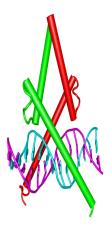
Predicting DNA-Binding Sites Using Statistical Potentials

Jan Brücker

Division for Simulation of Biological Systems Wilhelm Schickard Institute for Computer Science University of Tübingen


February 21, 2007

FREEMARDIN

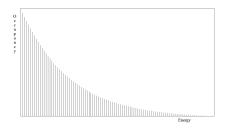
(日)

Assumptions and Aims

Assumptions:

- The preference of a transcription factor to a certain binding site can be found in the preference of certain amino acids to certain nucleotides.
- Complexes with their native DNA binding sites show low free energies.
- The Boltzmann distribution relates the preference of certain interactions to the binding free energy.

• Plan:

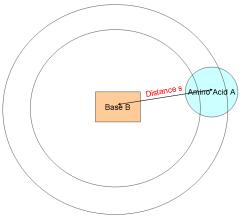

- Use protein-DNA co-crystal structures to detect preferred amino acid-nucleotide interactions.
- Use Boltzmann's distribution to calculate free energies from interaction frequencies.

Statistical Potentials for DNA Binding Sites $_{\odot \bullet \odot}$

Results

EBERHARD KARLS UNIVER

Inverse Boltzmann

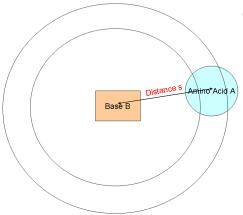

$$f(x) = \frac{1}{Z} \cdot exp\left[-\frac{E(x)}{kT}\right]$$

- The Boltzmann distribution assigns occupancy values to given energy states.
- Given a distribution the binding energy of a molecule can be calculated. (Inverse Boltzmann)

(日)

Results

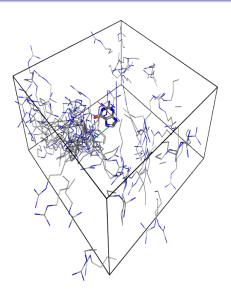
Defining Energy States Distance-Based Clustering



- Defining energy states is a question
 - .. of the available amount of data.
 - .. of the resolution of the available data.
 - .. on what kind of data one wants to use the potentials.
 - .. of taste, innovation, phantasy and the quality of the prediction.

Results

Defining Energy States Distance-Based Clustering

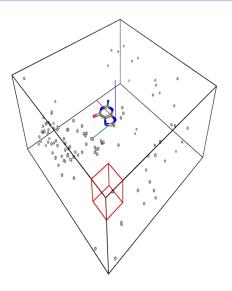

- Defining energy states is a question
 - ... of the available amount of data.
 - ... of the resolution of the available data.
 - .. on what kind of data one wants to use the potentials.
 - .. of taste, innovation, phantasy and the quality of the prediction.

(日)

Eberhard Karls Univers Türingen

Results

Defining Energy States Distance-Based Clustering

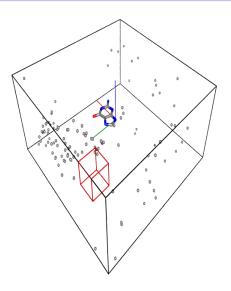

- Defining energy states is a question
 - .. of the available amount of data.
 - .. of the resolution of the available data.
 - ... on what kind of data one wants to use the potentials.
 - ... of taste, innovation, phantasy and the quality of the prediction.

(日)

EBERHARD KARLS UNIVERS

Results

Defining Energy States Distance-Based Clustering

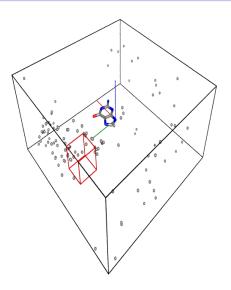


- Defining energy states is a question
 - ... of the available amount of data.
 - ... of the resolution of the available data.
 - ... on what kind of data one wants to use the potentials.
 - .. of taste, innovation, phantasy and the quality of the prediction.

イロト イ理ト イヨト イヨト

Results

Defining Energy States Distance-Based Clustering

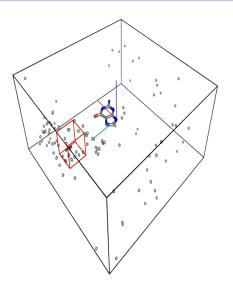


- Defining energy states is a question
 - ... of the available amount of data.
 - ... of the resolution of the available data.
 - ... on what kind of data one wants to use the potentials.
 - .. of taste, innovation, phantasy and the quality of the prediction.

