

Protein Folding by Robotics

Motivation
 Motion Planning
 Protein Model
 Roadmaps
 Results
 Conclusion

Protein Folding by Robotics

- Motivation
 Motion Planning
 Protein Model
 Roadmaps
 Results
 Conclusion

Find good quality folding paths (into given native structure)
In structure prediction!

Predict formation orders (of secondary structure)

Motion planning

February 21, 2006 Sebastian Will

Motion planning

Probabilistic roadmap planing

- Probabilistic roadmap planing
 - Sampling of configuration space Q

- Probabilistic roadmap planing
 - Sampling of configuration space Q
 - Connecting nearest configurations by a (simple) local planner

- Probabilistic roadmap planing
 - Sampling of configuration space Q
 - Connecting nearest configurations by a (simple) local planner
 - Apply graph algorithms to "roadmap": Find shortest path

More on PRM for motion planning

Motivation
 Motion Planning
 Protein Model
 Roadmaps
 Results
 Conclusion

tree-like robots

tree-like robots (articulated robots)

Articulated Joint

tree-like robots (articulated robots)

tree-like robots (articulated robots)

confi guration = vector of angles

Confi guration space

 $Q = \{q \mid q \in S^n\}$

 \mathbf{S} — set of angles

n — number of angles = degrees of freedom (dof)

Motivation
 Motion Planning
 3. Protein Model 4. Roadmaps
 5. Results
 6. Conclusion

Obvious similarity

Motivation
 Motion Planning
 Protein Model
 Roadmaps
 Results

6. Conclusion

Obvious similarity ;-)

Motivation
 Motion Planning
 Protein Model
 Roadmaps
 Results
 Conclusion

Obvious similarity ;-)

Motivation
 Motion Planning
 Protein Model
 Roadmaps
 Results

6. Conclusion

Obvious similarity ;-)

phi

psi

Motivation
 Motion Planning
 Protein Model
 Roadmaps
 Results
 Conclusion

Obvious similarity ;-)

Motivation
 Motion Planning
 Protein Model
 Roadmaps
 Results

6. Conclusion

no external obstacles, but

- self-avoidingness
- torsion angles

quality of paths

- Iow energy intermediate states
- kinetically prefered paths
- highly probable paths

method can use any potential

method can use any potential

Our coarse potential

[Levitt. J.Mol.Biol., 1983.]

each sidechain by only one "atom" (zero dof)

 $U_{tot} =$

- method can use any potential
- Our coarse potential
 - [Levitt. J.Mol.Biol., 1983.]
 - each sidechain by only one "atom" (zero dof)

$$U_{tot} = \sum_{\text{restraints}} K_d \{ [(d_i - d_0)^2 + d_c^2]^{\frac{1}{2}} - d_c \}$$

first term favors known secondary structure through main chain hydrogen bonds and disulphide bonds

- method can use any potential
- Our coarse potential
 - [Levitt. J.Mol.Biol., 1983.]
 - each sidechain by only one "atom" (zero dof)

$$U_{tot} = \sum_{\text{restraints}} K_d \{ [(d_i - d_0)^2 + d_c^2]^{\frac{1}{2}} - d_c \} + E_{hp}$$

- first term favors known secondary structure through main chain hydrogen bonds and disulphide bonds
- second term hydrophobic effect

- method can use any potential
- Our coarse potential
 - [Levitt. J.Mol.Biol., 1983.]
 - each sidechain by only one "atom" (zero dof)

$$U_{tot} = \sum_{\text{restraints}} K_d \{ [(d_i - d_0)^2 + d_c^2]^{\frac{1}{2}} - d_c \} + E_{hp}$$

- first term favors known secondary structure through main chain hydrogen bonds and disulphide bonds
- second term hydrophobic effect
- Van der Waals interaction modeled by step function

- method can use any potential
- Our coarse potential
 - [Levitt. J.Mol.Biol., 1983.]
 - each sidechain by only one "atom" (zero dof)

$$U_{tot} = \sum_{\text{restraints}} K_d \{ [(d_i - d_0)^2 + d_c^2]^{\frac{1}{2}} - d_c \} + E_{hp}$$

- first term favors known secondary structure through main chain hydrogen bonds and disulphide bonds
- second term hydrophobic effect
- Van der Waals interaction modeled by step function

All-atom potential: EEF1

[Lazaridis, Karplus. Proteins, 1999.]

