RNAalifold, bits and pieces

Stephan Bernhart

Institute for Theoretical Chemistry University of Vienna

Bled, 2007

Outline

Outline

First for something slightly different

- Last Bled, Jan told Ulli that the unpaired part of RNAup is asked for by lots of scientists.
- They seek information about the accessibility of putative binding sites
- Ulli left the institute, and work on RNAup was not continued.
- However, we decided to create a local version.

RNAplup

- RNAup computes probability of a strech of length / not to form any base pairs, i.e. to be unpaired in the thermodynamic ensemble
- RNAup uses the pair probabilities and matrices computed by RNAfold
- RNAplfold computes these pair probabilities and matrices locally for long sequences.
- As postprocessing step, we compute the average probability of a stretch of length / to be unpaired
- While much slower than RNAplfold, it is still $\mathcal{O}(nW^2)$.

Results

4 artificial binding sites for cxcr4 siRNA, dot plot and probability to be unpaired for a stretch of 4 consecutive bases

Outline

RNAalifold

- Prediction of common secondary structures of Alignments of RNAs
- Bonuses for covariance added
- penalties for non-standard base pairs added
- Every energy evaluation of RNAfold is replaced by a loop over all sequences in alignment

Weighting

In RNAalifold, every sequence is treated equally important.

• Problem: What if there are two identical sequences?

Weighting

In RNAalifold, every sequence is treated equally important.

• Problem: Or there is one outlier?

Weighting

In RNAalifold, every sequence is treated equally important.

• Problem: Or there is a "big" and a "small" subtree?

Solution: Weight sequences according to their distance tree.

- Simply weight energy evaluations in loops
- Only useful if tree is highly unbalanced
- Caveats: If there are mistakes in alignment, house numbers will be result.

Weight sequences by: The weights of the edges on the path leaf-root;

Divided by the number of its children leafs o:

$$W_{\mathsf{seq}} = \sum_{\mathsf{edges} \in \mathsf{path to root}} rac{W_{\mathsf{edge}}}{O_{\mathsf{edge}}}$$

Weight sequences by: The weights of the edges on the path leaf-root; Divided by the number of its children leafs o:

Problem:There is a slight difference between the weights of a tree with two identical sequences and the tree where this sequence is counted only once

Weight sequences by: The weights of the edges on the path leaf-root; Divided by the number of its children leafs o:

Problem:There is a slight difference between the weights of a tree with two identical sequences and the tree where this sequence is counted only once Solution: Peter??

Energy evaluation on alignment sequences includes gaps.

Energy evaluation on alignment sequences includes gaps.

Energy evaluation on alignment sequences includes gaps.

===GCGAUAGC-G===GCGC=== ===GCG-UCGCAG===GCGC=== ===GC----GCAG===GCGC===

Energy evaluation on alignment sequences includes gaps.

Energy evaluation on alignment sequences includes gaps.

Energy evaluation on alignment sequences includes gaps.

Energy evaluation on alignment sequences includes gaps.

Solution: use ungapped sequences to evaluate the energy.

- Hairpins
- Interior Loops
- Dangles
- Multiloop closing

Easily combined with weighting.

Comparison of Alifolds Telomerase, unweighted

-2

blue: both wrong, red: both right; green: new right; yellow pseudoknotted mistakes;

Comparison of Alifolds BRALIbase

Sequence	TPs (sens.)	FPs (select.)	MCC (approx. corr.	.)
LSU M Old	478 (57.0)	273 (63.6)	0.602 (<mark>60.3</mark>)	
New	458 (54.6)	270 (62.9)	0.586 (58.8)	
Weight	482 (57.4)	295 (62.0)	0.597 (<mark>59.7</mark>)	
LSU.H	429 (51.1)	357 (54.6)	0.528 (52.9)	
New	433 (51.6)	356 (54.9)	0.532 (<mark>53.2</mark>)	
Weight	472 (56.3)	299 (61.2)	0.587 (<mark>58.7</mark>)	
SSU.M	383 (81.8)	64 (85.7)	0.837 (83.8)	
New	387 (82.7)	62 (86.2)	0.844 (84.4)	
Weight	383 (81.8)	64 (85.7)	0.837 (83.8)	
SSU.H	314 (67.1)	145 (68.4)	0.677 (<mark>67.8</mark>)	
New	323 (69.0)	139 (69.9)	0.694 (<mark>69.5</mark>)	
Weight	342 (73.1)	117 (74.5)	0.738 (<mark>73.8</mark>)	
RNaseP.H.O.	80 (72.7)	31 (72.1)	0.723 (72.4)	
New	78 (70.9)	33 (70.3)	0.705 (70.6)	
Weight	80 (72.7)	31 (72.1)	0.723 (72.4)	
RNaseP.M.O	88 (80.0)	12 (88.0)	0.838 (<mark>84.0</mark>)	
New	81 (73.6)	27 (75.0)	0.742 (<mark>74.3</mark>)	
Weight	88 (80.0)	13 (87.1)	0.834 (<mark>83.6</mark>)	

Comparison of Alifolds Artificial Alignment

4 sequences with mpi 95% 1 to reduce it to 65%

Comparison of Alifolds

2 sequences	length	factor mfe	factor part. func
	73	5.9	2.95
	385	1.73	2.48
	1554	1.48	1.80
	2952	1.41	1.52
5 sequences	length	factor mfe	factor part. func
	73	3.125	2.56
	385	1.63	2.48
	1554	1.55	1.67
	2952	1.55	1.49
9 sequences	length	factor mfe	factor part. func
	73	4.15	2.37
	385	1.78	1.75
	1554	1.70	1.67
	2952	2.07	1.72

Keep it or discard it?

- No positive effect of weighting for AlifoldZ discrimination
- Computationally expansive, but affordable
- Ideas to improve performance appreciated
- How to penalyze too short loops

