RNAstrand : Reading direction of structured RNAs in multiple sequence alignments

Kristin Reiche, Peter F. Stadler

Bioinformatics Group, Department of Computer Science University of Leipzig

Bled 2007

RNAstrand

Genome wide prediction of structured non-coding RNAs (RNAz, EvoFold)

Annotation is next challenge:

- RNAs with homologous secondary structures (LocARNA)
- Detect specific RNA families (RNAmicro, snoReport)
- Intronic, intergenic or non-translated exon (RNAstrand)

Genome wide prediction of structured non-coding RNAs (RNAz, EvoFold)

Annotation is next challenge:

- RNAs with homologous secondary structures (LocARNA)
- Detect specific RNA families (RNAmicro, snoReport)
- intronic, intergenic or non-translated exon (RNAstrand)

RNAstrand

Genome wide prediction of structured non-coding RNAs (RNAz, EvoFold)

Annotation is next challenge:

- RNAs with homologous secondary structures (LocARNA)
- Detect specific RNA families (RNAmicro, snoReport)
- Intronic, intergenic or non-translated exon (RNAstrand)

Genome wide prediction of structured non-coding RNAs (RNAz, EvoFold)

Annotation is next challenge:

- RNAs with homologous secondary structures (LocARNA)
- Detect specific RNA families (RNAmicro, snoReport)

Intronic, intergenic or non-translated exon (RNAstrand)

- Genome wide prediction of structured non-coding RNAs (RNAz, EvoFold)
- Annotation is next challenge:
 - RNAs with homologous secondary structures (LocARNA)
 - Detect specific RNA families (RNAmicro, snoReport)
 - intronic, intergenic or non-translated exon (RNAstrand)

- Naïve approach: Take strand which has higher RNAz probability or EvoFold score
- Problem: RNAz and EvoFold are not trained for strand prediction of RNA
- Accuracy: RNAz on miRNAs: 0.14, EvoFold on miRNAs: 0.84
- Can we do that better?

- Naïve approach: Take strand which has higher RNAz probability or EvoFold score
- Problem: RNAz and EvoFold are not trained for strand prediction of RNA
- Accuracy: RNAz on miRNAs: 0.14, EvoFold on miRNAs: 0.84
- Can we do that better?

- Naïve approach: Take strand which has higher RNAz probability or EvoFold score
- Problem: RNAz and EvoFold are not trained for strand prediction of RNA
- Accuracy: RNAz on miRNAs: 0.14, EvoFold on miRNAs: 0.84
- Can we do that better?

- Naïve approach: Take strand which has higher RNAz probability or EvoFold score
- Problem: RNAz and EvoFold are not trained for strand prediction of RNA
- Accuracy: RNAz on miRNAs: 0.14, EvoFold on miRNAs: 0.84
- Can we do that better?

Input alignment containing structured ncRNA

イロト 不得 トイヨト イヨト 三日

RNAstrand

・ロト・日本・日本・日本・日本・日本

Reading direction of input alignment

RNAstrand

Reading direction of input alignment

RNAstrand

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Reading direction of input alignment

Realigned reverse complement

▲□▶▲□▶▲□▶▲□▶ □ のQで

meanz

Reading direction of input alignment

Realigned reverse complement

▲□▶▲□▶▲□▶▲□▶ □ のQで

meanz

Reading direction of input alignment

Realigned reverse complement

▲□▶▲□▶▲□▶▲□▶ □ のQで

meanz

meanmfe

Reading direction of input alignment

Realigned reverse complement

▲□▶▲□▶▲□▶▲□▶ □ のQで

meanz

meanmfe

Reading direction of input alignment

Realigned reverse complement

▲□▶▲□▶▲□▶▲□▶ □ のQで

meanz

meanmfe

sci

Reading direction of input alignment

Realigned reverse complement

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$\frac{\text{meanz}}{N} = \frac{\sum \text{single sequence z-score}}{N}$	
$\frac{\text{meanmfe}}{\text{N}} = \frac{\sum \text{single sequence MFE}}{\text{N}}$	
$sci = \frac{consmfe}{meanmfe}$	

