Wang-Landau Sampling of discrete Biopolymer Models

Michael Wolfinger
Institute for Theoretical Chemistry
University Vienna

February 22, 2007

Outline

1 Biopolymer models

2 Energy landscapes

3 Barrier tree dynamics

4 Wang-Landau sampling

5 Summary

The RNA model

A secondary structure is a list of base pairs that fulfills two constraints:

- A base may participate in at most one base pair.
- Base pairs must not cross, i.e., no two pairs (i, j) and (k, I) may have $i<k<j<l$. (no pseudo-knots)

The optimal as well as the suboptimal structures can be computed recursively.

The HP-model

In this simplified model, a conformation is a self-avoiding walk (SAW) on a given lattice in 2 or 3 dimensions. Each bond is a straight line, bond angles have a few discrete values. The 20 letter alphabet of amino acids (monomers) is reduced to a two letter alphabet, namely H and P. H represents hydrophobic monomers, P represents hydrophilic or polar monomers.

Advantages:

- lattice-independent folding algorithms
- simple energy function
- hydrophobicity can be reasonably modeled

FRRLLFLF

Energy functions

RNA

The standard energy model expresses the free energy of a secondary structure S as the sum of the energies of its loops I

$$
E(S)=\sum_{l \in S} E(I)
$$

Lattice Proteins

The energy function for a sequence with n residues $\mathfrak{S}=\mathfrak{s}_{1} \mathfrak{s}_{2} \ldots \mathfrak{s}_{n}$ with $\mathfrak{s}_{i} \in \mathscr{A}=$ $\left\{a_{1}, a_{2}, \ldots, a_{b}\right\}$, the alphabet of b residues, and an overall configuration $x=\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right)$ on a lattice \mathscr{L} can be written as the sum of pair potentials

$$
E(\mathfrak{S}, x)=\sum_{\substack{i<j-1 \\\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|=1}} \Psi\left[\mathfrak{s}_{i}, \mathfrak{s}_{j}\right]
$$

$$
E=-16
$$

Folding landscape - energy landscape

The energy landscape of a biopolymer molecule is a complex surface of the (free) energy versus the conformational degrees of freedom.

Formally, three things are needed to construct an energy landscape:
■ A set X of configurations

- an energy function $f: X \rightarrow \mathbf{R}$

■ a symmetric neighborhood relation $\mathfrak{N}: X \times X$

Folding landscape - energy landscape

The energy landscape of a biopolymer molecule is a complex surface of the (free) energy versus the conformational degrees of freedom.

Number of RNA secondary structures

$$
c_{n} \sim 1.86^{n} \cdot n^{-\frac{3}{2}}
$$

dynamic programming algorithms available

dim	Lattice Type	μ	γ
2	SQ	2.63820	1.34275
	TRI	4.15076	1.343
	HEX	1.84777	1.345
3	SC	4.68391	1.161
	BCC	6.53036	1.161
	FCC	10.0364	1.162

Formally, three things are needed to construct an energy landscape:
■ A set X of configurations

- an energy function $f: X \rightarrow \mathbf{R}$

■ a symmetric neighborhood relation $\mathfrak{N}: X \times X$

Folding landscape - energy landscape

The energy landscape of a biopolymer molecule is a complex surface of the (free) energy versus the conformational degrees of freedom.

Number of RNA secondary structures

$$
c_{n} \sim 1.86^{n} \cdot n^{-\frac{3}{2}}
$$

dynamic programming algorithms available

Number of LP structures

$$
c_{n} \sim \mu^{n} \cdot n^{\gamma-1}
$$

problem is NP-hard

dim	Lattice Type	μ	γ
2	SQ	2.63820	1.34275
	TRI	4.15076	1.343
	HEX	1.84777	1.345
3	SC	4.68391	1.161
	BCC	6.53036	1.161
	FCC	10.0364	1.162

Formally, three things are needed to construct an energy landscape:

- A set X of configurations
- an energy function $f: X \rightarrow \mathbf{R}$

■ a symmetric neighborhood relation $\mathfrak{N}: X \times X$

Folding landscape - energy landscape

The energy landscape of a biopolymer molecule is a complex surface of the (free) energy versus the conformational degrees of freedom.

