Tree-Representations of Binary Relations

Marc Hellmuth

Dptm. Mathematics and Computer Science University of Greifswald, Germany

Joint work with Nic Wieseke and Peter F. Stadler

TBI WINTERSEMINAR 14-21. FEB. 2016

Outline

- 1. Motivation
- 2. Tree-Representation of
 - one symmetric relation
 - one non-symmetric relation
 - sets of symmetric relations
 - sets of non-symmetric relations (2-structures, Di-cographs and Symbolic Ultrametrics)

An ordered pair (x, y) of two genes is

- "lca"-orthologs if $lca(x, y) = \bullet = speciation$
- "lca"-paralogs if lca(x, y) = = duplication
- "Ica"-xenologs if $lca(x, y) = \blacktriangle = HGT$ and \blacktriangle "points from" x to y in T

The gene-tree determines three distinct relations

- R_{\bullet} , the "lca"-orthologs (lca(x, y) = \bullet)
- R_{\blacksquare} , the "lca"-paralogs (lca(x, y) = \blacksquare)
- R_{\blacktriangle} , the "lca"-xenologs (lca(x, y) = \blacktriangle , \blacktriangle "points from" x to y in T)

Orthologs can be estimated without inferring a gene- or species trees.

Assume we have *estimated* binary relations R_1, \ldots, R_k s.t.

 $(xy) \in R_i$ iff lca(xy) = i in ordered tree T

Thus, it is important to understand, when those relations R_1, \ldots, R_k can be "represented" in a single tree.

We consider irreflexive relations $(x, x) \notin R$ for all $x \in X$.

If both pairs $(x, y), (y, x) \in R$ we simply write $x - y \in R$

One binary relation

A tree-representation of a Relation *R* over *X* is a tree with leaf set *X* and event-labels $0(\bullet)$ and $1(\bullet)$ s.t.:

$$lca(xy) = 1 \Leftrightarrow (x, y) \in R$$

A tree-representation of a Relation *R* over *X* is a tree with leaf set *X* and event-labels $0(\bullet)$ and $1(\bullet)$ s.t.:

$$lca(xy) = 1 \Leftrightarrow (x, y) \in R$$

A tree-representation of a Relation *R* over *X* is a tree with leaf set *X* and event-labels $0(\bullet)$ and $1(\bullet)$ s.t.:

$$lca(xy) = 1 \Leftrightarrow (x, y) \in R$$

A tree-representation of a Relation *R* over *X* is a tree with leaf set *X* and event-labels $0(\bullet)$ and $1(\bullet)$ s.t.:

$$lca(xy) = 1 \Leftrightarrow (x, y) \in R$$

A tree-representation of a Relation *R* over *X* is a tree with leaf set *X* and event-labels $0(\bullet)$ and $1(\bullet)$ s.t.:

 $lca(xy) = 1 \Leftrightarrow (x, y) \in R$

A tree-representation of a Relation *R* over *X* is a tree with leaf set *X* and event-labels $0(\bullet)$ and $1(\bullet)$ s.t.:

 $lca(xy) = 1 \Leftrightarrow (x, y) \in R$

Discriminating Trees

Here, discriminating trees, since those trees

- · contain all information about the relation
- are unique (up to isom.)
- don't pretend higher resolution than actually supported by the data.

Discriminating Trees

Here, discriminating trees, since those trees

- · contain all information about the relation
- are unique (up to isom.)
- · don't pretend higher resolution than actually supported by the data.

Relation R over X

$$\bigwedge_{|X|=2}^{\bullet} \bigwedge_{|X|=3}^{\bullet} \bigwedge_{|X|=3}^{\bullet}$$

Relation R over X

Relation R over X

Relation R over X

 $\bigwedge_{|X|=2} \bigwedge_{|X|=3} \bigwedge_{|$

Relation R over X

 $\bigwedge_{|X|=2}^{\wedge} \bigwedge_{|X|=3}^{\wedge} \bigwedge_{|X|=3}^{\wedge} \bigwedge_{|X|=3}^{\wedge}$

Relation R over X

|X| = 4

If $1 \le |X| \le 3$, then all relations *R* over *X* have a tree-representation.

If |X| = 4, then all relations *R* over *X* have a tree-representation, except:

 $A-B, B-C, C-D \in R$ $A-C, A-D, B-D \notin R$

- 1. R has a tree-representation.
- 2. The graph-representation of R does not contain induced P_4 's =Cographs

- 1. R has a tree-representation.
- 2. The graph-representation of R does not contain induced P_4 's =Cographs

- 1. R has a tree-representation.
- 2. The graph-representation of R does not contain induced P_4 's =Cographs

- 1. R has a tree-representation.
- 2. The graph-representation of R does not contain induced P_4 's =Cographs

Non-symmetric relations *R*.