consmfe = MFE of consensus sequence

meanz

meanmfe

sci

Reading direction of input alignment

Realigned reverse complement

▲□▶▲□▶▲□▶▲□▶ □ のQの

Reading direction of input alignment

Realigned reverse complement

▲□▶▲□▶▲□▶▲□▶ □ のQで

$\sum \text{ single sequence z-score}$
N
$\frac{\text{meanmfe}}{\text{N}} = \frac{\sum \text{single sequence MFE}}{\text{N}}$
$sci = \frac{consmfe}{meanmfe}$
consmfe = MFE of consensus sequence

 $\textbf{meanmfe} \rightarrow \bigtriangleup \textit{meanmfe}$

meanz $\rightarrow \wedge meanz$

 $sci \rightarrow \triangle sci$

 $consmfe \rightarrow \triangle consmfe$

Reading direction of input alignment

Realigned reverse complement

▲□▶▲□▶▲□▶▲□▶ □ のQで

$\frac{\text{meanz}}{\text{N}} = \frac{\sum \text{single sequence z-score}}{\text{N}}$	meanz $\rightarrow \triangle$ meanz
$\frac{\text{meanmfe}}{N} = \frac{\sum \text{single sequence MFE}}{N}$	$\text{meanmfe} \rightarrow \triangle \textit{meanmfe}$
$sci = \frac{consmfe}{meanmfe}$	$sci ightarrow \bigtriangleup sci$
consmfe = MFE of consensus sequence	$consmfe \rightarrow \triangle consmfe$

Classification via support vector machine (SVM)

Which descriptors are the best?

RNAstrand

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Which descriptors are the best?

Receiver Operating Characteristics (5-fold cross validation):

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Which descriptors are the best?

Receiver Operating Characteristics (5-fold cross validation):

Combination of two

Combination of at least three

RNAstrand

Combination of at least three

Maximal area under the curve (99.39%) if all four descriptors are taken

RNAstrand

Additional descriptors

 \triangle meanmfe , \triangle consmfe , \triangle meanz , \triangle sci depend on fraction of GU base pairs:

Strand differences are captured by:

Differences in stability

- Ameanz
- Ameanmfe
- Differences in structure conservation
 - $\triangle sc$
 - Aconsmfe

- GU pairs in consensus all pairs in consensus + GU pairs in consensus all pairs in consensus
- Average mean pairwise identity of alignment in both reading directions
- Number of sequences in alignment

Strand differences are captured by:

- Differences in stability

 - Ameanmfe
- Differences in structure conservation
 - △*s*c
 - Aconsmfe

- GU pairs in consensus all pairs in consensus + GU pairs in consensus all pairs in consensus
- Average mean pairwise identity of alignment in both reading directions
- Number of sequences in alignment

Strand differences are captured by:

- Differences in stability
- Differences in structure conservation
 - Asc
 - Aconsmfe

- GU pairs in consensus all pairs in consensus + GU pairs in consensus all pairs in consensus
- Average mean pairwise identity of alignment in both reading directions
- Number of sequences in alignment

Strand differences are captured by:

- Differences in stability
 - Ameanz
 - Ameanmfe
- Differences in structure conservation
 - Asci
 - Aconsmfe

- GU pairs in consensus all pairs in consensus + GU pairs in consensus all pairs in consensus
- Average mean pairwise identity of alignment in both reading directions
- Number of sequences in alignment

Strand differences are captured by:

- Differences in stability
 - Ameanz
- Differences in structure conservation
 - △sci
 - Aconsmfe

- GU pairs in consensus all pairs in consensus + GU pairs in consensus
- Average mean pairwise identity of alignment in both reading directions
- Number of sequences in alignment

Strand differences are captured by:

- Differences in stability
 - Ameanz
 - Ameanmfe
- Differences in structure conservation
 - △sci

- GU pairs in consensus all pairs in consensus + GU pairs in consensus
- Average mean pairwise identity of alignment in both reading directions
- Number of sequences in alignment