Motivation
 Motion Planning
 3. Protein Model 4. Roadmaps
 5. Results
 6. Conclusion

Motivation
 Motion Planning
 A Protein Model Roadmaps
 Results
 Conclusion

Motivation
 Motion Planning
 3. Protein Model 4. Roadmaps
 5. Results
 6. Conclusion

TBI Winterseminar 2006

Motivation
 Motion Planning
 3. Protein Model 4. Roadmaps
 5. Results
 6. Conclusion

Sampling

Extracting

Sampling — Node Generation

Motivation
 Motion Planning
 3. Protein Model 4. Roadmaps
 5. Results
 6. Conclusion

Sampling

Extracting

No uniform sampling

- configuration space too large
- $\mathbf{I} \Rightarrow$ need biased sampling strategy

- No uniform sampling
 - configuration space too large
 - \blacktriangleright \Rightarrow need biased sampling strategy
- Gaussian sampling
 - centered around native conformation
 - Solution with different STDs $5^{\circ}, 10^{\circ}, \dots, 160^{\circ}$
 - ensure representants for different numbers of native contacts

- No uniform sampling
 - configuration space too large
 - \Rightarrow need biased sampling strategy
- Gaussian sampling
 - centered around native conformation
 - Solution with different STDs $5^{\circ}, 10^{\circ}, \dots, 160^{\circ}$
 - ensure representants for different numbers of native contacts

Selection by energy

$$P(\text{accept } q) = \begin{cases} 1 & \text{if } E(q) < E_{\min} \\ \frac{E_{\max} - E(q)}{E_{\max} - E_{\min}} & \text{if } E_{\min} \leq E(q) \leq E_{\max} \\ 0 & \text{if } E(q) > E_{\max} \end{cases}$$

More on Node Generation

Motivation
 Motion Planning
 Protein Model
 Roadmaps
 Results
 Conclusion

Visualization of Sampling Strategy

More on Node Generation

1. Motivation Motivation
 Motion Planning
 Protein Model
 Roadmaps
 Results 6. Conclusion

Visualization of Sampling Strategy

Distribution

RMSD vs. Energy

Node Connection

Motivation
 Motion Planning
 Protein Model
 Roadmaps
 Results
 Conclusion

Extracting

- connect confi gurations in close distance
- generate N intermediary nodes by local planner

- connect confi gurations in close distance
- generate N intermediary nodes by local planner

generate N intermediary nodes by local planner

generate N intermediary nodes by local planner

generate N intermediary nodes by local planner

generate N intermediary nodes by local planner

$$\left(1 \quad \text{if } \Delta E \leq 0 \right)$$

- connect confi gurations in close distance
- generate N intermediary nodes by local planner

assign weights to edges

$$P_i = \begin{cases} e^{-\frac{\Delta E}{kT}} & \text{if } \Delta E > 0\\ 1 & \text{if } \Delta E \le 0 \end{cases}$$

Weight =
$$\sum_{i=0}^{N} -log(P_i)$$

Extracting Paths

Motivation
 Motion Planning
 Protein Model
 Roadmaps
 Results
 Conclusion

Sampling

Extracting

Shortest Path

- extract one shortest path
- from some starting conformation, one path at a time

Shortest Path

- extract one shortest path
- from some starting conformation, one path at a time
- Single Source Shortest Paths (SSSP)
 - extract shortest paths from all starting conformation
 - compute paths simultaneously
 - generate tree of shortest paths (SSSP tree)

Big Picture

Motivation
 Motion Planning
 Protein Model
 Roadmaps
 Results
 Conclusion

Sampling

17

Overview of studied proteins, roadmap size, and construction times

pdb	Description	Length	SS	# Nodes	Time (h)
1gb1	Protein G domain B1	56	$1\alpha + 4\beta$	8 000	6.400
2crt	Cardiotoxin III	60	5β	8 000	6.430
1bdd	Staphylococcus protein A	60	3α	10 000	10.400
1shg	SH3 domain α -spectrin	62	5β	10 000	8.344
2ptl	Protein L, B1 domain	62	$1\alpha + 4\beta$	4 000	3.104
1coa	CI2	64	$1\alpha + 4\beta$	10 000	9.984
1srl	SH3 domain src	64	5β	8 000	5.990
1nyf	SH3 domain fyn	67	5β	10 000	8.418
2ait	Tendamistat	74	7β	10 000	13.327
1ubq	Ubiquitin	76	$1\alpha + 5\beta$	8 000	10.381
1pks	SH3 domain PI3 kinase	79	$1\alpha + 5\beta$	10 000	14.446
1pba	Procarboxypeptidase A2	81	$3\alpha + 3\beta$	8 000	10.845

formation order of secondary structure for verifying method

formation orders can be determined experimentally

Li, Woodward. Protein Science, 1999.

