# RNAalifold, bits and pieces 

Stephan Bernhart

Institute for Theoretical Chemistry University of Vienna

Bled, 2007

## Outline

## (1) Locally unpaired structures

(2) RNAalifold

## Outline

## (1) Locally unpaired structures

## (2) RNAalifold

## RNAplup

Motivation

First for something slightly different

- Last Bled, Jan told Ulli that the unpaired part of RNAup is asked for by lots of scientists.
- They seek information about the accessibility of putative binding sites
- Ulli left the institute, and work on RNAup was not continued.
- However, we decided to create a local version.


## RNAplup

- RNAup computes probability of a strech of length / not to form any base pairs, i.e. to be unpaired in the thermodynamic ensemble
- RNAup uses the pair probabilities and matrices computed by RNAfold
- RNAplfold computes these pair probabilities and matrices locally for long sequences.
- As postprocessing step, we compute the average probability of a stretch of length I to be unpaired
- While much slower than RNAplfold, it is still $\mathcal{O}\left(n W^{2}\right)$.


## Results

4 artificial binding sites for cxcr4 siRNA, dot plot and probability to be unpaired for a stretch of 4 consecutive bases


## Outline

## (1) Locally unpaired structures

(2) RNAalifold

## RNAalifold

- Prediction of common secondary structures of Alignments of RNAs
- Bonuses for covariance added
- penalties for non-standard base pairs added
- Every energy evaluation of RNAfold is replaced by a loop over all sequences in alignment


## Weighting

In RNAalifold, every sequence is treated equally important.

- Problem: What if there are two identical sequences?


## Weighting

In RNAalifold, every sequence is treated equally important.

- Problem: Or there is one outlier?



## Weighting

In RNAalifold, every sequence is treated equally important.

- Problem: Or there is a "big" and a "small" subtree?


Solution: Weight sequences according to their distance tree.

- Simply weight energy evaluations in loops
- Only useful if tree is highly unbalanced
- Caveats: If there are mistakes in alignment, house numbers will be result.


## Weighting Sequences

Start with distance weighted trees
First: find root midpoint:


## Weighting Sequences

Start with distance weighted trees
First: find root midpoint:


## Weighting Sequences

Start with distance weighted trees
First: find root midpoint:


## Weighting Sequences

Start with distance weighted trees
First: find root midpoint:


## Weighting Sequences

Start with distance weighted trees
First: find root midpoint:


## Weighting Sequences

Start with distance weighted trees
First: find root midpoint:


## Weighting Sequences

Start with distance weighted trees
First: find root midpoint:


## Weighting Sequences

Start with distance weighted trees
First: find root midpoint:


## Weighting Sequences

Weight sequences by:
The weights of the edges on the path leaf-root; Divided by the number of its children leafs 0 :


## Weighting Sequences

Weight sequences by:
The weights of the edges on the path leaf-root; Divided by the number of its children leafs 0 :


## Weighting Sequences

Weight sequences by:
The weights of the edges on the path leaf-root; Divided by the number of its children leafs 0 :


## Weighting Sequences

Weight sequences by:
The weights of the edges on the path leaf-root; Divided by the number of its children leafs 0 :


## Weighting Sequences

Weight sequences by:
The weights of the edges on the path leaf-root; Divided by the number of its children leafs 0 :


## Weighting Sequences

Weight sequences by:
The weights of the edges on the path leaf-root; Divided by the number of its children leafs 0 :

$$
W_{\text {seq }}=\sum_{\text {edges } \in \text { path to root }} \frac{W_{\text {edge }}}{O_{\text {edge }}}
$$

## Weighting Sequences

Weight sequences by:
The weights of the edges on the path leaf-root;
Divided by the number of its children leafs 0 :

Problem:There is a slight difference between the weights of a tree with two identical sequences and the tree where this sequence is counted only once

## Weighting Sequences

Weight sequences by:
The weights of the edges on the path leaf-root; Divided by the number of its children leafs 0 :

Problem:There is a slight difference between the weights of a tree with two identical sequences and the tree where this sequence is counted only once Solution: Peter??

## New energy evaluation

Energy evaluation on alignment sequences includes gaps.

$$
\begin{aligned}
& ===\mathrm{GCGAUAGC}-\mathrm{G}===\mathrm{GCGC}=== \\
& ===\mathrm{GCG}-\mathrm{UCGCAG}===\mathrm{GCGC}=== \\
& ===\mathrm{GC}----\mathrm{GCAG}===\mathrm{GCGC}===
\end{aligned}
$$

## New energy evaluation

Energy evaluation on alignment sequences includes gaps.

$$
\begin{aligned}
& ===\mathrm{GCGAUAGC}-\mathrm{G}===\mathrm{GCGC}=== \\
& ===\mathrm{GCG}-\mathrm{UCGCAG}===\mathrm{GCGC}=== \\
& ===\mathrm{GC}----\mathrm{GCAG}===\mathrm{GCGC}===
\end{aligned}
$$



## New energy evaluation

Energy evaluation on alignment sequences includes gaps.

$$
\begin{aligned}
& ===\mathrm{GCGAUAGC}-\mathrm{G}===\mathrm{GCGC}=== \\
& ===\mathrm{GCG}-\mathrm{UCGCAG}===\mathrm{GCGC}=== \\
& ===\mathrm{GC}----\mathrm{GCAG}===\mathrm{GCGC}===
\end{aligned}
$$



