$$
\text { 29) } \mathrm{N}+\mathrm{t}^{2}
$$

Protein Folding by Robotics

Protein Folding by Robotics

Aims

- Find good quality folding paths (into given native structure)

D no structure prediction!

- Predict formation orders (of secondary structure)

Motion planning

- Motion planning

Motion planning

- Motion planning

Motion planning

- Motion planning

- Probabilistic roadmap planing

Motion planning

- Motion planning

- Probabilistic roadmap planing

D Sampling of configuration space Q

Motion planning

- Motion planning

- Probabilistic roadmap planing

D Sampling of configuration space Q

- Connecting nearest configurations by a (simple) local planner

Motion planning

- Motion planning

- Probabilistic roadmap planing

D Sampling of configuration space Q

- Connecting nearest configurations by a (simple) local planner
- Apply graph algorithms to "roadmap": Find shortest path

More on PRM for motion planning

D tree-like robots

More on PRM for motion planning

- tree-like robots (articulated robots)

More on PRM for motion planning

- tree-like robots (articulated robots)

More on PRM for motion planning

- tree-like robots (articulated robots)

- confi guration = vector of angles
- confi guration space

$$
Q=\left\{q \mid q \in S^{n}\right\}
$$

D S - set of angles
D n - number of angles $=$ degrees of freedom (dof)

Proteins are Robots (aren't they?)

- Obvious similarity

Proteins are Robots (aren't they?)
. Protein Model
4. Results
6. Conclusion

- Obvious similarity ;-)

© Our model

Proteins are Robots (aren't they?)

- Obvious similarity ;-)

- Our model

Proteins are Robots (aren't they?)
3. Protein Model
4. Roadults
6. Conclusion

- Obvious similarity ;-)

- Our model

Proteins are Robots (aren't they?)
. Protein Model
5. Results
6. Conclusion

- Obvious similarity ;-)

- Our model

Proteins are Robots (aren't they?)

- Obvious similarity ;-)

© Our model

D Protein == vector of phi and psi angles (treelike robot with 2 n dof)
D possible models range from only backbone up to full atom

Differences to usual PRM

- no external obstacles, but

D self-avoidingness
D torsion angles

- quality of paths

D low energy intermediate states

- kinetically prefered paths

D highly probable paths

- method can use any potential

Energy Function

- method can use any potential
- Our coarse potential
[Levitt. J.Mol.Biol., 1983.]
D each sidechain by only one "atom" (zero dof)

$$
U_{t o t}=
$$

Energy Function

- method can use any potential
- Our coarse potential
[Levitt. J.Mol.Biol., 1983.]
D each sidechain by only one "atom" (zero dof)

$$
U_{\text {tot }}=\sum_{\text {restraints }} K_{d}\left\{\left[\left(d_{i}-d_{0}\right)^{2}+d_{c}^{2}\right]^{\frac{1}{2}}-d_{c}\right\}
$$

D first term favors known secondary structure through main chain hydrogen bonds and disulphide bonds

Energy Function

- method can use any potential
- Our coarse potential
[Levitt. J.Mol.Biol., 1983.]
D each sidechain by only one "atom" (zero dof)

$$
U_{\text {tot }}=\sum_{\text {restraints }} K_{d}\left\{\left[\left(d_{i}-d_{0}\right)^{2}+d_{c}^{2}\right]^{\frac{1}{2}}-d_{c}\right\}+E_{h p}
$$

D first term favors known secondary structure through main chain hydrogen bonds and disulphide bonds
D second term hydrophobic effect

Energy Function

- method can use any potential
- Our coarse potential
[Levitt. J.Mol.Biol., 1983.]
D each sidechain by only one "atom" (zero dof)

$$
U_{\text {tot }}=\sum_{\text {restraints }} K_{d}\left\{\left[\left(d_{i}-d_{0}\right)^{2}+d_{c}^{2}\right]^{\frac{1}{2}}-d_{c}\right\}+E_{h p}
$$

D first term favors known secondary structure through main chain hydrogen bonds and disulphide bonds

- second term hydrophobic effect

D Van der Waals interaction modeled by step function

Energy Function

- method can use any potential
- Our coarse potential
[Levitt. J.Mol.Biol., 1983.]
D each sidechain by only one "atom" (zero dof)

$$
U_{\text {tot }}=\sum_{\text {restraints }} K_{d}\left\{\left[\left(d_{i}-d_{0}\right)^{2}+d_{c}^{2}\right]^{\frac{1}{2}}-d_{c}\right\}+E_{h p}
$$

D first term favors known secondary structure through main chain hydrogen bonds and disulphide bonds
D second term hydrophobic effect
D Van der Waals interaction modeled by step function

- All-atom potential: EEF1
[Lazaridis, Karplus. Proteins, 1999.]