Number of RNA secondary structures

$$
c_{n} \sim 1.86^{n} \cdot n^{-\frac{3}{2}}
$$

dynamic programming algorithms available
Number of LP structures

$$
c_{n} \sim \mu^{n} \cdot n^{\gamma-1}
$$

problem is NP-hard

dim	Lattice Type	μ	γ
	SQ	2.63820	1.34275
2	TRI	4.15076	1.343
	HEX	1.84777	1.345
	SC	4.68391	1.161
3	BCC	6.53036	1.161
	FCC	10.0364	1.162

Formally, three things are needed to construct an energy landscape:
■ A set X of configurations
■ an energy function $f: X \rightarrow \mathbf{R}$
■ a symmetric neighborhood relation $\mathfrak{N}: X \times X$

The move set

- For each move there must be an inverse move

■ Resulting structure must be in X
■ Move set must be ergodic

Energy barriers and barrier trees

Some topological definitions:
A structure is a

- local minimum if its energy is lower than the energy of all neighbors
- local maximum if its energy is higher than the energy of all neighbors

■ saddle point if there are at least two
 local minima thar can be reached by a downhill walk starting at this pointC. Flamm, I. L. Hofacker, P. F. Stadler, and M. T. Wolfinger.

Barrier trees of degenerate landscapes.
Z. Phys. Chem., 216:155-173, 2002.

The algorithm of BARRIERS

BARRIERS

Require: all suboptimal secondary structures within a certain energy range from mfe
1: $\mathscr{B} \Leftarrow \emptyset$
: for all $x \in$ subopt do
$\mathscr{K} \Leftarrow \emptyset$
$\mathscr{N} \Leftarrow$ generate_neighbors (x)
for all $y \in \mathscr{N}$ do
if $b \Leftarrow$ lookup_hash (y) then
$\mathscr{K} \Leftarrow \mathscr{K} \cup b$
end if
end for
if $\mathscr{K}=\emptyset$ then
$\mathscr{B} \Leftarrow \mathscr{B} \cup\{x\}$
end if
if $|\mathscr{K}| \geq 2$ then
merge_basins (\mathscr{K})
end if
write_hash (x)
end for

The flooding algorithm

$t 6 i$

The flooding algorithm

$t 6 i$

The flooding algorithm

$t 6 i$

The flooding algorithm

$t 6 i$

Barrier tree example

Information from the barrier trees

- Local minima
- Saddle points
- Barrier heights
- Gradient basins
- Partition functions
- Free energies of (gradient) basins

With this information, a reduced dynamics can be formulated as a Markov process by means of macrostates (i.e. basins in the barrier tree) and Arrhenius-like transition rates between them.

$$
\frac{d}{d t} P_{t}=\mathbf{U} P_{t} \quad \Longrightarrow \quad P_{t}=e^{t \mathbf{U}} P_{0}
$$

■ macro-states form a partition of the full configuration space

- transition rates between macro-states $r_{\beta \alpha}=\Gamma_{\beta \alpha} \exp \left(-\left(E_{\beta \alpha}^{*}-G_{\alpha}\right) / k T\right)$

M. T. Wolfinger, W. A. Svrcek-Seiler, C. Flamm, I. L. Hofacker, and P. F. Stadler. Efficient computation of RNA folding dynamics.
J. Phys. A: Math. Gen., 37(17):4731-4741, 2004.

Barrier tree dynamics - problems and pitfalls

The method works fine for moderately sized systems.
Currently, we consider approx. 100 million structures within a single run of Barriers to calculate the topology of the landscape.

However, we are interested in larger systems:
■ biologically relevant RNA switches

- large 3D lattice proteins

The next steps:

- use high-level diagonalization routines for sparse matrices
- calculate low-energy structures
- sample (thermodynamics properties of) individual basins

Barrier tree dynamics - problems and pitfalls

The method works fine for moderately sized systems.
Currently, we consider approx. 100 million structures within a single run of Barriers to calculate the topology of the landscape.

However, we are interested in larger systems:
■ biologically relevant RNA switches

- large 3D lattice proteins

The next steps:
■ use high-level diagonalization routines for sparse matrices

- calculate low-energy structures

■ sample (thermodynamics properties of) individual basins

Wang-Landau sampling

"A dynamic Monte Carlo algorithm to estimate the density of states by performing a random walk in energy space with a flat histogram"
F. Wang and D. P. Landau.

Efficient, Multiple-Range Random Walk Algorithm to Calculate the Density of States. Phys. Rev. Lett., 86:2050-2053, 2001.

The classical partition function can be written as the sum over all states, or over all energies, i.e.

$$
Z=\sum_{i} e^{-E_{i} / k T} \equiv \sum_{E} g(E) e^{-E / k T}
$$

Wang-Landau sampling estimates $g(E)$ directly, instead of trying to extract it from a 'standard' Monte Carlo probability distribution.

