Differential Alternative Splicing an in silico detection approach

Gero Doose

Bled Presentation

Department of Computer Science and Interdisciplinary Center for Bioinformatics,

University of Leipzig

February 19, 2016

Table of Contents

1 Motivation

2 Method

3 Results

Section 1

Motivation

Differential alternative splicing

Alternative splicing

Alternative splicing

Section 2 Method Overview of the algorithm

Algorithmic workflow

Sample support for junctions

Reduced data structure

Reduced data structure without zeros
$\sqrt{ }$
Compositional data

- Core algorithm is based on splice junction supports per sample
- Scanning routine for standard format (e.g. TCGA)
- Pre-calculation procedure for BAM files (segemehl)

Pre-calculation procedure for BAM files (segemehl)

Pre-calculation procedure for BAM files (segemehl)

Pre-calculation procedure for BAM files (segemehl)

Pre-calculation procedure for BAM files (segemehl)

Intersecting with gene annotation

Matrix reduction

Sample support for junctions

Per gene sample support for junctions

Reduced data structure

Reduced data structure without zeros

Compositional data

- minimum splice junction support value (J)
- minimum samples amount (S)
- Removing samples not showing (J) in at least one splice junction
- Removing junctions with less than (S) samples showing (J)
- Removing genes not containing at least 2 junctions and (S) samples per condition

Zero-replacement

Sample support for junctions

Per gene sample support for junctions

Reduced data structure

Reduced data structure without zeros

Compositional data

- Accounting for technical and biological variance
- Sampling junction supports from a negative binomial distribution
- Tracking junctions where more than 50% of a condition are replaced

Compositional data approach

Sample support for junctions

Per gene sample support for junctions

Reduced data structure

$$
C_{1}=[0.5,0.375,0.125]
$$

$$
C_{2}=[0.5,0.125,0.375]
$$

Reduced data structure without zeros

Compositional data
■ Normalizing raw counts to ratios per gene

$$
\begin{aligned}
& C_{1}=[40,30,10] \\
& C_{2}=[120,30,90]
\end{aligned}
$$

■ Simplex as the appropriate sample space:

$$
\mathcal{S}^{D}=\left\{\left[x_{1}, \ldots, x_{D}\right]: x_{i} \geq 0 \text { for } i=1, \ldots, D \text { and } \sum_{i=1}^{D} x_{i}=1\right\}
$$

Compositional data approach

Sample support for junctions

Per gene sample support for junctions

Reduced data structure

Reduced data structure without zeros

$$
\begin{aligned}
& C_{1}=[0.5,0.375,0.125] \\
& C_{2}=[0.5,0.125,0.375]
\end{aligned}
$$

Ternary Diagram

Compositional data approach

Sample support for junctions

Per gene sample support for junctions

Reduced data structure

Reduced data structure without zeros

- Aitchison distance

$$
d\left(x_{a}, x_{b}\right)=\left[\sum_{i=1}^{D}\left(\log \left(\frac{x_{a i}}{g\left(x_{a}\right)}\right)-\log \left(\frac{x_{b i}}{g\left(x_{b}\right)}\right)\right)^{2}\right]^{\frac{1}{2}}
$$

$$
\text { with } g(x)=\left(\prod_{i=1}^{D} x_{i}\right)^{\frac{1}{D}}
$$

Compositional data approach

Sample support for junctions

Per gene sample support for junctions

Reduced data structure

Reduced data structure without zeros

Compositional data

- Central tendency

Let $C=\left(x_{i j}, \ldots, x_{N D}\right)$ be a set of N compositional vectors with D components:

$$
\begin{aligned}
& \qquad \operatorname{cen}(C)=\left[\frac{g\left(x_{i 1}\right)}{\sum_{j=1}^{D} g\left(x_{i j}\right)}, \ldots, \frac{g\left(x_{i D}\right)}{\sum_{j=1}^{D} g\left(x_{i j}\right)}\right] \\
& \text { with } g\left(x_{i j}\right)=\left(\prod_{i=1}^{N} x_{i j}\right)^{\frac{1}{N}}
\end{aligned}
$$

Compositional data approach

Sample support for junctions

\downarrow
Per gene sample support for junctions

Reduced data structure without zeros

- Abundance change

$$
a b c\left(x_{i}\right)=d\left(\operatorname{cen}\left(C_{\text {base }}\right)_{i}, \operatorname{cen}\left(C_{\text {compare }}\right)_{i}\right)
$$

$$
\begin{aligned}
& C_{1}=[0.5,0.375,0.125] \\
& C_{2}=[0.5,0.125,0.375]
\end{aligned}
$$

Detection of differential alternative splicing

Sample support for junctions

Per gene sample support for junctions

Reduced data structure

Reduced data structure without zeros

Compositional data

- For all components with $|a b c| \geq 1$:
- Centered log-ratio transformation (clr):

$$
\begin{aligned}
& \qquad \operatorname{clr}(x)=\left[\log \frac{x_{1}}{g(x)}, \ldots, \log \frac{x_{D}}{g(x)}\right] \\
& \text { with } g(x)=\left(\prod_{i=1}^{D} x_{i}\right)^{\frac{1}{D}} \\
& \text { non parametric test statistic } \\
& \text { (Wilcoxon rank-sum) }
\end{aligned}
$$

- Multiple testing correction (Benjamini Hochberg)

Clustering and outlier detection

Sample support for junctions

- Finding upper quartil of all genes in regard to average distance between the centre and each of the n compositional vectors

Clustering and outlier detection

Sample support for junctions

Per gene sample support for junctions

Reduced data structure without zeros

Compositional data

- Finding upper quartil of all genes in regard to average distance between the centre and each of the n compositional vectors
- Calculating all $\binom{n}{2}$ pairwise sample combinations averaged over this set of genes