Strand differences are captured by:

- Differences in stability
 - Ameanz
- Differences in structure conservation
 - △sci
 - △consmfe

Relevance of the strand differences are interpreted by:

- <u>GU pairs in consensus</u> + <u>GU pairs in consensus</u> all pairs in consensus + <u>GU pairs in consensus</u>
- Average mean pairwise identity of alignment in both reading directions
- Number of sequences in alignment

Strand differences are captured by:

- Differences in stability
 - Ameanz
- Differences in structure conservation
 - △sci
 - △consmfe

Relevance of the strand differences are interpreted by:

- <u>GU pairs in consensus</u> + <u>GU pairs in consensus</u> all pairs in consensus + <u>GU pairs in consensus</u>
- Average mean pairwise identity of alignment in both reading directions
- Number of sequences in alignment

Strand differences are captured by:

- Differences in stability
 - Ameanz
- Differences in structure conservation
 - △sci
 - △consmfe

Relevance of the strand differences are interpreted by:

- <u>GU pairs in consensus</u> + <u>GU pairs in consensus</u> all pairs in consensus + <u>GU pairs in consensus</u>
- Average mean pairwise identity of alignment in both reading directions
- Number of sequences in alignment

SVM library libsvm

- Radial basis function kernel: $K(x_i, x_j) = exp(-\gamma ||x_i x_j||^2)$
- Attributes are scaled to -1 and 1
- Optimal parameters: penalty of error term C = 128, $\gamma = 0.5$
- Probability estimates P that alignment contains ncRNA in same reading direction
- RNAstrand score: $D = 2 * P 1, D \in [-1, 1]$
- Different cutoffs c of score provide different prediction reliabilities:
 - D > +c: ncRNA in reading direction of input alignment
 - D < -c: ncRNA is reverse complement of input alignment
 - $-c \leq D \leq +c$: No decision

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• SVM library libsvm

- Radial basis function kernel: $K(x_i, x_j) = exp(-\gamma ||x_i x_j||^2)$
- Attributes are scaled to -1 and 1
- Optimal parameters: penalty of error term C = 128, $\gamma = 0.5$
- Probability estimates P that alignment contains ncRNA in same reading direction
- RNAstrand score: $D = 2 * P 1, D \in [-1, 1]$
- Different cutoffs c of score provide different prediction reliabilities:
 - D > +c: ncRNA in reading direction of input alignment
 - D < -c: ncRNA is reverse complement of input alignment
 - $-c \le D \le +c$: No decision

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- SVM library libsvm
- Radial basis function kernel: $K(x_i, x_j) = exp(-\gamma ||x_i x_j||^2)$
- Attributes are scaled to -1 and 1
- Optimal parameters: penalty of error term C = 128, $\gamma = 0.5$
- Probability estimates P that alignment contains ncRNA in same reading direction
- RNAstrand score: $D = 2 * P 1, D \in [-1, 1]$
- Different cutoffs c of score provide different prediction reliabilities:
 - D > +c: ncRNA in reading direction of input alignment
 - D < -c: ncRNA is reverse complement of input alignment
 - $-c \leq D \leq +c$: No decision

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- SVM library libsvm
- Radial basis function kernel: $K(x_i, x_j) = exp(-\gamma ||x_i x_j||^2)$
- Attributes are scaled to -1 and 1
- Optimal parameters: penalty of error term C = 128, $\gamma = 0.5$
- Probability estimates P that alignment contains ncRNA in same reading direction
- RNAstrand score: $D = 2 * P 1, D \in [-1, 1]$
- Different cutoffs c of score provide different prediction reliabilities:
 - D > +c: ncRNA in reading direction of input alignment
 - D < -c: ncRNA is reverse complement of input alignment
 - $-c \le D \le +c$: No decision

- SVM library libsvm
- Radial basis function kernel: $K(x_i, x_j) = exp(-\gamma ||x_i x_j||^2)$
- Attributes are scaled to -1 and 1
- Optimal parameters: penalty of error term C = 128, $\gamma = 0.5$
- Probability estimates P that alignment contains ncRNA in same reading direction
- RNAstrand score: $D = 2 * P 1, D \in [-1, 1]$
- Different cutoffs c of score provide different prediction reliabilities:

D > +c: ncRNA in reading direction of input alignment

D < -c: ncRNA is reverse complement of input alignment

 $-c \leq D \leq +c$: No decision

- SVM library libsvm
- Radial basis function kernel: $K(x_i, x_j) = exp(-\gamma ||x_i x_j||^2)$
- Attributes are scaled to -1 and 1
- Optimal parameters: penalty of error term C = 128, $\gamma = 0.5$
- Probability estimates P that alignment contains ncRNA in same reading direction
- RNAstrand score: $D = 2 * P 1, D \in [-1, 1]$
- Different cutoffs c of score provide different prediction reliabilities:

D > +c: ncRNA in reading direction of input alignment

D < -c: ncRNA is reverse complement of input alignment

 $-c \leq D \leq +c$: No decision

- SVM library libsvm
- Radial basis function kernel: $K(x_i, x_j) = exp(-\gamma ||x_i x_j||^2)$
- Attributes are scaled to -1 and 1
- Optimal parameters: penalty of error term C = 128, $\gamma = 0.5$
- Probability estimates P that alignment contains ncRNA in same reading direction
- RNAstrand score: $D = 2 * P 1, D \in [-1, 1]$
- Different cutoffs c of score provide different prediction reliabilities:

D > +c: ncRNA in reading direction of input alignment

D < -c: ncRNA is reverse complement of input alignment

 $-c \leq D \leq +c$: No decision

- SVM library libsvm
- Radial basis function kernel: $K(x_i, x_j) = exp(-\gamma ||x_i x_j||^2)$
- Attributes are scaled to -1 and 1
- Optimal parameters: penalty of error term C = 128, $\gamma = 0.5$
- Probability estimates P that alignment contains ncRNA in same reading direction
- RNAstrand score: $D = 2 * P 1, D \in [-1, 1]$
- Different cutoffs c of score provide different prediction reliabilities:

D > +c: ncRNA in reading direction of input alignment

D < -c: ncRNA is reverse complement of input alignment

 $-c \leq D \leq +c$: No decision

- SVM library libsvm
- Radial basis function kernel: $K(x_i, x_j) = exp(-\gamma ||x_i x_j||^2)$
- Attributes are scaled to -1 and 1
- Optimal parameters: penalty of error term C = 128, $\gamma = 0.5$
- Probability estimates *P* that alignment contains ncRNA in same reading direction
- RNAstrand score: $D = 2 * P 1, D \in [-1, 1]$
- Different cutoffs c of score provide different prediction reliabilities:
 - D > +c: ncRNA in reading direction of input alignment
 - D < -c: ncRNA is reverse complement of input alignment

 $-c \leq D \leq +c$: No decision

- SVM library libsvm
- Radial basis function kernel: $K(x_i, x_j) = exp(-\gamma ||x_i x_j||^2)$
- Attributes are scaled to -1 and 1
- Optimal parameters: penalty of error term C = 128, $\gamma = 0.5$
- Probability estimates P that alignment contains ncRNA in same reading direction
- RNAstrand score: $D = 2 * P 1, D \in [-1, 1]$
- Different cutoffs c of score provide different prediction reliabilities:
 - D > +c: ncRNA in reading direction of input alignment
 - D < -c: ncRNA is reverse complement of input alignment
 - $-c \le D \le +c$: No decision

5886 training alignments including representatives of rRNAs, snRNAs, snoRNAs, tRNAs, miRNAs, nuclear RNAse P and SRP RNA

Training of RNAstrand

5886 training alignments including representatives of rRNAs, snRNAs, snoRNAs, tRNAs, miRNAs, nuclear RNase P and SRP RNA

Validate <code>RNAstrand</code> with 35766 automatically created <code>ClustalW</code> alignments of 313 non-coding RNA families found in <code>RFAM</code> 7.0