イロト イ理ト イヨト イヨト

Results

Defining Energy States Distance-Based Clustering



- Defining energy states is a question
 - ... of the available amount of data.
 - ... of the resolution of the available data.
 - ... on what kind of data one wants to use the potentials.
 - .. of taste, innovation, phantasy and the quality of the prediction.

イロト イ理ト イヨト イヨト

Results

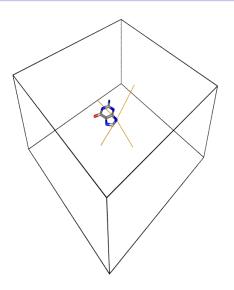
Defining Energy States Distance-Based Clustering

- Defining energy states is a question
 - .. of the available amount of data.
 - ... of the resolution of the available data.
 - ... on what kind of data one wants to use the potentials.
 - .. of taste, innovation, phantasy and the quality of the prediction.

イロト イ理ト イヨト イヨト

Results

Defining Energy States Distance-Based Clustering

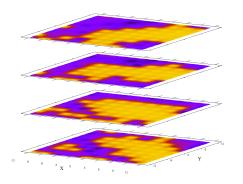

- Defining energy states is a question
 - ... of the available amount of data.
 - ... of the resolution of the available data.
 - ... on what kind of data one wants to use the potentials.
 - .. of taste, innovation, phantasy and the quality of the prediction.

イロト イ理ト イヨト イヨト

EBERHARD KARLS UNIVERS

Results

Defining Energy States Distance-Based Clustering

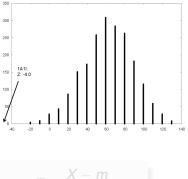


- Defining energy states is a question
 - .. of the available amount of data.
 - ... of the resolution of the available data.
 - ... on what kind of data one wants to use the potentials.
 - ... of taste, innovation, phantasy and the quality of the prediction.

(日)

Results

Defining Energy States Distance-Based Clustering

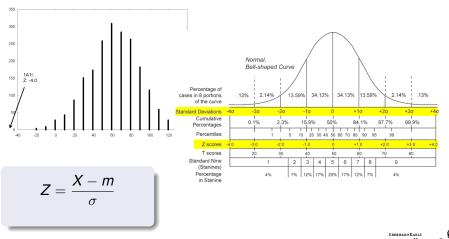

- Defining energy states is a question
 - ... of the available amount of data.
 - ... of the resolution of the available data.
 - ... on what kind of data one wants to use the potentials.
 - .. of taste, innovation, phantasy and the quality of the prediction.

イロト イ理ト イヨト イヨト

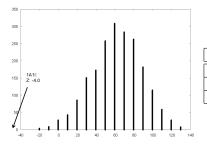
Eberhard Karls Univers Türingen

Results ●○

Z-Scores Distinguishing True Binding Sites From Random Sequences


$$Z = \frac{X - m}{\sigma}$$

(日)


Results ●○

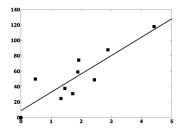
Z-Scores Distinguishing True Binding Sites From Random Sequences

Results ●○

Z-Scores Distinguishing True Binding Sites From Random Sequences

Approach	μ Z-score	Chance
C_{lpha} -approach	-2.42	0.0078
orientation-vector	-2.64	0.0041
Interpolation	-2.71	0.0034
-		

(日)


$$Z = \frac{X - m}{\sigma}$$

Results

From Potentials to Sequence Logos

Comparing With Experimental-Data DNA-Microarray Data of mutants of the *Zif268* Zinc Finger

	Bulyk Data	orientation- method
Mutant	ΔΔG	$\Delta\Delta G$
TGG	0	0
TAG	0.48	24.08
GGG	1.33	9.08
CGG	1.46	13.33
AGG	1.72	12.82
TTG	1.89	28.61
GAG	1.92	33.15
TCG	2.44	21.33
CAG	2.89	37.40
AAA	4.42	57.18
Correlation with Bulyk		0.85

(日)

Eberhard Karls Universität Tübingen

・ロット (雪) ・ (日) ・ (日)

э

From Potentials to Sequence Logos

- Make again usage of the (forward) Boltzmann distribution.
- Calculate for one transcription factor for each of the binding site positions the probability of finding a specific base at that position.

$$f(x) = \frac{exp\left[-\frac{E(x)}{RT}\right]}{\sum_{s \in \{A, C, G, T\}} exp\left[-\frac{E(s)}{RT}\right]} \quad \text{for} \quad x \in \{A, C, G, T\}$$

• The result is a position frequency matrix, commonly illustrated as a sequence motif.

Results

Sequence Motifs From Energies Back to Frequencies

Results

Thanks

Thanks for your attention.