Clustering and outlier detection

Sample support for junctions

Per gene sample support for junctions

Reduced data structure without zeros

Compositional data

- Finding upper quartil of all genes in regard to average distance between the centre and each of the n compositional vectors
- Calculating all $\binom{n}{2}$ pairwise sample combinations averaged over this set of genes
- Hierarchical agglomerative clustering

Section 3

Results

First glimpse at the hidden treasures within the ICGC RNA-seq data

ICGC data set: Germinal Center B-cell Derived Lymphomas

- 6 comparisons (4 conditions: GCB, BL, FL, DLBCL)
- 126 samples ($5 \mathrm{GCB}, 18 \mathrm{BL}, 46 \mathrm{FL}, 47 \mathrm{DLBCL}$)

Outlier detection

Outlier detection

Distance distribution for BL samples

Outlier detection

Outlier

- BL 4166151
- Age 74 (median ≈ 10)

■ DLBCL 4193638

- Also an outlier in terms of expression

■ FL 4199996 and DLBCL 4181460

- not conspicuous in terms of methylation or expression

Expression correlation

Subgroup detection

Differential Alternative Splicing - a statistical overview

- 6 comparisons (4 conditions: GCB, BL, FL, DLBCL)
- 126 samples ($5 \mathrm{GCB}, 18 \mathrm{BL}, 46 \mathrm{FL}, 47 \mathrm{DLBCL}$)
- 442,738 supported splice junctions
- 18,700 supported genes (16,208 protein coding, 2,492 lincRNA)
- Significant if |abundance change| ≥ 1 and q-value <0.01

Differential Alternative Splicing - a statistical overview

- 6 comparisons (4 conditions: GCB, BL, FL, DLBCL)
- 126 samples ($5 \mathrm{GCB}, 18 \mathrm{BL}, 46 \mathrm{FL}, 47 \mathrm{DLBCL}$)
- 442,738 supported splice junctions
- 18,700 supported genes (16,208 protein coding, 2,492 lincRNA)
- Significant if |abundance change $\mid \geq 1$ and q-value <0.01

	GCB-BL	GCB-FL	GCB-DLBCL	BL-FL	BL-DLBCL	FL-DLBCL
	splice junctions					
tested	100,315	106,890	107,498	126,667	127,919	138,212
sig.	1,012	1,629	1,499	1,089	610	132
percent	1.01	1.52	1.39	0.86	0.48	0.10
tested	8,229	8,419	8,450	10,304	10,426	11,418
sig.	756	1,077	1,016	738	424	108
percent	9.19	12.79	12.02	7.16	4.07	0.95

Differential Alternative Splicing - a statistical overview

- 6 comparisons (4 conditions: GCB, BL, FL, DLBCL)
- 126 samples ($5 \mathrm{GCB}, 18 \mathrm{BL}, 46 \mathrm{FL}, 47 \mathrm{DLBCL}$)
- 442,738 supported splice junctions
- 18,700 supported genes (16,208 protein coding, 2,492 lincRNA)
- Significant if |abundance change $\mid \geq 1$ and q-value <0.01

	GCB-BL	GCB-FL	GCB-DLBCL	BL-FL	BL-DLBCL	FL-DLBCL
	splice junctions					
tested	100,315	106,890	107,498	126,667	127,919	138,212
sig.	1,012	1,629	1,499	1,089	610	132
percent	1.01	1.52	1.39	0.86	0.48	0.10
tested	8,229	8,419	8,450	10,304	10,426	11,418
sig.	756	1,077	1,016	738	424	108
percent	9.19	12.79	12.02	7.16	4.07	0.95

- Randomizing group info \Rightarrow no significant results

Lymphoma common genes

GCB vs. BL

Overlap of sig. genes

Network of overlap

Lymphoma common genes

- High protein expression in lymph nodes and other immune related tissues

Lymphoma common genes

- Plays a role in the invasiveness of cancer cells, and the formation of metastases

Enriched pathways (GCB vs BL)

Apoptosis pathway (GCB vs. BL)

Validation by qPCR

Validation by qPCR

qPCR Ratio PRDM10 Expression

Connection between diff. alt. splicing and diff. expression

Intersection with sig. genes based on DESeq

Connection between diff. alt. splicing and RNA editing

- Calling sig. differentially RNA editing sites between conditions (with Methylene)
- Intersected with both splice sites of all sig. diff. alt. splice junctions

RNA editing at position chr19:17,691,052

Connection between diff. alt. splicing and DMRs

- Building 2×2 contingency tables of gene counts in regard to diff. alt. splicing and DMR overlap.
- Odds ratios and p-values from Fisher's exact test:

	GCB-BL	GCB-FL	BL-FL
odds ratio	1.3	1.48	1.84
p-value	0.00075	$6.273 \mathrm{e}-09$	$1.719 \mathrm{e}-15$
genes yes yes	336	449	400

Abundance changes

Abundance change as a measure for biological relevance

Junctions per gene

Natural bias towards genes with more junctions

Zero-replacement portion

Tested instances vs. significant instances

Summary

- Simple and robust method
- Based only on direct splice evidence
- Not restricted to current annotations
- Fast core algorithm (3h for 419 samples)
- Plausible results

Thanks to

- Peter F. Stadler
- Steve Hoffmann
- Stephan Bernhart

■ Helene Kretzmer

- Reiner Siebert
- Rabea Wagener

Thank you for your attention!

Questions?!

Thank you for your attention!

Questions?!

Thank you for your attention!

Questions?!

