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Introduction

Introduction

Single cells are the basic unit of life.

They are subjected to physical processes.

To understand biological phenomena it is necessary to formulate an
abstract model of the too complex elements of cellular life.

Important examples involving cell motion are patterning phenomena,
e.g. embryonal development, wound closure etc.
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Introduction

Langevin Equation 1

The motion of a Brownian particle is described by the Langvin equation

m
dv

dt
+ γv = ~f (t) and v =

d~xi

dt
, (1)

where f (t) is a random force, a Gaussian stochastic variable with

〈f (t)〉 = 0 and
〈
f (t)f (t ′)

〉
= gδ(t − t ′) (2)

⇒ x(t), v(t) are also stochastic, so we consider their expectation values.
Integration of 1 and using 2 gives

〈v(t1)v(t2)〉ξ =

(
v0 −

g

2mγ

)
e−(γ/m)(t2+t1) +

g

2mγ
e−(γ/m)(t2−t1),

for the velocity v .
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Introduction

Langevin Equation 2

Further integration yields

〈x(t1)x(t2)〉ξ =
m2

γ2

(
v0 −

g

2mγ

) (
1− e−(γ/m)t

)2

+
g

γ2

[
t − m

γ

(
1− e−(γ/m)t

)]
Aplication of the equipartition theorem for the kinetic energy
mv2

0 /2 = dkT/2, consideration of thermal equilibrium (stationary
expectation ⇒ v0 = g/(2mγ)) and the identification D = kT/γ gives

g = σ2 = 2dDγ2 and
〈
(∆x)2(t)

〉
= 2dDt.
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Setting up the Model

One Cell

Some features of single cells:

Cells in suspension often adopt a spherical shape.
⇒ They are modelled as spherical objects.

In absence of signales they behave like a brownian particle, i.e. the
perform a random walk. ⇒ Langevin-eqation.

Due to the cytoskeleton and the surface tension they show an
(visco-)elastic behaviour.

In tissues or colonies the cells adhere to eachother and extracellular
matrix. ⇒ modified Hertz-Model.

Cells grow and devide.

⇒ Division occurs when volume is doubled:
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Setting up the Model

Overdamped Langevin Equation

(γstA
i
rest1 + Γcs

Ai
cs

Ai
)
d~xi

dt
+

∑
<j ,i>

Γij
ccA

ij
cc(

d~xj

dt
−

d~xj

dt
) =

∑
<i ,j>

~Fij + ~fi , (3)

where Γ = (γ⊥ − γ‖)(~r ⊗~r) + γ‖1 is the friction matrix.
Overdamped regime = High friction coefficients
⇒ Inertia term can be neglected and a system of linear equations for d~xi

is obtained For one cell and discrete time, we can do the same as above
and get 〈

F (t)F (t ′)
〉

=
2dDγ2

∆t
.

Problem: Coupling terms −Γij
ccA

ij
cc

d~xj

dt .
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Setting up the Model

Interaction 1: Short range

The cell-cell interaction is modelled by a slightly modified Hertz model,
which includes an adhesion term:

Vinteraction = VHertz + Vadhesion

=
8
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Setting up the Model

The only really nice picture

Filopodia of Macrophages(Wikipedia, English, Filopodia).
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Setting up the Model

Interaction 2: Long range

As cells use pseudopodia to move, they cover a range bigger than their
spherical volume. This can be modelled as a long range interaction:

Finteraction =



4
3

1
1−ν2

1
E1

+
1−ν2

2
E2

√
R1R2

R1+R2
(R1 + R2 − dij)

3/2

−π%Vsb
R1R2

R1+R2
: dij ≤ R1 + R2

−π%Vsb
R1R2

R1+R2
exp(

−(R1+R2−dij )
2

2σ2 ) : dij > R1 + R2
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Setting up the Model

Interaction 3: Filopodia

Simple recipe:

Draw random vectors as filopodia.

Cut down at the intersecetion with neighboring cells and store the
information.

Associate a force with the ’filopodium’ and it into the equation of
motion.
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Setting up the Model

Interaction 3: Filopodia

Here two ways of calculating the force is implemented.

Ffilo = αlfilowfilo%Esb. This resembles the stochastic force of the
Langevin approach.

The force associated with a filopodium depends on the type of cell it
encounters. A force (∝ %)is only assigned to filopodia according the
following priorities:

1 Some filopodium is in contact to the same celltype.
2 If no contact to a cell of the same type exists, all other contacts.
3 If 1 and 2 is not the case, the proportionality to filopodium length

applies.
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Simulation

One Simulationstep
init() simulation() exitAllCells()

while (!simulationend)

solveSystem

updatePositions

if (measurementnow)

measurement

CalculateAllForces

SetEquationsOfMotion

checkContacts

checkContacts

if (Filopodia)

setAllFilopodia

for all cells

AllActivities(change parameters, grow&devide...)

Schematic diagram of Simulation.
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Simulation

Langevin: One Cell

According to the diffusion coefficient of the cell is calculated and gives the
input parameter D = 1× 10−16m/s2.
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Simulation

Langevin: More Cells

But what happens if the number of cells is increased?
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An increasing motility within the aggregate is not the expected result, one
would assume that the cells rather move more slowly.
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Simulation

Langevin: More Cells

Incrasing motility: Why does this happen? Is the finite simulation time
step because of wrong averaging of the interaction forces, the reason?
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⇒ NO!!!
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Simulation

Langevin: More Cells

Variation of the slope:

Which is the average distance between two cells?

Where starts the linear behaviour?
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Simulation

Langevin: More Cells

Nr. of cells 1 10 30 60 80 100

dij/10−5m – 3.25 2.29 1.47 1.38 1.25
Dfit,1/10−16m2/s 1.08 0.98 1.06 1.08 1.95 2.94
Dfit,2/10−16m2/s – 0.98 0.91 0.76 — 0.26
onset of linear – – – 2500 800 400√
〈∆r2〉 – – – 0.69 0.5 0.47
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Simulation

Langevin: More Cells

Another way of calculating the correlation of the force is using an energy
equivalent to parametrize the cell’s motility. σ2 = 2dFTγ, where
FT = Dγ0 for consistency.
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Simulation

Langevin: More Cells - Coupling

So lets have a look at the Diffusioncoefficient of a varying number of cells
with and without the coupling of (3).
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One sees a significant difference, which aparently arises from the motion of
the center of mass.
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Simulation

Lessons from the Langevin approach

Physical concepts can be used for modelling purposes and yield
reasonable results.

One should not expect to solve the biological aplications analytically.

Therefore modelling is should be treated as a “serious scientific
playground” and construction site.

The final tuning strongly depends on the system to model.
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Short Movies

2D Sorting - 40 Cells - 2 Types - Longrange
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Short Movies

2D Sorting(?) - 40 Cells - 2 Types - Filopodia
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Short Movies

2D Sorting - 60 Cells - 3 Types - Longrange
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Short Movies

2D Equidistant Patterning - 60 Cells - Filopodia
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Short Movies

2D Growth & Division
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