PRM method for Proteins

PRM method for Proteins

- Sampling

PRM method for Proteins

- Sampling

- Connecting

PRM method for Proteins
Motivation

- Sampling

- Connecting

- Extracting

Sampling - Node Generation

- Sampling

- Connecting

- Extracting

Node Generation

. Protein Model
4. Roadmaps
6. Conclusion

- No uniform sampling

D configuration space too large
D \Rightarrow need biased sampling strategy

Node Generation

- No uniform sampling

D configuration space too large
D \Rightarrow need biased sampling strategy

- Gaussian sampling

D centered around native conformation
D with different STDs $5^{\circ}, 10^{\circ}, \ldots, 160^{\circ}$
D ensure representants for different numbers of native contacts

Node Generation

- No uniform sampling
- configuration space too large

D \Rightarrow need biased sampling strategy

- Gaussian sampling

D centered around native conformation
D with different STDs $5^{\circ}, 10^{\circ}, \ldots, 160^{\circ}$
D ensure representants for different numbers of native contacts

- Selection by energy

$$
P(\operatorname{accept} q)= \begin{cases}1 & \text { if } E(q)<E_{\min } \\ \frac{E_{\max }-E(q)}{E_{\max }-E_{\min }} & \text { if } E_{\min } \leq E(q) \leq E_{\max } \\ 0 & \text { if } E(q)>E_{\max }\end{cases}
$$

More on Node Generation

- Visualization of Sampling Strategy

More on Node Generation

- Visualization of Sampling Strategy

- Distribution

Psi and Phi angles

RMSD vs. Energy

Node Connection

D Sampling

- Connecting

- Extracting
- connect confi gurations in close distance
- generate N intermediary nodes by local planner
- connect confi gurations in close distance
- generate N intermediary nodes by local planner
- connect confi gurations in close distance
- generate N intermediary nodes by local planner
- connect confi gurations in close distance
- generate N intermediary nodes by local planner
- connect confi gurations in close distance
- generate N intermediary nodes by local planner

- connect confi gurations in close distance
- generate N intermediary nodes by local planner

-
- connect confi gurations in close distance
- generate N intermediary nodes by local planner

- assign weights to edges

$$
P_{i}= \begin{cases}e^{-\frac{\Delta E}{k T}} & \text { if } \Delta E>0 \\ 1 & \text { if } \Delta E \leq 0\end{cases}
$$

- connect confi gurations in close distance
- generate N intermediary nodes by local planner

- assign weights to edges

$$
P_{i}=\left\{\begin{array}{ll}
e^{-\frac{\Delta E}{k T}} & \text { if } \Delta E>0 \\
1 & \text { if } \Delta E \leq 0
\end{array} \quad \text { Weight }=\sum_{i=0}^{N}-\log \left(P_{i}\right)\right.
$$

- connect confi gurations in close distance
- generate N intermediary nodes by local planner

- assign weights to edges

$$
P_{i}=\left\{\begin{array}{ll}
e^{-\frac{\Delta E}{k T}} & \text { if } \Delta E>0 \\
1 & \text { if } \Delta E \leq 0
\end{array} \quad \text { Weight }=\sum_{i=0}^{N}-\log \left(P_{i}\right)\right.
$$

Extracting Paths

- Sampling

- Connecting

- Extracting

Extracting Paths

© Shortest Path
D extract one shortest path
D from some starting conformation, one path at a time

Extracting Paths

- Shortest Path

D extract one shortest path
D from some starting conformation, one path at a time

- Single Source Shortest Paths (SSSP)

D extract shortest paths from all starting conformation
D compute paths simultaneously
D generate tree of shortest paths (SSSP tree)

- Sampling

- Connecting

- Extracting

Studied Proteins

- Overview of studied proteins, roadmap size, and construction times

pdb	Description	Length	SS	\# Nodes	Time (h)
1gb1	Protein G domain B1	56	$1 \alpha+4 \beta$	8000	6.400
2crt	Cardiotoxin III	60	5β	8000	6.430
1bdd	Staphylococcus protein A	60	3α	10000	10.400
1shg	SH3 domain α-spectrin	62	5β	10000	8.344
2ptl	Protein L, B1 domain	62	$1 \alpha+4 \beta$	4000	3.104
1coa	CI2	64	$1 \alpha+4 \beta$	10000	9.984
1sll	SH3 domain src	64	5β	8000	5.990
1nyf	SH3 domain fyn	67	5β	10000	8.418
2ait	Tendamistat	74	7β	10000	13.327
1ubq	Ubiquitin	76	$1 \alpha+5 \beta$	8000	10.381
1pks	SH3 domain PI3 kinase	79	$1 \alpha+5 \beta$	10000	14.446
1pba	Procarboxypeptidase A2	81	$3 \alpha+3 \beta$	8000	10.845

