The Christmas Tree Dilemma

Sarah Berkemer

Bioinformatics Leipzig

Winterseminar 2016, Bled

Introduction

This is a Tree..

Definitions

This is a Tree..

Definitions

This is a Tree..

..and this is a Forest.

Definitions

This is a Forest..
..and this is a Forest, too.

Definitions

This is a Forest..
..and this is a Forest, too.

..and this..

..and this, too.

Introduction II

This are christmas trees...

Definitions

This is a Christmas tree..

Definitions

This is a Christmas tree..

..and this, too.

Definitions

This is a Christmas tree..

..and this, too.

This is a Christmas forest..

Definitions

This is a Christmas tree..

..and this, too.

This is a Christmas forest..
..and this, too.

Introduction III

These are Christmas ornaments..

Introduction III

These are Christmas ornaments..

Introduction III

These are Christmas ornaments..

..and this, too.

And this..

Introduction III

These are Christmas ornaments..

And this..

..and this, too.

Basics

Assume that

- christmas tree $=$ tree
- christmas forest $=$ forest
- christmas ornament $=$ label

Our Christmas Tree

The Neighbours' Tree

Higher, better, nicer, stronger..

Tree Editing

Definition

A mapping between two ordered trees (forests) T_{1} and T_{2} is a binary relation on pairs of vertices (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ with $x, x^{\prime} \in V\left(T_{1}\right), y, y^{\prime} \in V\left(T_{2}\right)$ such that the following conditions hold:

- one-to-one condition: $x=x^{\prime} \Leftrightarrow y=y^{\prime}$
- ancestor condition: x ancestor of $x^{\prime} \Leftrightarrow y$ ancestor of y^{\prime}
- sibling condition: x left sibling of $x^{\prime} \Leftrightarrow y$ left sibling of y^{\prime}

Tree Editing

Operations

- relabeling
- deletion
- insertion

Tree Editing

Operations

- relabeling
- deletion
- insertion

Aim: Minimize number of operations!
\Rightarrow can be done with a DP algorithm.

Tree Editing

Tree Editing

Tree Alignment

Definition

A mapping of labels on forests F_{1} and F_{2} based on $(\mathcal{A} \cup\{-\}) \times(\mathcal{A} \cup\{-\})$ and restrictions $\pi_{1}(G)$ and $\pi_{2}(G)$ by considering either the first or the second coordinate, with G being the resulting alignment forest.

Tree Alignment

Definition

A mapping of labels on forests F_{1} and F_{2} based on $(\mathcal{A} \cup\{-\}) \times(\mathcal{A} \cup\{-\})$ and restrictions $\pi_{1}(G)$ and $\pi_{2}(G)$ by considering either the first or the second coordinate, with G being the resulting alignment forest.

Tree Alignment

Definition

A mapping of labels on forests F_{1} and F_{2} based on $(\mathcal{A} \cup\{-\}) \times(\mathcal{A} \cup\{-\})$ and restrictions $\pi_{1}(G)$ and $\pi_{2}(G)$ by considering either the first or the second coordinate, with G being the resulting alignment forest.

The cost of the alignment is the sum of the cost of label pairs. \Rightarrow can be done with a DP algorithm.

Tree Alignment

Tree Alignment

Grammars

Definition

Context-free grammars with production rules of the form $V \rightarrow \alpha$, where V is a non-terminal and α is a string of terminals and/or non-terminals.

Grammars

Definition

Context-free grammars with production rules of the form $V \rightarrow \alpha$, where V is a non-terminal and α is a string of terminals and/or non-terminals.

The Formula

grammar + scoring algebra + index structure $=$ DP over arbitrary data structures

Grammars

Definition

Context-free grammars with production rules of the form $V \rightarrow \alpha$, where V is a non-terminal and α is a string of terminals and/or non-terminals.

The Formula

grammar + scoring algebra + index structure $=$ DP over arbitrary data structures

The Task

(1) find a grammar describing your problem
(2) find a scoring algebra
(0) find an index structure and iteration rules for your data structure (if not done yet)

Grammars

Traversing Forests

Grammars

Tree Editing

	[start]
$\left.\begin{array}{l}F \\ F\end{array}\right) \rightarrow\binom{\epsilon}{\epsilon}$	[end]
$\binom{F}{F} \rightarrow\binom{F}{F} \circ$	
$\left.\begin{array}{c}T \\ T\end{array}\right) \rightarrow\binom{F}{F}\binom{x}{\times}$	
$\left.{ }_{T}^{T}\right) \rightarrow\binom{F}{F}\left(\begin{array}{l}\bar{x} \\ \times\end{array}\right.$	
$\stackrel{T}{T}) \rightarrow\binom{F}{F}\binom{x}{-}$	delin]

The index structure is based on postorder of trees.

Grammars

Tree Alignment

$$
\begin{align*}
& \binom{S}{S} \rightarrow\binom{F}{F} \quad[s t a r t] \\
& \binom{F}{F} \rightarrow\binom{\epsilon}{\epsilon} \quad \text { [end] } \\
& \binom{F}{F} \rightarrow\binom{T}{T} \circ\binom{F}{F}[\text { iter] } \\
& \binom{T}{T} \rightarrow\binom{n}{n}\binom{F_{F}^{F}}{F} \quad \text { [align] } \\
& \binom{T}{T} \rightarrow\binom{-}{n}\binom{F}{F} \quad[\text { indel }] \\
& \binom{T}{T} \rightarrow\binom{n}{-}\binom{F}{F} \quad[d e l i n] \tag{1}
\end{align*}
$$

The index structure is based on preorder of trees.

Why?

- DP algorithms on trees:
- small parsimony problem
- phylogenetic targeting
- tree editing
- tree alignment (with affine gap costs)
- automatized DP on various data structures (in future)
- inside/outside: DP on probabilities

Challenge

Convert this title:
Why tree alignment doesn't have to suck

Challenge

Convert this title:

Why tree alignment doesn't have to suck

into something:

- referring to trees or forests
- but no other plants
- funny
- but not too funny ;)

The best submission will receive a christmas cucumber!

Acknowledgements

> Thanks to...
> - Peter Stadler
> - Christian Höner zu Siederdissen

Acknowledgements

Thanks to...

- Peter Stadler
- Christian Höner zu Siederdissen

..and..

- Sophia for pictures,
- Rojin for planting trees,
- Marc for the story of 'Weihnachtsgurke'

Acknowledgements

Thanks to...

- Peter Stadler
- Christian Höner zu Siederdissen

..and..

- Sophia for pictures,
- Rojin for planting trees,
- Marc for the story of 'Weihnachtsgurke'

Thank you for your attention!

Proof for christmas cucumber!

LYRA-FAHRRAD-WERKE, HERMANN KLAASSEN, PRENZLAU
Erftes, älteftes, größtes und leiftungsfähigftes Spezial-Haus für Fahrräder, Sportartikel, Uhren, Goldwaren, Waffen, Spielwaren

Ns. 5046. Chriftbaumfthmud

 Karton mit 12 Stǜk...

Nr. 5047. Chriftbaumfimuck

