mol. Biol. Evol. 16:512 (1999)

CRITICA

- Scoring scheme based on theoretical considerations
- Positive score for synonymous substitutions
- Negative score for non-synonymous substitutions
- Also includes non-comperative score (di-nucleotide model)
+ reasonable statistics
- Focused on bacteria, hard to use, no amino acid similarity

Badger \& Olsen Mol. Biol. Evol. 16:512 (1999)

CSTfinder

- Scans blast hits of ESTs for coding potential
- Defines Coding potential score:

$$
C P S=\left(\frac{100}{N}\right)\left(\frac{N_{S}+1}{N_{A}+1}\right) \sum_{i=1}^{N} s\left(c_{i}^{A}, c_{i}^{B}\right)
$$

N ... number of codon pairs
$N_{S}, N_{A} \quad \ldots$ number of synonymous, non-synonymous pairs $c_{i}^{A} \quad \ldots$ codon number i in sequence A
$s\left(c_{i}^{A}, c_{i}^{B}\right) \quad \ldots$ similarity of encoded amino acids

CSTfinder

- Scans blast hits of ESTs for coding potential
- Defines Coding potential score:

$$
C P S=\left(\frac{100}{N}\right)\left(\frac{N_{S}+1}{N_{A}+1}\right) \sum_{i=1}^{N} s\left(c_{i}^{A}, c_{i}^{B}\right)
$$

N ... number of codon pairs
$N_{S}, N_{A} \quad \ldots$ number of synonymous, non-synonymous pairs
$c_{i}^{A} \quad \ldots$ codon number i in sequence A
$s\left(c_{i}^{A}, c_{i}^{B}\right) \quad \ldots$ similarity of encoded amino acids

+ considers amino acid similarity
- as ad hoc as it can be, no normalization, "Vaporware"

Mignone et al. Nucl. Acids Res. 31:4639 (2003)

QRNA

- 3 pair hidden Markov models/SCFGs: Coding, RNA, other
$P^{C O D}\left(a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3}\right) \approx P\left(a_{1} a_{2} a_{3} \mid A\right) P\left(b_{1} b_{2} b_{3} \mid B\right) P(A, B)$
$a, b \in \mathcal{A}=\{\mathrm{A}, \mathrm{G}, \mathrm{C}, \mathrm{T}\}, A, B \in\{$ amino acids $\}$

Rivas \& Eddy BMC Bioinformatics 2:8 (2001)

QRNA

- 3 pair hidden Markov models/SCFGs: Coding, RNA, other

$$
P^{C O D}\left(a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3}\right) \approx P\left(a_{1} a_{2} a_{3} \mid A\right) P\left(b_{1} b_{2} b_{3} \mid B\right) P(A, B)
$$

$a, b \in \mathcal{A}=\{\mathrm{A}, \mathrm{G}, \mathrm{C}, \mathrm{T}\}, A, B \in\{$ amino acids $\}$

$$
\begin{gathered}
P(C O D \mid \text { alignment })=\frac{P(\text { alignment } \mid \text { COD }) P(\text { COD })}{\sum_{\text {Models }} P(\text { alignment } \mid \text { Model }) P(\text { Model }} \\
\text { Score }=\frac{P(\text { COD } \mid \text { alignment })}{P(\text { OTH } \mid \text { alignment })}
\end{gathered}
$$

QRNA

- 3 pair hidden Markov models/SCFGs: Coding, RNA, other

$$
P^{C O D}\left(a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3}\right) \approx P\left(a_{1} a_{2} a_{3} \mid A\right) P\left(b_{1} b_{2} b_{3} \mid B\right) P(A, B)
$$

$a, b \in \mathcal{A}=\{\mathrm{A}, \mathrm{G}, \mathrm{C}, \mathrm{T}\}, A, B \in\{$ amino acids $\}$

$$
\begin{gathered}
P(C O D \mid \text { alignment })=\frac{P(\text { alignment } \mid C O D) P(\text { COD })}{\sum_{\text {Models }} P(\text { alignment } \mid \text { Model }) P(\text { Model }} \\
\text { Score }=\frac{P(\text { COD } \mid \text { alignment })}{P(\text { OTH } \mid \text { alignment })}
\end{gathered}
$$

+ considers amino acid similarity, elegant solution, can deal with frameshifts and local search
- no P value, independence assumption of codons and amino acids

A simple pairwise similarity score

Definitions

Alignment $\overline{A B}$ of sequence A and B :

$$
\begin{aligned}
& A: c_{1}^{A} c_{2}^{A} \ldots c_{n}^{A} \\
& B: c_{1}^{B} c_{2}^{B} \ldots c_{n}^{B}
\end{aligned}
$$

L ... length in codons
$f_{\{A, G, C, T\}} \quad \ldots$ background frequency of nucleotides
ID ... pairwise identity
$d\left(c^{A}, c^{B}\right) \quad \ldots$ Hamming distance of two codons
(e.g. $d(A G C, A G T)=1$)
$s\left(c^{A}, c^{B}\right) \quad \ldots \quad$ similarity of encoded amino acids
(e.g. BLOSUM Matrix)

