A graph kernel approach to the identification and characterisation of structured non-coding RNAs using multiple sequence alignment information

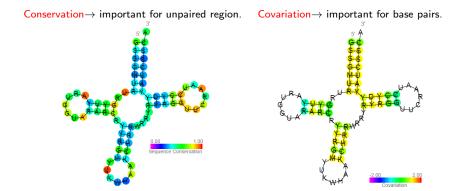
Mariam Alshaikh

Albert Ludwigs University Freiburg, Department of Computer Science

Feb 18th, 2016

Explosion in the discovery of non-identified ncRNAs \rightarrow efficient automated approaches.

Lack of automated classification tools \rightarrow done manually.



SS_cons	<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
cons	RGYCAUAGnnnCCnn-GAGUnn-GRG-nAAGGRCC
conss	311111134440033110111100110131041111113

<<<<	>>>>>
RGYCAUAGnnnCCnn-GAGU	nnGRGRCCGnAAG
3111111344400331101111	11131113100004111

• • • • • • • •

э

In this work

• Consider both conservation and covariation.

What is MAGG

- MAGG is a graph encoder tool.
- MAGG can encode the evolutionary conservation of sequences and structures.

What is MAGG

- MAGG is a graph encoder tool.
- MAGG can encode the evolutionary conservation of sequences and structures.

Why MAGG

- Graph formalism \rightarrow flexible encoding.
- Graphs→ powerful machine learning techniques (graph kernels).

What is MAGG

- MAGG is a graph encoder tool.
- MAGG can encode the evolutionary conservation of sequences and structures.

Why MAGG

- Graph formalism \rightarrow flexible encoding.
- Graphs→ powerful machine learning techniques (graph kernels).

MAGG aim

Simulate experts on identifying interesting alignments for further investigation.

Nerest Neighbourhood subgraph pairwise Distance kernal

EDeN

- EDeN \rightarrow graph kernel tool.
- EDeN \rightarrow Extend the notion of k-mears from string to graphs.
- It counts the fraction of identical pairs of neighborhood sub-graphs.

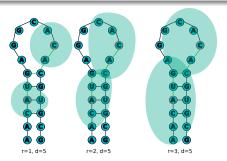


Figure : Pairs of neighbourhood graphs for radius=1,2,3 and distance=5

The alignments are generated using CMfinder.

- CMfinder is an alignment tool, produces sequences that have consensus structure.
- Every alignment contains information about:

```
2014735323/140471-140548
MA40A contig29522/419-511
MA40A contig18176/358-450
NC 010320.1/1363870-1363962
GBANfinal contig08346/28-124
FGTW contig06637/464-556
SRS016989 Baylor scaffold 17397/3825-3770
NZ ACNC01000013.1/60964-61057
#=GC SS cons
#=GC cons
#=GC conss
#=GC col entropy 0
#=GC col_entropy_1
#=GC col entropy 2
#=GC col entropy 3
#=GC cov SS cons
```

			.CCGGUaAG
GCGGUGAAA	GUCCGC.U	GUGGGC.	.UUG.A.U.AGU
GCGGUGAAA	GUCCGC.U	GUGGGC.	.UUGGU.AGU
GCGGUGAAA	GUCCGC.U	GUGGGC.	.UUGGU.AGU
GGGGUGAAA	GUCCCG.A	GUAUGG.	.CCUGG.U.AGC
GAGGUGGAA	GUCCUC.U	AUCGGC.	.CCG.U.C.AGG
	A		GCC
GUGGUGAAA	GUCCAC.U	GUGGGGG.	.GUa.CGC.A.Ucg
:<<<	_>>>,.,		
:<<<	_>>>,.,		
:<<< nnGGUGnAA	>>>,., GUCCnn-n		
:<<< nnGGUGnAA 433333333	>>>,., GUCCnn-n 3333340200000		
:<<< nnGGUGnAA 433333333	>>>,., GUCCnn-n 3333340200000		.<<
:<<< nnGGUGnAA 433333333 120000100	>>>,., GUCCnn-n 3333340200000 0000211100000		.<<
:<<< nnGGUGnAA 43333333 120000100 418979886		nYRnRn- 00000003333330 00000001112110 	.<<
:<<< nnGGUGnAA 433333333 120000100 418979886 945219548	>>>,., GUCCnn-n 3333340200000 0000211100000 		.<<

(日) (同) (三) (三)

- The alignments are generated using CMfinder.
- Information contained in alignment files:
 - Secondary structure prediction.