A tree with labels $0(\bullet)$, 1 and $\overrightarrow{1}(\bullet)$ represents a binary relation *R*, if:

$$lca(xy) = \begin{cases} 1 & \text{if } (x,y), (y,x) \in R \\ \overrightarrow{1} & \text{if } (x,y) \in R, (y,x) \notin R \text{ and } x \text{ is left from } y \text{ in } 7 \\ 0 & \text{otherwise} \end{cases}$$

Theorem (Engelfriet et al. (1996))

- 1. R has a tree-representation.
- 2. The graph-representation of R does not contain any of the graphs below as induced subgraph. =Di-Cographs

k disjoint symmetric relations $R_1, \ldots R_k$

Question: When can disjoint symmetric relations $R_1, R_2, ..., R_k$ over X all be represented in a single tree?

Question: When can disjoint symmetric relations $R_1, R_2, ..., R_k$ over X all be represented in a single tree?

For R_1 und $R_1, R_2 = \overline{R_1}$ we simply have:

 R_1 must have a tree-representation. (Hence, $R_2 = \overline{R_1}$ has a tree-representation).

Question: When can disjoint symmetric relations $R_1, R_2, ..., R_k$ over X all be represented in a single tree?

For R_1 und $R_1, R_2 = \overline{R_1}$ we simply have:

 R_1 must have a tree-representation. (Hence, $R_2 = \overline{R_1}$ has a tree-representation).

Question: When can disjoint symmetric relations $R_1, R_2, ..., R_k$ over X all be represented in a single tree?

$$\begin{aligned} R_1 &= \{G1 - G2, G1 - G3, G1 - G4, G1 - G5, G2 - G5, \\ G3 - G4, G3 - G5, G4 - G5\} &= "all green edges" \\ R_2 &= \{G2 - G3, G2 - G4\} = "all red edges" \\ R_3 &= \{G3 - G4\} = "all blue edges" \end{aligned}$$

Question: When can disjoint symmetric relations $R_1, R_2, ..., R_k$ over X all be represented in a single tree?

Theorem (Böcker und Dress (1999), H. et. al (2014))

Disjoint symmetric relationen $R_1, R_2, ..., R_k$ over X can be represented in a single tree, if and only if both conditions are satisfied:

- [Cograph] Each R_i has a tree-representation, that is, the graph-representation of each R_i does not contain induced P₄'s;
- 2. [Δ -condition] No triangle in the graph-representation of $\bigcup_{i=1}^{k} R_i$ (= edge-colored complete graph) has 3 distinct colors.

k disjoint relation R_1, \ldots, R_k

Sets of non-symmetric disjoint relations

Wlog. let R_1, \ldots, R_k be relations s.t. $\cup_i R_i = X \times X_{\text{lirr}}$.

Sets of non-symmetric disjoint relations

Wlog. let R_1, \ldots, R_k be relations s.t. $\cup_i R_i = X \times X_{\text{lirr}}$.

A tree-representation of relations R_1, \ldots, R_k over X is a tree with leaf set X and event-labels $(i,j), i,j \in \{1, \ldots, k\}$ s.t.:

$$\mathsf{lca}(xy) = \begin{cases} (i,i) & \text{if } (x,y), (y,x) \in R_i \\ (i,j) & \text{if } (x,y) \in R_i, (y,x) \in R_j, i \neq j \text{ AND } x \text{ is left from } y \text{ in } T \end{cases}$$

Sets of non-symmetric disjoint relations

Theorem (Engelfriet et al. (1996))

Let R_1, \ldots, R_k be disjoint relations over X. Then the following statements are equivalent:

- 1. R_1, \ldots, R_k can be represented in a single tree.
- 2. The graph-representation of $\bigcup_{i=1}^{k} R_i$ (= arc-colored complete di-graph) is a uniformly non-prime (unp.) 2-structure

What are unp. 2-structures? - They are defined in terms of modules (omitted here)

Since $\cup_i R_i = X \times X_{|irr}$, for each distinct vertices $x, y \in X$:

Since $\cup_i R_i = X \times X_{|irr}$, for each distinct vertices $x, y \in X$:

Either $(xy), (yx) \in R_i$ or $(xy) \in R_i$ and $(yx) \in R_j, j \neq i$.

Since $\cup_i R_i = X \times X_{|irr}$, for each distinct vertices $x, y \in X$:

Either $(xy), (yx) \in R_i$ or $(xy) \in R_j$ and $(yx) \in R_j, j \neq i$.