Pulse labeling

Out-exchange

- prediction of formation orders
 - single paths
 - averaging over multiple paths (SSSP-tree)

Timed Contact Maps

pdb	Out exchange	Pulse labeling	Our SS formation order	Comp.
1gb1	$[\alpha, \beta 1, \beta 3, \beta 4], \beta 2$	$[\alpha, \beta 4], [\beta 1, \beta 2, \beta 3]$	$\alpha, \beta 3 - \beta 4, \beta 1 - \beta 2, \beta 1 - \beta 4$	Agreed
2crt	$[\beta 3, \beta 4, \beta 5], [\beta 1, \beta 2]$	$\beta 5, \beta 3, \beta 4, [\beta 1, \beta 2]$	$\beta 1-\beta 2, \beta 3-\beta 4, \beta 3-\beta 5$	Not sure
1bdd	$[\alpha 2, \alpha 3], \alpha 1$	$[\alpha 1, \alpha 2, \alpha 3]$	$[\alpha 2, \alpha 3], \alpha 1, \alpha 2 - \alpha 3, \alpha 1 - \alpha 3$	Agreed
1shg	N/A	N/A	β 3- β 4, β 2- β 3, β 1- β 5, β 1- β 2	N/A
2ptl	$[\alpha, \beta 1, \beta 2, \beta 4], \beta 3$	$[\alpha, \beta 1], [\beta 2, \beta 3, \beta 4]$	α , $\beta 1$ – $\beta 2$, $\beta 3$ – $\beta 4$, $\beta 1$ – $\beta 4$	Agreed
1coa	$[\alpha, \beta 2, \beta 3], [\beta 1, \beta 4]$	N/A	$\alpha, \beta 3-\beta 4, \beta 2-\beta 3, \beta 1-\beta 4$	Agreed
1srl	N/A	N/A	β 3- β 4, β 2- β 3, β 1- β 5, β 1- β 2	N/A
1nyf	N/A	N/A	β 3- β 4, β 2- β 3, β 1- β 2, β 1- β 5	N/A
2ait	$[\beta 1, \beta 2], [\beta 3, \beta 4, \beta 5, \beta 6, \beta 7]$	N/A	$\beta 1-\beta 2, \beta 3-\beta 4, [\beta 2-\beta 5, \beta 3-\beta 6], \beta 3-\beta 5$	Agreed
1ubq	$[\alpha, \beta 1, \beta 2], [\beta 3, \beta 5], \beta 4$	N/A	$\alpha, \beta 3-\beta 4, \beta 1-\beta 2, \beta 3-\beta 5, \beta 1-\beta 5$	Agreed
1pks	N/A	N/A	$\beta 3-\beta 4, \beta 1-\beta 5, [\beta 1-\beta 2, \beta 2-\beta 3]$	N/A
1pba	N/A	N/A	$[\alpha 1, \alpha 3], [\beta 1 - \beta 2, \beta 1 - \beta 3]$	N/A

