Outline Background A generalized pipeline to detect novel ncRNAs Application of the pipeline on pig EST data Discussion

Detection of conserved non-coding RNAs in the pig EST data and related mammals

Stefan Seemann

Division of Genetics and Bioinformatics, IBHV, Copenhagen University, Denmark

Bled, Feb 2007

- Non-coding RNAs
- Expressed Sequence Tags
- Pig EST data
- A generalized pipeline to detect novel ncRNAs
 - Pipeline description
 - Framework and Database
- Application of the pipeline on pig EST data
 - Pipeline results
 - Examples of novel ncRNA candidates in pig

Outline	Background	A generalized pipeline to detect novel ncRNAs	Application of the pipeline on pig EST data	Discussion

Outline

Background

- Non-coding RNAs
- Expressed Sequence Tags
- Pig EST data
- A generalized pipeline to detect novel ncRNAs
 - Pipeline description
 - Framework and Database
- Application of the pipeline on pig EST data
 Pipeline results
 - Examples of novel ncRNA candidates in pig

4 Discussion

Non-coding RNAs

Non-coding RNAs (ncRNAs) are transcripts that

- are not translated into proteins
- perform several important regulatory functions
 - \Rightarrow in the geneexpression
 - \Rightarrow in the subcellular distribution of RNAs and proteins
 - \Rightarrow as modulators of the protein functions

In contrast to protein coding genes ncRNAs do not have common primary sequence features.

 \Rightarrow Other methods are necessary!

Expressed Sequence Tags

Expressed Sequence Tags (ESTs) are

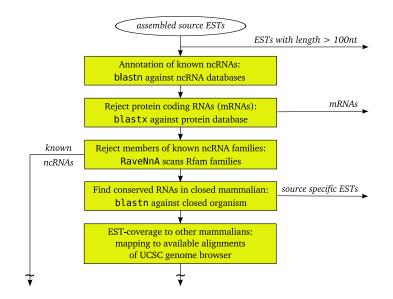
- short subsequences (500 to 800 nt) of transcripted RNA
- single-stranded
- sequencing results of cDNA library
- poly-A tails of transcribed RNAs are used to initiate cDNA creation
- relatively inaccurate (around 2% error)
- indicate gene expression patterns

Polyadenylated ncRNAs

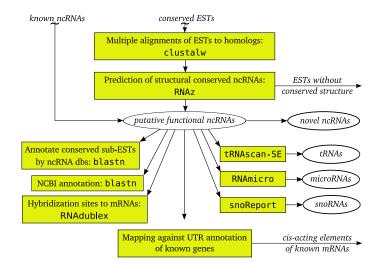
- GO term GO:0043629 verified in yeast
- hybridization signals of ncRNA targets in microarray surveys, which have been used oligo(dT) oligonucleotides to amplify cDNA probes

Pig EST data

- approximately 1.1 Mio pig ESTs
 - \Rightarrow 636.516 from Sino-Danish Pig Genome Project
 - \Rightarrow 385.375 from GenBank
- automatic sequence assembly using the Distiller package resulted in 121.800 assembled ESTs
 - \Rightarrow 48.629 contigs
 - \Rightarrow 73.171 singletons


Outline

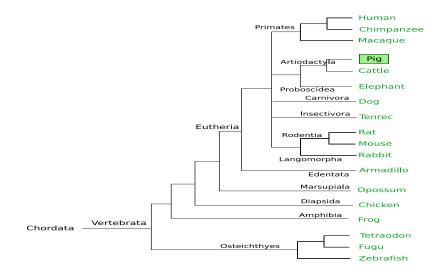
Background


- Non-coding RNAs
- Expressed Sequence Tags
- Pig EST data
- A generalized pipeline to detect novel ncRNAs
 - Pipeline description
 - Framework and Database
 - 3 Application of the pipeline on pig EST data
 - Pipeline results
 - Examples of novel ncRNA candidates in pig