Monte Carlo basics

Generally, any (probability) distribution can be sampled by a Monte Carlo-type algorithm. Prerequisites: Detailed Balance

$$
\pi(x) p(x \rightarrow y)=\pi(y) p(y \rightarrow x)
$$

The probability of state x occuring in a classical system, is $\pi(x)=\frac{1}{Z} e^{-E_{x} / k T}$ ("Boltzmann-sampling")

Metropolis rule:

In Wang-Landau sampling, we have $\pi(x)=\frac{1}{g\left(E_{x}\right)}$ and thus

Monte Carlo basics

Generally, any (probability) distribution can be sampled by a Monte Carlo-type algorithm. Prerequisites: Detailed Balance

$$
\pi(x) p(x \rightarrow y)=\pi(y) p(y \rightarrow x)
$$

The probability of state x occuring in a classical system, is $\pi(x)=\frac{1}{Z} e^{-E_{x} / k T}$ ("Boltzmann-sampling")
Metropolis rule:

$$
p(x \rightarrow y)=\min \left(1, \frac{\pi(y)}{\pi(x)}\right)
$$

In Wang-Landau sampling, we have $\pi(x)=\frac{1}{g\left(E_{x}\right)}$ and thus

Monte Carlo basics

Generally, any (probability) distribution can be sampled by a Monte Carlo-type algorithm. Prerequisites: Detailed Balance

$$
\pi(x) p(x \rightarrow y)=\pi(y) p(y \rightarrow x)
$$

The probability of state x occuring in a classical system, is $\pi(x)=\frac{1}{Z} e^{-E_{x} / k T}$ ("Boltzmann-sampling")
Metropolis rule:

$$
p(x \rightarrow y)=\min \left(1, \frac{\pi(y)}{\pi(x)}\right)
$$

In Wang-Landau sampling, we have $\pi(x)=\frac{1}{g\left(E_{x}\right)}$ and thus

$$
p(x \rightarrow y)=\min \left(1, \frac{g\left(E_{x}\right)}{g\left(E_{y}\right)}\right)
$$

Wang-Landau basics

Wang-Landau sampling assumes a crude 'guess' for the density of states, i.e. $g\left(E_{x}\right)=1$ for all x.

Starting from an (arbitrary) initial state, a random neighbor is chosen with a transition probability

$$
p(x \rightarrow y)=\min \left(1, \frac{g\left(E_{x}\right)}{g\left(E_{y}\right)}\right)
$$

- If the move is accepted, the value of $g\left(E_{y}\right)$ is multiplied with a modfication factor $f>1$ and the histogram entry $h\left(E_{y}\right)$ is updated
- If the move is rejected, $g\left(E_{x}\right)$ is multiplied with f and $h\left(E_{x}\right)$ is incremented

In practice, we work with the logarithm of the density of states, i.e. an update of the density of states yields $\ln [g(E)] \rightarrow \ln [g(E)]+\ln (f)$.

Wang-Landau basics

Wang-Landau sampling assumes a crude 'guess' for the density of states, i.e. $g\left(E_{x}\right)=1$ for all x.

Starting from an (arbitrary) initial state, a random neighbor is chosen with a transition probability

$$
p(x \rightarrow y)=\min \left(1, \frac{g\left(E_{x}\right)}{g\left(E_{y}\right)}\right)
$$

- If the move is accepted, the value of $g\left(E_{y}\right)$ is multiplied with a modfication factor $f>1$ and the histogram entry $h\left(E_{y}\right)$ is updated.
- If the move is rejected, $g\left(E_{x}\right)$ is multiplied with f and $h\left(E_{x}\right)$ is incremented.

In practice, we work with the logarithm of the density of states, i.e. an update of the density of states yields $\ln [g(E)] \rightarrow \ln [g(E)]+\ln (f)$.

