The Christmas Tree Dilemma

Sarah Berkemer

Bioinformatics Leipzig

Winterseminar 2016, Bled

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日= のへで

Introduction

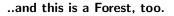
This is a Tree..

This is a Tree..

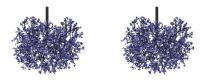
This is a Tree..

.. and this is a Forest.

This is a Forest..



This is a Forest..



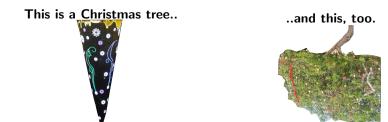
..and this ..

...and this, too.

.. and this is a Forest, too.

Sarah Berkemer (Bioinformatics Leipzig)

This are christmas trees...



This is a Christmas forest..

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

This is a Christmas forest..

..and this, too.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

These are Christmas ornaments..

These are Christmas ornaments..

..and this, too.

These are Christmas ornaments..

..and this, too.

And this..

These are Christmas ornaments..

And this..

..and this, too.

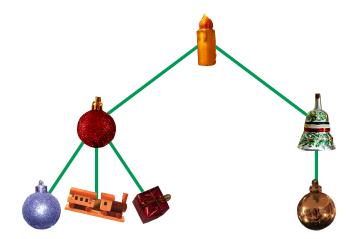
..and this, too.

Basics

Assume that

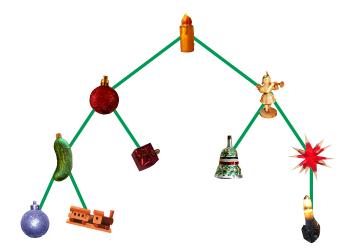
- christmas tree = tree
- christmas forest = forest
- christmas ornament = label

Our Christmas Tree



・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The Neighbours' Tree



Higher, better, nicer, stronger..

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

?

Definition

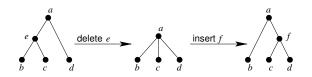
A mapping between two ordered trees (forests) T_1 and T_2 is a binary relation on pairs of vertices (x, y) and (x', y') with $x, x' \in V(T_1), y, y' \in V(T_2)$ such that the following conditions hold:

- one-to-one condition: $x = x' \Leftrightarrow y = y'$
- ancestor condition: x ancestor of $x' \Leftrightarrow y$ ancestor of y'
- sibling condition: x left sibling of $x' \Leftrightarrow y$ left sibling of y'



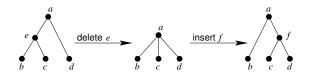
Operations

- relabeling
- deletion
- insertion

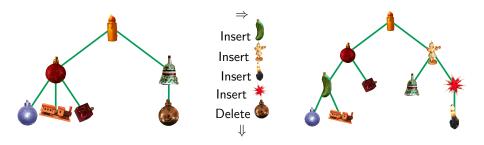


Operations

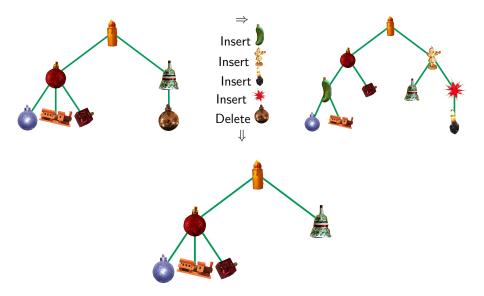
- relabeling
- deletion
- insertion



Aim: Minimize number of operations! \Rightarrow can be done with a DP algorithm.



◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

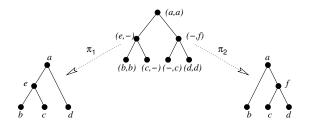


Definition

A mapping of labels on forests F_1 and F_2 based on $(\mathcal{A} \cup \{-\}) \times (\mathcal{A} \cup \{-\})$ and restrictions $\pi_1(G)$ and $\pi_2(G)$ by considering either the first or the second coordinate, with G being the resulting alignment forest.

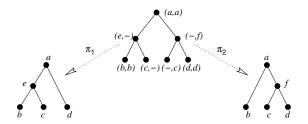
Definition

A mapping of labels on forests F_1 and F_2 based on $(\mathcal{A} \cup \{-\}) \times (\mathcal{A} \cup \{-\})$ and restrictions $\pi_1(G)$ and $\pi_2(G)$ by considering either the first or the second coordinate, with G being the resulting alignment forest.

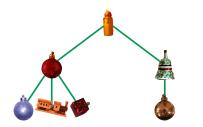


Definition

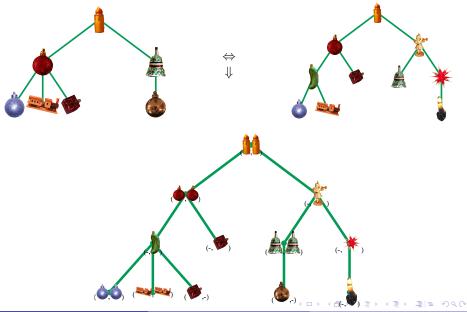
A mapping of labels on forests F_1 and F_2 based on $(\mathcal{A} \cup \{-\}) \times (\mathcal{A} \cup \{-\})$ and restrictions $\pi_1(G)$ and $\pi_2(G)$ by considering either the first or the second coordinate, with G being the resulting alignment forest.