4 Discussion

Detection pipeline (part 1)

Detection pipeline (part 2)



Several parameter settings

- blastn with EST specific parameters ¹ (advanced): -r 1 -q -1 -G 1 -E 2 -W 9 -F "m D;V" -U -e 1e-20 -b 100 -v 1000
- filtering of blastn results: the best (lowest evalue) of non-overlapping blast hits with length>100nt and identity>75%
- UCSC over.chain files for pairwise alignments, filtering 80% coverage
- UCSC maf file for multiple alignments, filtering 60% coverage

¹I.Korf, M.Yandell, J.Bedell. BLAST. *o'reilly*, p.137, 2003

Pig genome and related mammals

RNAz 1.0pre²

- detection of evolutionary conserved (SCI) and thermodynamically stable (z-score) RNA sec.struct.
- input are multiple sequence alignments
- usage of a support vector machine (SVM), trained by well known ncRNAs, as classificator (p-value)
- distinguish between conserved structural RNA (ncRNA) and not conserved structural RNA

²Stefan Washietl, University Vienna

Framework EST2ncRNA and Database

The pipeline is available as reusable framework called EST2ncRNA:

- object oriented Perl version 5.8.5
- 10 modules controlled by executable est2ncrna.pl
- http://www.bioinf.uni-leipzig.de/ ~seemann/EST2ncRNA/EST2ncRNA.tar.gz

The data is stored and maintained by a RDBMS:

- MySQL database server version 4.1.12
- 15 tables

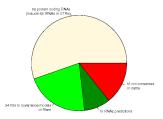
Integration is planned in the distiller database of KVL PigEST resource³.

³http://pigest.kvl.dk/server/index.html

Outline Background A generalized pipeline to detect novel ncRNAs A

Application of the pipeline on pig EST data Discussion

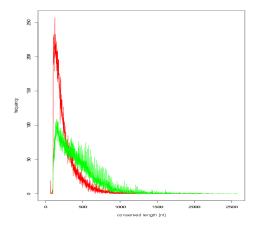
Outline


Background

- Non-coding RNAs
- Expressed Sequence Tags
- Pig EST data
- A generalized pipeline to detect novel ncRNAs
 - Pipeline description
 - Framework and Database
- Application of the pipeline on pig EST data
 - Pipeline results
 - Examples of novel ncRNA candidates in pig

4 Discussion

Pipeline results


- 18.000 protein coding genes
- 177 members of known ncRNA families
 - \Rightarrow 111 tRNAs are found by RaveNnA
 - \Rightarrow tRNAs are almost completely verified by tRNAscan_SE
- 112 ESTs annotated as ncRNAs by sequence similarity to RNAdb, Rfam, miRBase, fantom_nc ⇒ 62 cis-regulated mRNAs (42 times tRNA in UTR)
 - \Rightarrow 50 ncRNAs (14 miRNAs, 19 tRNAs, 2 snoRNAs)

Outline Background A generalized pipeline to detect novel ncRNAs

Application of the pipeline on pig EST data Discussion

Pig to Cattle alignment

Distribution of alignment lengths of pig ESTs to cattle. Blastn results applied with EST specific parameters (green

curve) and with standard parameters (red) are presented.

Orthologous pig sequences

30.926 pig ESTs are conserved at least in cattle (around 4.000 ones only in cattle) and 71.885 ESTs are pig specific.