Wang-Landau continued

A reasonable initial value for the modification factor is $f=e^{1} \simeq 2.71828$. The random walk is continued until the histogram $h(E)$ is 'flat' ${ }^{1}$, which is typically checked for every 10^{6} iterations.
\rightarrow all energy bins have been visited an euqal number of times.
\rightarrow the density of states converges to the true value prop. $\ln (f)$.
Then, f is reduced to $f^{1 / 2}$, i.e. $f_{1}=\sqrt{f_{0}}$ and $h(E)$ is reset to 0 .
The random walk is continued, until the histogram becomes 'flat' again, in which case we reset $h(E)$ and modify f to \sqrt{f}. This is done, until a final value of $f=\exp \left(10^{-8}\right) \simeq 1.00000001$ is reached

After many iterations, $g(E)$ converges to the true value as f approaches 1. At that point, the random walk satifies detailed balance:

Wang-Landau continued

A reasonable initial value for the modification factor is $f=e^{1} \simeq 2.71828$. The random walk is continued until the histogram $h(E)$ is 'flat' ${ }^{1}$, which is typically checked for every 10^{6} iterations.
\rightarrow all energy bins have been visited an euqal number of times.
\rightarrow the density of states converges to the true value prop. $\ln (f)$.
Then, f is reduced to $f^{1 / 2}$, i.e. $f_{1}=\sqrt{f_{0}}$ and $h(E)$ is reset to 0 .
The random walk is continued, until the histogram becomes 'flat' again in which case we reset $h(E)$ and modify f to \sqrt{f}. This is done, until a final value of $f=\exp \left(10^{-8}\right) \simeq 1.00000001$ is reached.

After many iterations, $g(E)$ converges to the true value as f approaches 1. At that point, the random walk satifies detailed balance:

Wang-Landau continued

A reasonable initial value for the modification factor is $f=e^{1} \simeq 2.71828$. The random walk is continued until the histogram $h(E)$ is 'flat' ${ }^{1}$, which is typically checked for every 10^{6} iterations.
\rightarrow all energy bins have been visited an euqal number of times.
\rightarrow the density of states converges to the true value prop. $\ln (f)$.
Then, f is reduced to $f^{1 / 2}$, i.e. $f_{1}=\sqrt{f_{0}}$ and $h(E)$ is reset to 0 .
The random walk is continued, until the histogram becomes 'flat' again, in which case we reset $h(E)$ and modify f to \sqrt{f}. This is done, until a final value of $f=\exp \left(10^{-8}\right) \simeq 1.00000001$ is reached.

After many iterations, $g(E)$ converges to the true value as f approaches 1. At that point, the random walk satifies detailed balance:

[^0]
Wang-Landau continued

A reasonable initial value for the modification factor is $f=e^{1} \simeq 2.71828$. The random walk is continued until the histogram $h(E)$ is 'flat' ${ }^{1}$, which is typically checked for every 10^{6} iterations.
\rightarrow all energy bins have been visited an euqal number of times.
\rightarrow the density of states converges to the true value prop. $\ln (f)$.
Then, f is reduced to $f^{1 / 2}$, i.e. $f_{1}=\sqrt{f_{0}}$ and $h(E)$ is reset to 0 .
The random walk is continued, until the histogram becomes 'flat' again, in which case we reset $h(E)$ and modify f to \sqrt{f}. This is done, until a final value of $f=\exp \left(10^{-8}\right) \simeq 1.00000001$ is reached.

After many iterations, $g(E)$ converges to the true value as f approaches 1. At that point, the random walk satifies detailed balance:

$$
\frac{1}{g\left(E_{x}\right)} p\left(E_{x} \rightarrow E_{y}\right)=\frac{1}{g\left(E_{y}\right)} p\left(E_{y} \rightarrow E_{x}\right)
$$

[^1]
Wang-Landau sampling - pseudocode

Require: a start structure x compatible with sequence \mathfrak{S}
Ensure: for all $E: g(E) \leftarrow 1$ and for all $E: h(E) \leftarrow 0$
$f \leftarrow f_{0}=\exp (1)$
$E_{1} \leftarrow \operatorname{energy}(x)$
$\mathscr{N} \leftarrow$ generate_neighbors (x)
repeat
$y \leftarrow$ get_random_neighbor (\mathscr{N})
$E_{2} \leftarrow \operatorname{energy}(y)$
$\xi \leftarrow g\left(E_{1}\right) / g\left(E_{2}\right)$
$r \leftarrow$ random_number () // from [0;1]
if $r<\xi$ then // accept the move
$E_{1} \leftarrow E_{2}$
$\mathscr{N} \leftarrow$ generate_neighbors (y)
end if
$g\left(E_{1}\right) \leftarrow g\left(E_{1}\right) * f$
$h\left(E_{1}\right) \leftarrow h\left(E_{1}\right)+1$
if histogram_is_flat() then $f \leftarrow f^{1 / 2}$
reset_histogram()
else
goto 5
end if
until $f \leftarrow f_{\text {min }} \sim \exp \left(10^{-8}\right)$

