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Section 1

Motivation
Differential alternative splicing
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Alternative splicing
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Alternative splicing
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Section 2 Method Overview of the algorithm
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Algorithmic workflow

Core algorithm is based on splice
junction supports per sample
Scanning routine for standard format
(e.g. TCGA)
Pre-calculation procedure for BAM
files (segemehl)
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Pre-calculation procedure for BAM files (segemehl)

Starting with a list of samples
(location of the mapped RNA-seq files)
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Pre-calculation procedure for BAM files (segemehl)

Starting with a list of samples
(location of the mapped RNA-seq files)
Building the union of all split-mapped
reads
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Pre-calculation procedure for BAM files (segemehl)

Starting with a list of samples
(location of the mapped RNA-seq files)
Building the union of all split-mapped
reads
Calling splice junctions
(cluster splice sites)
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Pre-calculation procedure for BAM files (segemehl)

Starting with a list of samples
(location of the mapped RNA-seq files)
Building the union of all split-mapped
reads
Calling splice junctions
(cluster splice sites)
Calculating table of individual sample
supports
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Intersecting with gene annotation

Normal-spliced (co-linear)  junctions

Circular-spliced junctions

In/out going vs. within the gene body

Not restricted to known exon bounderies

12



Matrix reduction

minimum splice junction support value (J)
minimum samples amount (S)

Removing samples not showing (J) in at
least one splice junction
Removing junctions with less than (S)
samples showing (J)
Removing genes not containing at least 2
junctions and (S) samples per condition
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Zero-replacement

Accounting for technical and
biological variance
Sampling junction supports from a
negative binomial distribution
Tracking junctions where more than 50%
of a condition are replaced
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Compositional data approach

Normalizing raw counts to ratios per gene

C1 = [40, 30, 10] C1 = [0.5, 0.375, 0.125]

C2 = [120, 30, 90] C2 = [0.5, 0.125, 0.375]

Simplex as the appropriate sample space:

SD = {[x1, ..., xD ] : xi ≥ 0 for i = 1, ...,D and
D∑
i=1

xi = 1}

Aitchison (1986)
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Compositional data approach

C1 = [0.5, 0.375, 0.125]

C2 = [0.5, 0.125, 0.375]

Ternary Diagram
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Compositional data approach

Aitchison distance

d(xa, xb) =

[
D∑
i=1

(
log (

xai

g(xa)
)− log (

xbi

g(xb)
)

)2
] 1

2

with g(x) =
(∏D

i=1 xi

) 1
D
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Compositional data approach

Central tendency
Let C = (xij , ..., xND) be a set of N compositional
vectors with D components:

cen(C) =

[
g(xi1)∑D
j=1 g(xij )

, ...,
g(xiD)∑D
j=1 g(xij )

]

with g(xij ) =
(∏N

i=1 xij

) 1
N
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Compositional data approach

Abundance change

abc(xi ) = d(cen(Cbase)i , cen(Ccompare)i )

C1 = [0.5, 0.375, 0.125]

C2 = [0.5, 0.125, 0.375]
19



Detection of differential alternative splicing

For all components with |abc| ≥ 1:
Centered log-ratio transformation (clr):

clr(x) =

[
log

x1

g(x)
, ..., log

xD

g(x)

]
with g(x) =

(∏D
i=1 xi

) 1
D

non parametric test statistic
(Wilcoxon rank-sum)

Multiple testing correction
(Benjamini Hochberg)
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Clustering and outlier detection

Finding upper quartil of all genes in regard to
average distance between the centre and each
of the n compositional vectors
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Clustering and outlier detection

Finding upper quartil of all genes in regard to
average distance between the centre and each
of the n compositional vectors
Calculating all

(
n
2

)
pairwise sample

combinations averaged over this set of genes
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Clustering and outlier detection

Finding upper quartil of all genes in regard to
average distance between the centre and each
of the n compositional vectors
Calculating all

(
n
2

)
pairwise sample

combinations averaged over this set of genes
Hierarchical agglomerative clustering
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Section 3

Results
First glimpse at the hidden treasures within the ICGC RNA-seq data
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ICGC data set: Germinal Center B-cell Derived Lymphomas

6 comparisons (4 conditions: GCB, BL, FL, DLBCL)
126 samples (5 GCB, 18 BL, 46 FL, 47 DLBCL)
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Outlier detection

Dendrogram for BL samples
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Outlier detection

Distance distribution for BL samples
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Outlier detection

BL_4166151

DLBCL_4181460

DLBCL_4193638

FL_4199996

Outlier

BL 4166151
Age 74 (median ≈ 10)

DLBCL 4193638
Also an outlier in terms of expression

FL 4199996 and DLBCL 4181460
not conspicuous in terms of
methylation or expression

DLBCL 4176133
DLBCL 4181460
DLBCL 4184094
DLBCL 4188398
DLBCL 4188879
DLBCL 4189035
DLBCL 4193638
DLBCL 4199714

DLBCL 4166706

FL/DLBCL 4120403

FL/DLBCL 4110120
FL/DLBCL 4111337
FL/DLBCL 4113211
FL/DLBCL 4113971

normal BL L FL DLBCL others

Expression correlation
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Subgroup detection

Dendrogram for GCB and BL samples
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Differential Alternative Splicing - a statistical overview