## New energy evaluation

Energy evaluation on alignment sequences includes gaps.

$$
\begin{aligned}
& ===\mathrm{GCGAUAGC}-\mathrm{G}===\mathrm{GCGC}=== \\
& ===\mathrm{GCG}-\mathrm{UCGCAG}===\mathrm{GCGC}=== \\
& ===\mathrm{GC}----\mathrm{GCAG}===\mathrm{GCGC}===
\end{aligned}
$$



## New energy evaluation

Energy evaluation on alignment sequences includes gaps.

$$
\begin{aligned}
& ===\mathrm{GCGAUAGC}-\mathrm{G}===\mathrm{GCGC}=== \\
& ===\mathrm{GCG}-\mathrm{UCGCAG}===\mathrm{GCGC}=== \\
& ===\mathrm{GC}----\mathrm{GCAG}===\mathrm{GCGC}===
\end{aligned}
$$



## New energy evaluation

Energy evaluation on alignment sequences includes gaps.

$$
\begin{aligned}
& ===\mathrm{GCGAUAGC}-\mathrm{G}===\mathrm{GCGC}=== \\
& ===\mathrm{GCG}-\mathrm{UCGCAG}===\mathrm{GCGC}=== \\
& ===\mathrm{GC}----\mathrm{GCAG}===\mathrm{GCGC}===
\end{aligned}
$$



## New energy evaluation

Energy evaluation on alignment sequences includes gaps.

$$
\begin{aligned}
& ===\mathrm{GCGAUAGC}-\mathrm{G}===\mathrm{GCGC}=== \\
& ===\mathrm{GCG}-\mathrm{UCGCAG}===\mathrm{GCGC}=== \\
& ===\mathrm{GC}----\mathrm{GCAG}===\mathrm{GCGC}===
\end{aligned}
$$



Solution: use ungapped sequences to evaluate the energy.

- Hairpins
- Interior Loops
- Dangles
- Multiloop closing

Easily combined with weighting.

## Comparison of Alifolds

Telomerase, unweighted

blue: both wrong, red: both right; green: new right; yellow pseudoknottydersität mistakes;

## Comparison of Alifolds

BRALIbase

| Sequence | TPs (sens.) | FPs (select.) | MCC (approx. corr.) |  |
| :---: | :---: | :---: | :---: | :---: |
| LSU M Old | 478 (57.0) | 273 (63.6) | 0.602 (60.3) |  |
| New | 458 (54.6) | 270 (62.9) | 0.586 (58.8) |  |
| Weight | 482 (57.4) | 295 (62.0) | 0.597 (59.7) |  |
| LSU.H | 429 (51.1) | 357 (54.6) | 0.528 (52.9) |  |
| New | 433 (51.6) | 356 (54.9) | 0.532 (53.2) |  |
| Weight | 472 (56.3) | 299 (61.2) | 0.587 (58.7) |  |
| SSU.M | 383 (81.8) | 64 (85.7) | 0.837 (83.8) |  |
| New | 387 (82.7) | 62 (86.2) | 0.844 (84.4) |  |
| Weight | 383 (81.8) | 64 (85.7) | 0.837 (83.8) |  |
| SSU.H | 314 (67.1) | 145 (68.4) | 0.677 (67.8) |  |
| New | 323 (69.0) | 139 (69.9) | 0.694 (69.5) |  |
| Weight | 342 (73.1) | 117 (74.5) | 0.738 (73.8) |  |
| RNaseP.H.O. | 80 (72.7) | 31 (72.1) | 0.723 (72.4) |  |
| New | 78 (70.9) | 33 (70.3) | 0.705 (70.6) |  |
| Weight | 80 (72.7) | 31 (72.1) | 0.723 (72.4) |  |
| RNaseP.M.O | 88 (80.0) | 12 (88.0) | 0.838 (84.0) |  |
| New | 81 (73.6) | 27 (75.0) | 0.742 (74.3) |  |
| Weight | 88 (80.0) | 13 (87.1) | 0.834 (83.6) | universität wien |

## Comparison of Alifolds

Artificial Alignment


4 sequences with mpi 95\% 1 to reduce it to 65\%

## Comparison of Alifolds

|  | length | factor mfe | factor part. func |
| :---: | :---: | :---: | :---: |
|  | 73 | 5.9 | 2.95 |
| 2 sequences | 385 | 1.73 | 2.48 |
|  | 1554 | 1.48 | 1.80 |
|  | 2952 | 1.41 | 1.52 |
|  | length | factor mfe | factor part. func |
|  | 73 | 3.125 | 2.56 |
| 5 sequences | 385 | 1.63 | 2.48 |
|  | 1554 | 1.55 | 1.67 |
|  | 2952 | 1.55 | 1.49 |
|  | length | factor mfe | factor part. func |
|  | 73 | 4.15 | 2.37 |
| 9 sequences | 385 | 1.78 | 1.75 |
|  | 1554 | 1.70 | 1.67 |
|  | 2952 | 2.07 | 1.72 |

## Keep it or discard it?

- No positive effect of weighting for AlifoldZ discrimination
- Computationally expansive, but affordable
- Ideas to improve performance appreciated
- How to penalyze too short loops