Wang-Landau - RNA example

hok

GGCGCUUGAGGCUUUCUGCCUCAUGACGUGAAGGUGGUUUGUUGCCGUGUUGUGUGGCAGAAAGAAGAUAGCCC

$t 6 i$

Wang-Landau - Density of States

hok

Wang-Landau - DoS at different T

hok

Wang-Landau - LP example

Thermodynamics

Relevant thermodynamic quantities can easily be calutaed from the DoS

$$
\begin{gathered}
U(T)=\frac{\sum_{E} E g(E) e^{-E / k T}}{\sum_{E} g(E) e^{-E / k T}} \equiv\langle E\rangle_{T} \\
C(T)=\frac{\partial U(T)}{\partial T}=\frac{\left\langle E^{2}\right\rangle_{T}-\langle E\rangle_{T}^{2}}{k T^{2}} \\
F(T)=-k T \ln (Z)=-k T \ln \left(\sum_{E} g(E) e^{-E / k T}\right) \\
S(T)=\frac{U(T)-F(T)}{T}
\end{gathered}
$$

Thermodynamics of a short, artificial LP

HHPHPPHPHPHHPH $n=14$

Basin sampling

Conclusion

■ Discrete models allow a detailed study of the energy surface.

- Barrier trees represent the landscape topology.
- A macrostate approach of folding kinetics reduces simulation time drastically.
- Wang-Landau sampling approximates the density of states and allows the calculation of thermodynamic quantities.
- Basin sampling is a promosing approach towards simulation of biologically relevant molecules.

Conclusion

■ Discrete models allow a detailed study of the energy surface.

- Barrier trees represent the landscape topology.
- A macrostate approach of folding kinetics reduces simulation time drastically.
- Mang Landau sampling approximates the density of states and allows the calculation of thermodynamic quantities.
- Basin sampling is a promosing approach towards simulation of biologically relevant molecules.

Conclusion

- Discrete models allow a detailed study of the energy surface.
- Barrier trees represent the landscape topology.

■ A macrostate approach of folding kinetics reduces simulation time drastically.

- Wang-Landau sampling approximates the density of states and allows the calculation of thermodynamic quantities.
- Basin sampling is a promosing approach towards simulation of biologically relevant molecules.

Conclusion

- Discrete models allow a detailed study of the energy surface.
- Barrier trees represent the landscape topology.

■ A macrostate approach of folding kinetics reduces simulation time drastically.

- Wang-Landau sampling approximates the density of states and allows the calculation of thermodynamic quantities.
- Basin sampling is a promosing approach towards simulation of biologically relevant molecules.

Conclusion

- Discrete models allow a detailed study of the energy surface.
- Barrier trees represent the landscape topology.

■ A macrostate approach of folding kinetics reduces simulation time drastically.

- Wang-Landau sampling approximates the density of states and allows the calculation of thermodynamic quantities.
- Basin sampling is a promosing approach towards simulation of biologically relevant molecules.

Conclusion

- Discrete models allow a detailed study of the energy surface.
- Barrier trees represent the landscape topology.

■ A macrostate approach of folding kinetics reduces simulation time drastically.

- Wang-Landau sampling approximates the density of states and allows the calculation of thermodynamic quantities.
- Basin sampling is a promosing approach towards simulation of biologically relevant molecules.

Acknowledgments \& References

Christoph Flamm, Ivo Hofacker, Peter Stadler Sebastian Will, Martin Mann

M. T. Wolfinger, W. A. Svrcek-Seiler, C. Flamm, I. L. Hofacker, and P. F. Stadler. Efficient computation of RNA folding dynamics.
J. Phys. A: Math. Gen., 37(17):4731-4741, 2004.

M. T. Wolfinger, S. Will, I. L. Hofacker, R. Backofen, and P. F. Stadler. Exploring the lower part of discrete polymer model energy landscapes. Europhys. Lett., 74(4):725-732, 2006.
C. Flamm, I. L. Hofacker, P. F. Stadler, and M. T. Wolfinger.

Barrier trees of degenerate landscapes.
Z. Phys. Chem., 216:155-173, 2002.D. P. Landau, S. H. Tsai, and M. Exler.

A new approach to Monte Carlo simulations in statistical physics: Wang-Landau sampling. Am. J. Phys., 72(10):1294-1302, 2004.

[^0]: ${ }^{1}$ 'flat' means that $h(E) \geq 0.8\langle h(E)\rangle$ for all E

[^1]: ${ }^{1}$ 'flat' means that $h(E) \geq 0.8\langle h(E)\rangle$ for all E