Pig EST-coverage generated by UCSC pairwise alignments				
aligned organism	conserved EST subsequences			
cow (bosTau2)	37.123			
human (hg17)	32.437			
mouse (mm7)	24.540			

Pig EST-coverage generated by UCSC multiple alignments					
aligned organism	cons EST subseq	aligned organism	cons EST subseq		
human (hg17)	9.796	tenrec (echTel1)	7.189		
chimp (panTro1)	9.574	armadillo (dasNov1)	7.178		
dog (canFam2)	9.531	opossum (monDom2)	6.815		
macaque (rheMac2)	9.504	chicken (galGal2)	3.884		
mouse (mm7)	8.972	frog (xenTro1)	3.251		
rat (rn3)	8.819	zebrafish(danRer3)	3.043		
elephant (loxAfr1)	7.679	fugu (fr1)	3.000		
rabbit (oryCun1)	7.668	tetraodon (tetNig1)	2.917		

1.136 high confidence ncRNA candidates

- the high confidence novel ncRNAs consist of 802 contigs and 334 singletons
- 61% of all putative ncRNAs are conserved in cow, human and mouse
- mean length is 143 nts, std dev is 56 nts
- all candidates are also identified by CONC

Putative ncRNAs predicted by RNAz						
р	Z	EST-cov.	Contigs	Singletons	Loci	
< 0.50	_	—	41.758	68.590	-	
> 0.50	—	-	6.871	4.581	15.534	
> 0.90	—	-	3.956	2.229	7.465	
> 0.90	< -3	—	802	334	1.217	
> 0.90	< -3	> 80%	19	17	36	

Further annotation of ncRNA candidates

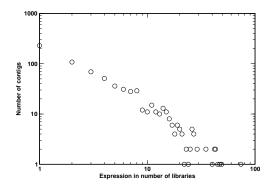
- 39 high confident microRNAs (35 contigs, 4 singletons) predicted by RNAmicro
- 73% of high confidence RNAz predictions are similar to ESTs discovered in other organisms (NCBI dbEST)
- mapping to the first long continuous stretch of the pig genome (SSC17, homologous to human HSA20)
 - 42 protin coding ESTs, 78 non protein coding ESTs
 - 36% of non protein coding ESTs have conserved secondary RNA structure (p>0.5)

False discovery rate (FDR) of SVM based methods [%]:

	<i>p</i> > 0.5	<i>p</i> > 0.9
RNAz	18.2	11.8
RNAmicro	4.9	4.4
snoReport	110.8	81.8

Usage of human genome annotation

86% of predicted ncRNAs are human aligned. The high confidence $\ensuremath{\mathtt{RNAz}}$ predictions (p>0.9, z<-3) include


- about 50% of cis-regulated mRNAs
- 15% ncRNAs binding mRNAs (level of significance is 0.01 quantile of shuffled input data)
- 21% ncRNAs covers at least 50% of an existing human structure alignment
- about 800 pig ESTs hold RNA structures which are not predicted before

Conserved secondary structure of novel ncRNA candidate

- Ss1.1-Pig1-116007.5 (166-314, +)
- RNAz p=1, z=-3.06, mid=88.28%
- RNAmicro p=0.91
- 5'-UTR (human CENTG1)

Source distribution of expressed ncRNAs

# tissues	10	15	20	25	30
# ncRNAs with at least 1 read	132	72	37	24	11
# ncRNAs with at least 2 reads	29	8	5	2	1

Outline	Background	A generalized pipeline to detect novel ncRNAs	Application of the pipeline on pig EST data	Discussion

Outline

Background

- Non-coding RNAs
- Expressed Sequence Tags
- Pig EST data
- A generalized pipeline to detect novel ncRNAs
 - Pipeline description
 - Framework and Database
- 3 Application of the pipeline on pig EST data
 - Pipeline results
 - Examples of novel ncRNA candidates in pig

Further work

- prediction of reading direction of structured RNAs by RNAstrand
- novel ncRNA candidates being conserved in special organisms
- structural clustering of ncRNA candidates to identify new families
- analysis of source distribution of expressed ncRNAs \Rightarrow functional roles, interactions with proteins
- quality analysis

Outline Background of generalized pipeline to detect novel ncRNAs Application of the pipeline on pig EST data Discussion

Thank you!!!

My supervisor

- Peter F. Stadler
- Jan Gorodkin