2014735323/140471-140548 MA40A_contig29522/419-511 MA40A_contig18176/358-450 NC_010320.1/1363870-1363962 GBANfinal_contig08346/28-124 FGTW_contig06637/464-556 SRS016989_Baylor_scaffold_17397/3825-3770 NZ_ACCO1000013.1/60964-61057	CUGGGC. CCGGUAAG GCGGUGAAAGUCCGC.UGUGGGC.UUG.A.U.AGU GCGGUGAAAGUCCGC.UGUGGGC.UUGG.U.AGU GCGGUGAAAGUCCGC.AGUGGGC.CC.UGG.U.AGC GAGGUGAAAGUCCCC.AAUCGGC.CC.UGG.U.AGC GAGGUGAAGUCCUC.UAUCGGC.CC.G.U.C.AGG
#=GC SS cons	:<<< >>>,.,
#=GC cons	nnGGUGnAAGUCCnn-nnYRnRnnYnnn-Y-AnY
#=GC conss	4333333333333340200000000000333333003300
#=GC col_entropy_0	1200001000002111000000000001112110011101110100110001
<pre>#=GC col_entropy_0 #=GC col_entropy_1</pre>	1200001000002111000000000001112110011101110100110001
<pre>#=GC col_entropy_1 #=GC col_entropy_2</pre>	12000010000021110000000000111211001110110
#=GC col_entropy_1	

- The alignments are generated using CMfinder.
- Information contained in alignment files:
 - Secondary structure prediction.
 - Nucleotides conservation.

······································	
2014735323/140471-140548	CUGGGCCCGGUaAG
MA40A contig29522/419-511	GCGGUGAAAGUCCGC.UGUGGGCUUG.A.U.AGU
MA40A contig18176/358-450	GCGGUGAAAGUCCGC.UGUGGGCUUGGU.AGU
NC 010320.1/1363870-1363962	GCGGUGAAAGUCCGC.UGUGGGCUUGGU.AGU
GBANfinal contig08346/28-124	GGGGUGAAAGUCCCG.AGUAUGGCCUGG.U.AGC
FGTW contig06637/464-556	GAGGUGGAAGUCCUC.UAUCGGCCCG.U.C.AGG
SRS016989 Baylor scaffold 17397/3825-3770	AGC
NZ ACNC01000013.1/60964-61057	GUGGUGAAAGUCCAC.UGUGGGGGUa.CGC.A.Ucg
#=GC SS_cons	:<<<>>>>,.,
#=GC cons	nnGGUGnAAGUCCnn-nnYRnRnnYnnn-Y-AnY
#=GC conss	4333333333333340200000000000333333003300
#=GC col_entropy_0	1200001000002111000000000001112110011101110100110001
#=GC col entropy 1	
#=GC col entropy 2	4189798868889150700000000006780451197009294157061263
#=GC col entropy 3	945219548911148669999999999997615051191096011570733340
#=GC cov SS cons	.222

- The alignments are generated using CMfinder.
- Information contained in alignment files:
 - Secondary structure prediction.
 - 2 Nucleotides conservation.
 - Strength of conservation.

CUGGGCCCGGUaAG
GCGGUGAAAGUCCGC.UGUGGGCUUG.A.U.AGU
GCGGUGAAAGUCCGC.UGUGGGCUUGGU.AGU
GCGGUGAAAGUCCGC.UGUGGGCUUGGU.AGU
GGGGUGAAAGUCCCG.AGUAUGGCCUGG.U.AGC
GAGGUGGAAGUCCUC.UAUCGGCCCG.U.C.AGG
GGC
GUGGUGAAAGUCCAC.UGUGGGGGGUa.CGC.A.Ucg
:<<<
nnGGUGnAAGUCCnn-nnYRnRnnYnnn-Y-AnY
4333333333333402000000000003333330033003
1200001000002111000000000001112110011101110100110001
4189798868889150700000000006780451197009294157061263
945219548911148669999999999997615051191096011570733340
.222

- The alignments are generated using CMfinder.
- Information contained in alignment files:
 - Secondary structure prediction.
 - Nucleotides conservation.
 - Strength of conservation.
 - Entropy of the nucleotides.

2014735323/140471-140548	CUGGGCCCGGUaAG
MA40A_contig29522/419-511	GCGGUGAAAGUCCGC.UGUGGGCUUG.A.U.AGU
MA40A_contig18176/358-450	GCGGUGAAAGUCCGC.UGUGGGCUUGGU.AGU
NC 010320.1/1363870-1363962	GCGGUGAAAGUCCGC.UGUGGGCUUGGU.AGU
GBANfinal contig08346/28-124	GGGGUGAAAGUCCCG.AGUAUGGCCUGG.U.AGC
FGTW contig06637/464-556	GAGGUGGAAGUCCUC.UAUCGGCCCG.U.C.AGG
SRS016989_Baylor_scaffold_17397/3825-3770	AGC
NZ ACNC01000013.1/60964-61057	GUGGUGAAAGUCCAC.UGUGGGGGGUa.CGC.A.Ucg
#=GC SS_cons	:<<<>>>>,.,
#=GC cons	nnGGUGnAAGUCCnn-nnYRnRnnYnnn-Y-AnY
#=GC conss	4333333333333340200000000003333330033003
#=GC col_entropy_0	120000100000211100000000000111211001110110
#=GC col entropy 1	
#=GC col entropy 2	41897988688891507000000000006780451197009294157061263
#=GC col entropy 3	945219548911148669999999999997615051191096011570733340
#=GC cov_SS_cons	.222

- The alignments are generated using CMfinder.
- Information contained in alignment files:
 - Secondary structure prediction.
 - Incleotides conservation.
 - Strength of conservation.
 - Intropy of the nucleotides.
 - Covariation of the secondary structure.