Formation orders

D formation order of secondary structure for verifying method

- formation orders can be determined experimentally
[Li, Woodward. Protein Science, 1999.]
D Pulse labeling
- Out-exchange
- prediction of formation orders

D single paths
D averaging over multiple paths (SSSP-tree)

Timed Contact Maps

Formation Order

Motivation

pdb	Out exchange	Pulse labeling	Our SS formation order	Comp.
1 gb 1	[$\alpha, \beta 1, \beta 3, \beta 4], \beta 2$	$[\alpha, \beta 4],[\beta 1, \beta 2, \beta 3]$	$\alpha, \beta 3-\beta 4, \beta 1-\beta 2, \beta 1-\beta 4$	Agreed
2 crt	[$\beta 3, \beta 4, \beta 5],[\beta 1, \beta 2]$	$\beta 5, \beta 3, \beta 4,[\beta 1, \beta 2]$	$\beta 1-\beta 2, \beta 3-\beta 4, \beta 3-\beta 5$	Not sure
1bdd	$[\alpha 2, \alpha 3], \alpha 1$	[$\alpha 1, \alpha 2, \alpha 3]$	$[\alpha 2, \alpha 3], \alpha 1, \alpha 2-\alpha 3, \alpha 1-\alpha 3$	Agreed
1shg	N/A	N/A	$\beta 3-\beta 4, \beta 2-\beta 3, \beta 1-\beta 5, \beta 1-\beta 2$	N/A
2 ptl	$[\alpha, \beta 1, \beta 2, \beta 4], \beta 3$	$[\alpha, \beta 1],[\beta 2, \beta 3, \beta 4]$	$\alpha, \beta 1-\beta 2, \beta 3-\beta 4, \beta 1-\beta 4$	Agreed
1coa	$[\alpha, \beta 2, \beta 3],[\beta 1, \beta 4]$	N/A	$\alpha, \beta 3-\beta 4, \beta 2-\beta 3, \beta 1-\beta 4$	Agreed
1 srl	N/A	N/A	$\beta 3-\beta 4, \beta 2-\beta 3, \beta 1-\beta 5, \beta 1-\beta 2$	N/A
1nyf	N/A	N/A	$\beta 3-\beta 4, \beta 2-\beta 3, \beta 1-\beta 2, \beta 1-\beta 5$	N/A
2 ait	[$\beta 1, \beta 2$], $[\beta 3, \beta 4, \beta 5, \beta 6, \beta 7]$	N/A	$\beta 1-\beta 2, \beta 3-\beta 4,[\beta 2-\beta 5, \beta 3-\beta 6], \beta 3-\beta 5$	Agreed
1ubq	$[\alpha, \beta 1, \beta 2],[\beta 3, \beta 5], \beta 4$	N/A	$\alpha, \beta 3-\beta 4, \beta 1-\beta 2, \beta 3-\beta 5, \beta 1-\beta 5$	Agreed
1pks	N/A	N/A	$\beta 3-\beta 4, \beta 1-\beta 5,[\beta 1-\beta 2, \beta 2-\beta 3]$	N/A
1pba	N/A	N/A	$[\alpha 1, \alpha 3],[\beta 1-\beta 2, \beta 1-\beta 3]$	N/A