			C =	= 0	c = 0.5		c = 0.9			
ncRNA type	Ν	0	A_+	A_	Α	1-A-u	и	Α	1-A-u	u
5S rRNA	860	12.6%	0.98	0.98	0.98	0.00	0.01	0.95	0.00	0.03
5.8S rRNA	146	-	0.93	0.93	0.89	0.05	0.05	0.73	0.02	0.24
tRNA	294	0.9%	0.94	0.94	0.88	0.01	0.09	0.62	0.00	0.36
miRNA	2496	4.5%	0.98	0.97	0.96	0.00	0.02	0.89	0.00	0.10
snoRNA (C/D)	204	9.9%	0.59	0.57	0.48	0.32	0.18	0.29	0.18	0.52
snoRNA (H/ACA)	1340	1.2%	0.98	0.98	0.97	0.01	0.01	0.94	0.00	0.05
spliceos. RNA	2878	35.0%	0.92	0.92	0.88	0.05	0.06	0.77	0.02	0.19
euk. SRP RNA	1000	8.1%	0.99	0.99	0.99	0.00	0.00	0.97	0.00	0.02
nucl. RNaseP	260	41.9%	0.93	0.93	0.92	0.04	0.03	0.85	0.01	0.12
RNase MRP	140	-	0.98	1.00	0.98	0.00	0.01	0.96	0.00	0.03
SECIS	76	-	0.65	0.64	0.51	0.25	0.22	0.32	0.19	0.48
7SK	184	-	0.04	0.03	0.02	0.91	0.05	0.01	0.80	0.18

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Best cutoff c

alignments classified to contain ncRNA in same reading direction

** alignments classified to contain ncRNA on reverse complement

Maximal Youden index of 0.75 with cutoff c = 0.15

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Distribution of RNAstrand scores

Distribution of SVM decision values

Are we better than naïve approach? (RNAz)

Accuracy (RNAstrand: c = 0)

			/
ncRNA type	Ν	A(RNAstrand)	A(RNAz)
5S rRNA	860	0.98	0.97
5.8S rRNA	146	0.93	0.90
tRNA	294	0.94	0.53
miRNA	2496	0.97	0.14
snoRNA (C/D)	204	0.58	0.46
snoRNA (H/ACA)	1340	0.98	0.94
spliceos. RNA	2878	0.92	0.82
euk. SRP RNA	1000	0.99	0.84
nucl. RNaseP	260	0.93	0.82
RNase MRP	140	0.99	0.50
SECIS	76	0.65	0.48
7SK	184	0.04	0.03

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Are we better than naïve approach? (RNAz)

RNAstrand	cor	rect	incorrect			
correct	21536	21425	8711	8639		
incorrect	1618	1729	3901	3973		

2-fold reduction of misclassification rate

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Are we better than naïve approach? (EvoFold)

RNAstrand (fwd)	corre	ect	incorrect		
correct	104	8	15	0	
incorrect	16	0	7	2	
RNAstrand (rev)	corre	ect	incorrect		
correct	102	8	11	0	
incorrect	18	0	11	2	

Strand prediction of EvoFold comparable to RNAstrand.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

RNAstrand

Backup Slide - Classification of 7SK RNAs

Backup Slide - Test alignments

Backup Slide - Standard deviations

		C =	= 0		<i>c</i> = 0.5			<i>c</i> = 0.9	
ncRNA class	Ν	A_+	A_{-}	Α	1- <i>A</i> -u	и	Α	1- <i>A</i> -u	и
rRNA	2	0.02	0.02	0.04	0.02	0.01	0.11	0.01	0.10
miRNA	36	0.15	0.13	0.18	0.05	0.13	0.31	0.00	0.31
snoRNA (C/D)	23	0.38	0.40	0.38	0.36	0.15	0.37	0.28	0.35
snoRNA (H/ACA)	26	0.17	0.17	0.22	0.11	0.15	0.32	0.05	0.30
spliceos. RNA	6	0.24	0.25	0.29	0.20	0.08	0.29	0.12	0.17

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Backup Slide - GU base pair fraction