6 comparisons (4 conditions: GCB, BL, FL, DLBCL)
126 samples (5 GCB, 18 BL, 46 FL, 47 DLBCL)
442,738 supported splice junctions
18,700 supported genes (16,208 protein coding, 2,492 lincRNA)
Significant if |abundance change| ≥ 1 and q-value < 0.01
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Differential Alternative Splicing - a statistical overview

6 comparisons (4 conditions: GCB, BL, FL, DLBCL)
126 samples (5 GCB, 18 BL, 46 FL, 47 DLBCL)
442,738 supported splice junctions
18,700 supported genes (16,208 protein coding, 2,492 lincRNA)
Significant if |abundance change| ≥ 1 and q-value < 0.01

GCB-BL GCB-FL GCB-DLBCL BL-FL BL-DLBCL FL-DLBCL
splice junctions

tested 100,315 106,890 107,498 126,667 127,919 138,212
sig. 1,012 1,629 1,499 1,089 610 132
percent 1.01 1.52 1.39 0.86 0.48 0.10

genes

tested 8,229 8,419 8,450 10,304 10,426 11,418
sig. 756 1,077 1,016 738 424 108
percent 9.19 12.79 12.02 7.16 4.07 0.95
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Differential Alternative Splicing - a statistical overview

6 comparisons (4 conditions: GCB, BL, FL, DLBCL)
126 samples (5 GCB, 18 BL, 46 FL, 47 DLBCL)
442,738 supported splice junctions
18,700 supported genes (16,208 protein coding, 2,492 lincRNA)
Significant if |abundance change| ≥ 1 and q-value < 0.01

GCB-BL GCB-FL GCB-DLBCL BL-FL BL-DLBCL FL-DLBCL
splice junctions

tested 100,315 106,890 107,498 126,667 127,919 138,212
sig. 1,012 1,629 1,499 1,089 610 132
percent 1.01 1.52 1.39 0.86 0.48 0.10

genes

tested 8,229 8,419 8,450 10,304 10,426 11,418
sig. 756 1,077 1,016 738 424 108
percent 9.19 12.79 12.02 7.16 4.07 0.95

Randomizing group info ⇒ no significant results
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Lymphoma common genes

Overlap of sig. genes

Network of overlap
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Lymphoma common genes

High protein expression in lymph nodes and other immune related
tissues

500 bases hg19
17,320,500 17,321,000 17,321,500 17,322,000

MYO9B
MYO9B
MYO9B

con.expr

7.21233 _

0.00233333 _

BL.expr

3.94875 _

0.0043125 _

FL.expr

5.00253 _

0.00473333 _

MYO9B
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Lymphoma common genes

Plays a role in the invasiveness of cancer cells, and the formation of
metastases

2 kb hg19
70,266,000 70,266,500 70,267,000 70,267,500 70,268,000 70,268,500 70,269,000 70,269,500 70,270,000

CTTN
CTTN
CTTN

CTTN

con.expr

0.786333 _

0.00233333 _

BL.expr

0.707438 _

0.000375 _

CTTN
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Enriched pathways (GCB vs BL)

B-cell receptor Apoptosis
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Apoptosis pathway (GCB vs. BL)

2 kb hg19
202,145,000 202,150,000

CASP8
CASP8
CASP8
CASP8
CASP8
CASP8
CASP8
CASP8

con.expr

2.48733 _

0.000333333 _

BL.expr

1.48063 _

0.0009375 _

CASP8

500 bases hg19
44,166,700 44,166,800 44,166,900 44,167,000 44,167,100 44,167,200 44,167,300 44,167,400 44,167,500 44,167,600 44,167,700 44,167,800

IRAK4
IRAK4
IRAK4
IRAK4

con.expr

1.954 _

0.00233333 _

BL.expr

1.12556 _

0.00425 _

IRAK4
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Validation by qPCR

PRDM10
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Validation by qPCR

PRDM10
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Connection between diff. alt. splicing and diff. expression

0

300

600

900
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legend

not differentially expressed

differentially expressed

Intersection with sig. genes based on DESeq
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Connection between diff. alt. splicing and RNA editing

Calling sig. differentially RNA editing sites between conditions (with
Methylene)
Intersected with both splice sites of all sig. diff. alt. splice junctions

GCB vs. BL

GCB vs. FL

Txn Factor ChIP

500 bases hg19
17,690,400 17,690,500 17,690,600 17,690,700 17,690,800 17,690,900 17,691,000 17,691,100 17,691,200 17,691,300 17,691,400 17,691,500 17,691,600 17,691,700

COLGALT1

BL.expr

3.53906 _

0.006125 _

con.expr

2.15367 _

0.00233333 _

FL.expr

4.0762 _

0.00666667 _

RNA editing at position chr19:17,691,052
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Connection between diff. alt. splicing and DMRs

Building 2 x 2 contingency tables of gene counts
in regard to diff. alt. splicing and DMR overlap.
Odds ratios and p-values from Fisher’s exact test:

GCB-BL GCB-FL BL-FL
odds ratio 1.3 1.48 1.84
p-value 0.00075 6.273e-09 1.719e-15
genes yes yes 336 449 400
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Abundance changes
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Abundance change as a measure for biological relevance
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Junctions per gene
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Summary

Simple and robust method

Based only on direct splice evidence

Not restricted to current annotations

Fast core algorithm (3h for 419 samples)

Plausible results
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Thank you for your attention!

Questions?!
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