20

pdb	Out exchange	Pulse labeling	Our SS formation order	Comp.
1gb1	$[\alpha, \beta 1, \beta 3, \beta 4], \beta 2$	$[\alpha, \beta 4], [\beta 1, \beta 2, \beta 3]$	$\alpha, \beta 3 - \beta 4, \beta 1 - \beta 2, \beta 1 - \beta 4$	Agreed
2crt	$[\beta 3, \beta 4, \beta 5], [\beta 1, \beta 2]$	$\beta 5, \beta 3, \beta 4, [\beta 1, \beta 2]$	$\beta 1-\beta 2, \beta 3-\beta 4, \beta 3-\beta 5$	Not sure
1bdd	$[\alpha 2, \alpha 3], \alpha 1$	$[\alpha 1, \alpha 2, \alpha 3]$	$[\alpha 2, \alpha 3], \alpha 1, \alpha 2 - \alpha 3, \alpha 1 - \alpha 3$	Agreed
1shg	N/A	N/A	β 3- β 4, β 2- β 3, β 1- β 5, β 1- β 2	N/A
2ptl	$[\alpha, \beta 1, \beta 2, \beta 4], \beta 3$	$[\alpha, \beta 1], [\beta 2, \beta 3, \beta 4]$	$\alpha, \beta 1 - \beta 2, \beta 3 - \beta 4, \beta 1 - \beta 4$	Agreed
1coa	$[\alpha, \beta 2, \beta 3], [\beta 1, \beta 4]$	N/A	$\alpha, \beta 3 - \beta 4, \beta 2 - \beta 3, \beta 1 - \beta 4$	Agreed
1srl	N/A	N/A	β 3- β 4, β 2- β 3, β 1- β 5, β 1- β 2	N/A
1nyf	N/A	N/A	β 3- β 4, β 2- β 3, β 1- β 2, β 1- β 5	N/A
2ait	$[\beta 1, \beta 2], [\beta 3, \beta 4, \beta 5, \beta 6, \beta 7]$	N/A	$\beta 1-\beta 2, \beta 3-\beta 4, [\beta 2-\beta 5, \beta 3-\beta 6], \beta 3-\beta 5$	Agreed
1ubq	$[\alpha, \beta 1, \beta 2], [\beta 3, \beta 5], \beta 4$	N/A	$\alpha, \beta 3 - \beta 4, \beta 1 - \beta 2, \beta 3 - \beta 5, \beta 1 - \beta 5$	Agreed
1pks	N/A	N/A	$\beta 3-\beta 4, \beta 1-\beta 5, [\beta 1-\beta 2, \beta 2-\beta 3]$	N/A
1pba	N/A	N/A	$[\alpha 1, \alpha 3], [\beta 1 - \beta 2, \beta 1 - \beta 3]$	N/A

no (reported) contradictions between prediction and validation

different kind of information from experiment and prediction

The Proteins G and L

Motivation
 Motion Planning
 Protein Model
 Roadmaps
 Results
 Conclusion

- Studied in more detail
- good test case
- Structurally similar: $1\alpha + 4\beta$

- fold differently
 - **Protein G:** β -turn 2 forms first
 - Solution Protein L: β -turn 1 forms first

Comparison of Analysis Techniques β-Turn Formation

Motivation
 Motion Planning
 Protein Model
 Roadmaps
 Results
 Conclusion

3	Contacts	Fnerov	Secondary structure	Ana	lyze f	irst x%	% cont	acts
Name	considered	function	formation order	20	40	60	80	100
Protein G	All	Our	α , turn 2, turn 1	53	52	52	50	50
			turn 2, α , turn 1	15	9	17	22	22
			α , turn 1, turn 2	25	33	26	23	24
		All-atom	α , turn 2, turn 1	36	37	55	55	57
			turn 2, α , turn 1	3	0	0	0	0
			α , turn 1, turn 2	50	63	45	45	43
			turn 1, α , turn 2	12	0	0	0	0
	Hydrophobic	Our	α , turn 2, turn 1	96	96	85	96	87
			α , turn 1, turn 2	4	4	12	2	11
		All-atom	α , turn 2, turn 1	76	78	78	92	69
			α , turn 1, turn 2	24	22	22	8	31
Protein L	All	Our	α , turn 1, turn 2	24	30	37	38	41
			turn 1, α , turn 2	3	4	4	4	6
			α , turn 2, turn 1	73	63	60	48	39
		All-atom	α , turn 1, turn 2	25	25	48	43	41
			α , turn 2, turn 1	75	75	52	57	59
	Hydrophobic	Our	α , turn 1, turn 2	72	68	72	70	69
			turn 1, α , turn 2	5	9	5	7	15
			α , turn 2, turn 1	23	22	22	23	15
		All-atom	α , turn 1, turn 2	66	76	78	95	97
			turn 1, α , turn 2	3	0	0	0	0
			α , turn 2, turn 1	31	24	22	5	3

22

Conclusion

Motivation
 Motion Planning
 Protein Model
 Roadmaps
 Results
 Conclusion

PRM can be applied to "realistic" protein models

Introduced method makes verifiable prediction

23

- PRM can be applied to "realistic" protein models
- Introduced method makes verifiable prediction
- Coarse potential is suffi cient

- PRM can be applied to "realistic" protein models
- Introduced method makes verifiable prediction
- Coarse potential is suffi cient
- Predictions are in good accordance to experimental data

- PRM can be applied to "realistic" protein models
- Introduced method makes verifiable prediction
- Coarse potential is suffi cient
- Predictions are in good accordance to experimental data
- Interesting relations to e.g. computation of barrier trees