2014735323/140471-140548	CUGGGCCCGGUaAG
MA40A_contig29522/419-511	GCGGUGAAAGUCCGC.UGUGGGCUUG.A.U.AGU
MA40A_contig18176/358-450	GCGGUGAAAGUCCGC.UGUGGGCUUGGU.AGU
NC_010320.1/1363870-1363962	GCGGUGAAAGUCCGC.UGUGGGCUUGGU.AGU
GBANfinal_contig08346/28-124	GGGGUGAAAGUCCCG.AGUAUGGCCUGG.U.AGC
FGTW_contig06637/464-556	GAGGUGGAAGUCCUC.UAUCGGCCCG.U.C.AGG
SRS016989_Baylor_scaffold_17397/3825-3770	G
NZ_ACNC01000013.1/60964-61057	GUGGUGAAAGUCCAC.UGUGGGGGGUa.CGC.A.Ucg
#=GC SS_cons	:<<<
#=GC cons	nnGGUGnAAGUCCnn-nnYRnRnnYnnn-Y-AnY
#=GC conss	433333333333340200000000003333330033003440203330000
#=GC col_entropy_0	1200001000002111000000000001112110011101110100110001
#=GC col_entropy_1	
#=GC col_entropy_2	41897988688891507000000000006780451197009294157061263
#=GC col entropy 3	945219548911148669999999999997615051191096011570733340
#=GC cov SS cons	.222

- MAGG produces two different graph representations.
 - **1** Node based graphs \mathcal{N} .
 - 2 Summary based graphs \mathscr{S} .
- Each representation can encode the information in:
 - One node: *U*.
 - 2 List of nodes: \mathscr{L} .

Node based graphs

- 1) $\mathcal{N}_{\mathcal{U}}$ encodes the information in one node.
- 2 $\mathcal{N}_{\mathscr{L}}$ encodes the information in set of nodes forming a list.

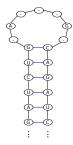
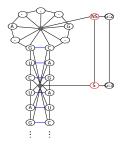



Figure : $\mathcal{N}_{\mathscr{U}}$: Conservation information encoded in single nodes.

Figure : $\mathcal{N}_{\mathscr{L}}$: Conservation and covariation information in multiple nodes forming a list.

Summary based graphs

\$\mathcal{S}_U\$ same as \$\mathcal{N}_U\$ but summary information about the structure is encoded.
 \$\mathcal{S}_{\mathcal{L}}\$ same as \$\mathcal{N}_{\mathcal{L}}\$ but more summary information about the structure is encoded.

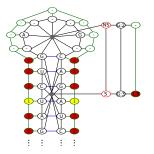
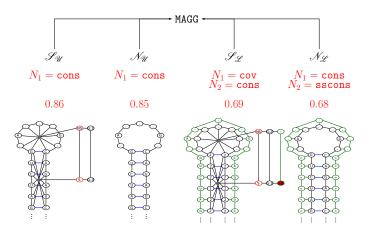


Figure : $\mathscr{S}_{\mathscr{U}}$: Conservation


Figure : $\mathscr{S}_{\mathscr{L}}$: Conservation and covariation

• This extra information can be the Avg, Max, Min, of occurrence of a specific nucleotide or the conservation of the alignment information.

- The motif sequences are from bacteria, archaea [Weinberg 2010].
- Z.Weinberg has manually annotated the alignments in functional and non-functional.
- They are binary classified.

Data	Num. files	Num. classes	Avg seqs num.	Avg. seq. length
Positive	308	2 classes	70 seqs	150 nucleotides
Negative	16220	10 classes	70 seqs	130 nucleotides

- The experiment data sets were balanced.
 - ◊ Same number of files in pos and neg.
 - ◊ Testing each pos class against the 10 neg classes.
 - In total we have 20 experiments.
- The Receiver Operator Characteristic ROC is the performance measurement.
 - ◊ ROC computes the true positive rate against the false positive rate.
- The final ROC score is averaged over the different experiments.

Feb 18th, 2016 17 / 21

3

(日) (周) (三) (三)

• MAGG can identify interesting ncRNAs up to ROC 86%.

Take home message

The best graph representation is

Summary based S.

2 Labelled with the conservation information.

- The tool can be used as:
 - \rightarrow A powerful pre-filtering method for large amounts of alignments.

- Integrating MAGG into iPython environment.
- Integrate automated alignment of input sequences into MAGG.
- Encoding finer structural information as hairpins, bulges, and loops to improve the classification.

э

-

Image: A matrix of the second seco

Prof.Dr. Rolf Backofen Dr. Fabrizio Costa

Dr.Zasha Weinberg

Thank you for your attention