Formation Order

pdb	Out exchange	Pulse labeling	Our SS formation order	Comp.
1 gb 1	$[\alpha, \beta 1, \beta 3, \beta 4], \beta 2$	[$\alpha, \beta 4],[\beta 1, \beta 2, \beta 3]$	$\alpha, \beta 3-\beta 4, \beta 1-\beta 2, \beta 1-\beta 4$	Agreed
2 crt	[$\beta 3, \beta 4, \beta 5],[\beta 1, \beta 2]$	$\beta 5, \beta 3, \beta 4,[\beta 1, \beta 2]$	$\beta 1-\beta 2, \beta 3-\beta 4, \beta 3-\beta 5$	Not sure
1 bdd	[$\alpha 2, \alpha 3$], $\alpha 1$	[$\alpha 1, \alpha 2, \alpha 3]$	$[\alpha 2, \alpha 3], \alpha 1, \alpha 2-\alpha 3, \alpha 1-\alpha 3$	Agreed
1 shg	N/A	N/A	$\beta 3-\beta 4, \beta 2-\beta 3, \beta 1-\beta 5, \beta 1-\beta 2$	N/A
2 ptl	$[\alpha, \beta 1, \beta 2, \beta 4], \beta 3$	[$\alpha, \beta 1$], [$\beta 2, \beta 3, \beta 4]$	$\alpha, \beta 1-\beta 2, \beta 3-\beta 4, \beta 1-\beta 4$	Agreed
1coa	$[\alpha, \beta 2, \beta 3],[\beta 1, \beta 4]$	N/A	$\alpha, \beta 3-\beta 4, \beta 2-\beta 3, \beta 1-\beta 4$	Agreed
1 srl	N/A	N/A	$\beta 3-\beta 4, \beta 2-\beta 3, \beta 1-\beta 5, \beta 1-\beta 2$	N/A
1 nyf	N/A	N/A	$\beta 3-\beta 4, \beta 2-\beta 3, \beta 1-\beta 2, \beta 1-\beta 5$	N/A
2ait	[$\beta 1, \beta 2$], $[\beta 3, \beta 4, \beta 5, \beta 6, \beta 7]$	N/A	$\beta 1-\beta 2, \beta 3-\beta 4,[\beta 2-\beta 5, \beta 3-\beta 6], \beta 3-\beta 5$	Agreed
1 lubq	$[\alpha, \beta 1, \beta 2],[\beta 3, \beta 5], \beta 4$	N/A	$\alpha, \beta 3-\beta 4, \beta 1-\beta 2, \beta 3-\beta 5, \beta 1-\beta 5$	Agreed
1pks	N/A	N/A	$\beta 3-\beta 4, \beta 1-\beta 5,[\beta 1-\beta 2, \beta 2-\beta 3]$	N/A
1pba	N/A	N/A	$[\alpha 1, \alpha 3],[\beta 1-\beta 2, \beta 1-\beta 3]$	N/A

- no (reported) contradictions between prediction and validation
- different kind of information from experiment and prediction

The Proteins G and L

- Studied in more detail
- good test case

D structurally similar: $1 \alpha+4 \beta$

- fold differently

D Protein G: β-turn 2 forms first
D Protein L: β-turn 1 forms first

Comparison of Analysis Techniques β-Turn Formation

Name	Contacts considered	Energy function	Secondary structure formation order	Analyze first $x \%$ contacts				
				20	40	60	80	100
Protein G	All	Our	α, turn 2, turn 1	53	52	52	50	50
			turn 2, α, turn 1	15	9	17	22	22
			α, turn 1, turn 2	25	33	26	23	24
		All-atom	α, turn 2, turn 1	36	37	55	55	57
			turn 2, α, turn 1	3	0	0	0	0
			α, turn 1, turn 2	50	63	45	45	43
			turn 1, α, turn 2	12	0	0	0	0
	Hydrophobic	Our	α, turn 2, turn 1	96	96	85	96	87
			α, turn 1, turn 2	4	4	12	2	11
		All-atom	α, turn 2, turn 1	76	78	78	92	69
			α, turn 1, turn 2	24	22	22	8	31
Protein L	All	Our	α, turn 1, turn 2	24	30	37	38	41
			turn 1, α, turn 2	3	4	4	4	6
			α, turn 2, turn 1	73	63	60	48	39
		All-atom	α, turn 1, turn 2	25	25	48	43	41
			α, turn 2, turn 1	75	75	52	57	59
	Hydrophobic	Our	α, turn 1, turn 2	72	68	72	70	69
			turn 1, α, turn 2	5	9	5	7	15
			α, turn 2, turn 1	23	22	22	23	15
		All-atom	α, turn 1, turn 2	66	76	78	95	97
			turn 1, α, turn 2	3	0	0	0	0
			α, turn 2, turn 1	31	24	22	5	3

Conclusion
. Results
6. Conclusion

Conclusion

- PRM can be applied to "realistic" protein models

Conclusion

1. Motivation
2. Motion Planning
3. Protoin Mandol

- PRM can be applied to "realistic" protein models
- Introduced method makes verifi able prediction

Conclusion

1. Motivation
2. Motion Planning
3. Protoin Modol
4. Protein Model
5. Roadmaps
6. Conclusion

- PRM can be applied to "realistic" protein models
- Introduced method makes verifi able prediction
- Coarse potential is suffi cient

Conclusion

- PRM can be applied to "realistic" protein models
- Introduced method makes verifi able prediction
- Coarse potential is suffi cient
- Predictions are in good accordance to experimental data

Conclusion

- PRM can be applied to "realistic" protein models
- Introduced method makes verifi able prediction
- Coarse potential is suffi cient
- Predictions are in good accordance to experimental data
- Interesting relations to e.g. computation of barrier trees