A simple pairwise similarity score

Normalizing with shuffling

- Unnormalized score

$$
\widetilde{S}_{\overline{A B}}=\sum_{\substack{i=1 \\ d\left(c_{i}^{A}, c_{i}^{B}\right)>0}}^{L} s\left(c_{i}^{A} c_{i}^{B}\right)
$$

- Shuffle columns: $\overline{A B}_{\text {random }}$

$$
S_{\overline{A B}}=\widetilde{S}_{\overline{A B}}-\widetilde{S}_{\overline{A B} \text { random }}
$$

A simple pairwise similarity score

Exact normalization

- Calculate the expected score for pairs with 1,2 and 3 differences. e.g.:

$$
\left\langle s_{d=1}\right\rangle=\frac{N^{c o m b}}{N_{d=1}^{c o m b}} \sum_{\substack{a, b, c, d, e, f \in \mathcal{A} \\ d(a b c, d e f)=1}} s\left(c_{a b c}, c_{d e f}\right) \prod_{i=a, b, c, d, e, f} f_{i}
$$

- Correct each observed score by the expected score

$$
S_{\overline{A B}}=\sum_{\substack{i=1 \\ d\left(c_{i}^{A}, c_{i}^{B}\right)>0}}^{L} s\left(c_{i}^{A} c_{i}^{B}\right)-\left\langle s_{d=d\left(c_{i}^{A}, c_{i}^{B}\right)}\right\rangle
$$

Test Set

- UCSC Multiz alignments (13-way)
- Extract mouse RefSeq genes from chromosome 1 and 10
- Take only "correct" genes which start with M and have exactly one stop codon on the last position.
- Select slices of different length (50-150 nts) and pairwise identity ($60 \%-100 \%$)
- Random control: Shuffle sequences, remove stop codons
$\Rightarrow \approx \mathbf{7 0 0 0}$ positive and negative examples

Score distribution of native and random alignments

- $60 \%<\mathrm{ID}<85 \%$
- $L=150$ nts

Comparison of methods (ROCs)

Comparison of methods (ROCs)

Dependence of length and sequence divergence

Estimating statistical significance

- Calculate the mean and variance of all sequences for a given (expected) base composition and pairwise identity. Assume normal distribution and calculate the P value.
$\langle S\rangle_{I D, L}=L \sum_{a, b, c, d, e, f \in \mathcal{A}} s\left(c_{a b c}, c_{d e f}\right) \prod_{i=a . . f}\left(f_{i}\right) m_{d(a b c, \text { def })} \frac{N^{c o m b}}{N_{d=d(a b c, d e f)}^{\text {comb }}}$

Estimating statistical significance

- Calculate the mean and variance of all sequences for a given (expected) base composition and pairwise identity. Assume normal distribution and calculate the P value.

$$
\begin{aligned}
& \langle S\rangle_{I D, L}=L \sum_{a, b, c, d, e, f \in \mathcal{A}} s\left(c_{a b c}, c_{d e f}\right) \prod_{i=a . . f}\left(f_{i}\right) m_{d(a b c, \text { def })} \frac{N^{c o m b}}{N_{d=d(a b c, d e f)}^{c o m b}} \\
& m_{d=0}=I D^{3} \\
& m_{d=1}=I D^{2}(1-I D) \cdot 3 \\
& m_{d=2}=I D(1-I D)^{2} \cdot 3 \\
& m_{d=3}=(1-I D)^{3}
\end{aligned}
$$

Estimating statistical significance

- Calculate the mean and variance of all sequences for a given (expected) base composition and pairwise identity. Assume normal distribution and calculate the P value.

$$
\begin{aligned}
& m_{d=0}=I D^{3} \\
& m_{d=1}=I D^{2}(1-I D) \cdot 3 \\
& m_{d=2}=I D(1-I D)^{2} \cdot 3 \\
& m_{d=3}=(1-I D)^{3}
\end{aligned}
$$

$$
\operatorname{var}(s)_{I D, L}=\sum_{a, b, c, d, e, f \in \mathcal{A}}\left(s\left(c_{a b c}, c_{d e f}\right)^{2} K\right)-M^{2}
$$

Sampled vs. calculated scores

- 10,000 alignments sampled with Markov method (black bars)

Sampled vs. calculated scores

- 10,000 alignments sampled with Markov method (black bars)
- Calculated distribution (red line)

Conclusions and outlook

- Comparative detection of coding potential is a useful feature
- Available methods are not perfect
- Considering amino acid similarity significantly improves accuracy compared to simply counting synonymous substitutions
- A simple and properly normalized score outperforms any other tested methods.
- The score allows direct calculation of a P-Value.

Conclusions and outlook

- Comparative detection of coding potential is a useful feature
- Available methods are not perfect
- Considering amino acid similarity significantly improves accuracy compared to simply counting synonymous substitutions
- A simple and properly normalized score outperforms any other tested methods.
- The score allows direct calculation of a P-Value.
- Include
- stop codons
- gaps (frameshifts)
- local search?
- Extension to multiple alignments