The cost of the alignment is the sum of the cost of label pairs. \Rightarrow can be done with a DP algorithm.



 $\Leftrightarrow \\ \Downarrow$



Definition

Context-free grammars with production rules of the form $V \rightarrow \alpha$, where V is a non-terminal and α is a string of terminals and/or non-terminals.

Definition

Context-free grammars with production rules of the form $V \rightarrow \alpha$, where V is a non-terminal and α is a string of terminals and/or non-terminals.

The Formula

grammar + scoring algebra + index structure = DP over arbitrary data structures

Definition

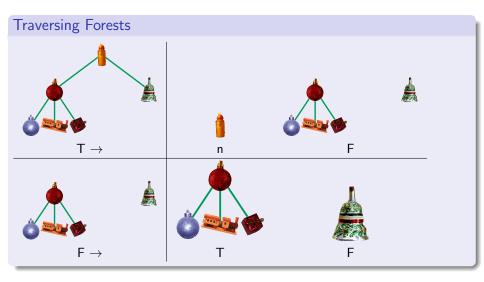
Context-free grammars with production rules of the form $V \rightarrow \alpha$, where V is a non-terminal and α is a string of terminals and/or non-terminals.

The Formula

grammar + scoring algebra + index structure = DP over arbitrary data structures

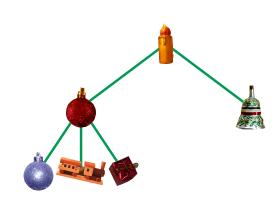
The Task

- Ind a grammar describing your problem
- e find a scoring algebra
- find an index structure and iteration rules for your data structure (if not done yet)



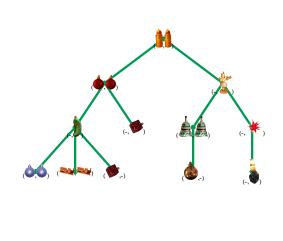
Tree Editing $\begin{pmatrix} S \\ S \end{pmatrix} \rightarrow \begin{pmatrix} F \\ F \end{pmatrix}$ [start] $\begin{pmatrix} F \\ F \end{pmatrix} \rightarrow \begin{pmatrix} \epsilon \\ \epsilon \end{pmatrix}$ [end] $\begin{pmatrix} F \\ F \end{pmatrix} \to \begin{pmatrix} F \\ F \end{pmatrix} \circ \begin{pmatrix} T \\ T \end{pmatrix}$ [iter] $\begin{pmatrix} T \\ T \end{pmatrix} \rightarrow \begin{pmatrix} F \\ F \end{pmatrix} \begin{pmatrix} x \\ x \end{pmatrix}$ [align] $\begin{pmatrix} T \\ T \end{pmatrix} \rightarrow \begin{pmatrix} F \\ F \end{pmatrix} \begin{pmatrix} - \\ x \end{pmatrix}$ [indel] $\begin{pmatrix} T \\ T \end{pmatrix} \rightarrow \begin{pmatrix} F \\ F \end{pmatrix} \begin{pmatrix} x \\ - \end{pmatrix}$ [delin] (1)

The index structure is based on **postorder** of trees.



Tree Alignment $\begin{pmatrix} S \\ S \end{pmatrix} \rightarrow \begin{pmatrix} F \\ F \end{pmatrix}$ [start] [end] $\begin{pmatrix} F \\ F \end{pmatrix} \rightarrow \begin{pmatrix} \epsilon \\ \epsilon \end{pmatrix}$ $\begin{pmatrix} F \\ F \end{pmatrix} \to \begin{pmatrix} T \\ T \end{pmatrix} \circ \begin{pmatrix} F \\ F \end{pmatrix}$ [iter] $\begin{pmatrix} T \\ T \end{pmatrix} \rightarrow \begin{pmatrix} n \\ n \end{pmatrix} \begin{pmatrix} F \\ F \end{pmatrix}$ [align] $\binom{T}{T} \to \binom{-}{n} \binom{F}{F}$ [indel] $\begin{pmatrix} T \\ T \end{pmatrix} \rightarrow \begin{pmatrix} n \\ - \end{pmatrix} \begin{pmatrix} F \\ F \end{pmatrix}$ [delin] (1)

The index structure is based on **preorder** of trees.



Why?

- DP algorithms on trees:
 - small parsimony problem
 - phylogenetic targeting
 - tree editing
 - tree alignment (with affine gap costs)
- automatized DP on various data structures (in future)
- inside/outside: DP on probabilities

Challenge Convert this title:

Why tree alignment doesn't have to suck

Challenge

Convert this title:

Why tree alignment doesn't have to suck

into something:

- referring to trees or forests
- but no other plants
- funny
- but not too funny ;)

The best submission will receive a christmas cucumber!

□ > < E > < E > E = 9900

Acknowledgements

Thanks to ...

- Peter Stadler
- Christian Höner zu Siederdissen

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

Acknowledgements

Thanks to ...

- Peter Stadler
- Christian Höner zu Siederdissen

..and..

- Sophia for pictures,
- Rojin for planting trees,
- Marc for the story of 'Weihnachtsgurke'

Acknowledgements

Thanks to ...

- Peter Stadler
- Christian Höner zu Siederdissen

..and..

- Sophia for pictures,
- Rojin for planting trees,
- Marc for the story of 'Weihnachtsgurke'

Thank you for your attention!

Proof for christmas cucumber!