Hence we have on the arcs (xy) and (yx) either one color *i* or two colors *i*, *j*.

Since $\cup_i R_i = X \times X_{|irr}$, for each distinct vertices $x, y \in X$:

Either $(xy), (yx) \in R_i$ or $(xy) \in R_i$ and $(yx) \in R_j, j \neq i$.

Hence we have on the arcs (xy) and (yx) either one color *i* or two colors *i*, *j*.

Define $D_{xy} := \{i, j \mid (x, y) \text{ has color } i, (y, x) \text{ has color } j\}$

Since $\cup_i R_i = X \times X_{|irr}$, for each distinct vertices $x, y \in X$:

Either $(xy), (yx) \in R_i$ or $(xy) \in R_i$ and $(yx) \in R_j, j \neq i$.

Hence we have on the arcs (xy) and (yx) either one color *i* or two colors *i*, *j*.

Define $D_{xy} := \{i, j \mid (x, y) \text{ has color } i, (y, x) \text{ has color } j\}$

Exmpl.: $D_{14} = D_{34} = \{\bullet, \bullet\}, D_{13} = \{\bullet, \bullet\}, D_{24} = \{\bullet\}$

 $D_{xy} = \{i, j \mid (x, y) \text{ has color } i, (y, x) \text{ has color } j\}$

Theorem (2016)

Disjoint symmetric relationen $R_1, R_2, ..., R_k$ over X can be represented in a single tree, if and only if both conditions are satisfied:

- 1. [Di-Cograph] Each R_i has a tree-representation, that is, the graph-representation of each R_i is a di-cograph;
- 2. [Δ -condition] For all distinct $x, y, z \in X$ it holds that

 $|\{D_{xy}, D_{xz}, D_{yz}\}| \le 2$

Sloppy: "No triangle has 3 distinct pairs of colors."

 $|\{D_{13}, D_{14}, D_{34}\}| = |\{\{\bullet, \bullet\}, \{\bullet, \bullet\}\}| = 2$

Theorem (2016)

Disjoint symmetric relationen $R_1, R_2, ..., R_k$ over X can be represented in a single tree, if and only if both conditions are satisfied:

- [Di-Cograph] Each R_i has a tree-representation, that is, the graph-representation of each R_i is a di-cograph;
- 2. [Δ -condition] For all distinct $x, y, z \in X$ it holds that

$$|\{D_{xy}, D_{xz}, D_{yz}\}| \le 2$$

Sloppy: "No triangle has 3 distinct pairs of colors."

Given set of relation R_1, \ldots, R_k (= colored complete di-graph *G* with colors $c: E \to \{1, \ldots, k\}$)

Reversible refinement:

Define new relations R'_1, \ldots, R'_l by setting new colors in *G* via

$$c_{new}(xy) = c_{new}(ab) \quad \Leftrightarrow \quad c(xy) = c(ab) \text{ AND } c(yx) = c(ba)$$

- 1. Build the respective tree-representation
- 2. compute "1-clusters" \mathscr{C}^1 = set of leaves that are descendants of vertices with label " \rightarrow "

- 1. Build the respective tree-representation
- 2. compute "1-clusters" \mathscr{C}^1 = set of leaves that are descendants of vertices with label " \rightarrow "

$$\mathscr{C}^1 = \{\{1,3\}\}$$

- 1. Build the respective tree-representation
- 2. compute "1-clusters" \mathscr{C}^1 = set of leaves that are descendants of vertices with label " \rightarrow "

$$\mathscr{C}^1 = \{\{1,3\}\}$$

- 1. Build the respective tree-representation
- 2. compute "1-clusters" \mathscr{C}^1 = set of leaves that are descendants of vertices with label " \rightarrow "

$$\mathscr{C}^1 = \{\{1,3\},\{1,2,3,4\}\}$$

- 1. Build the respective tree-representation
- 2. compute "1-clusters" \mathscr{C}^1 = set of leaves that are descendants of vertices with label " \rightarrow "

$$\mathscr{C}^1 = \{\{1,3\},\{1,2,3,4\},\{2,4\}\}$$

- 1. Build the respective tree-representation
- 2. compute "1-clusters" \mathscr{C}^1 = set of leaves that are descendants of vertices with label " \rightarrow "

$$\mathscr{C}^1 = \{\{1,3\},\{1,2,3,4\},\{2,4\}\}$$

Theorem (2016)

Disjoint symmetric relationen $R_1, R_2, ..., R_k$ over X can be represented in a single tree,

 \Leftrightarrow

- 1. [Di-Cograph] Each R_i has a tree-representation, that is, the graph-representation of each R_i is a di-cograph;
- 2. [Δ -condition] For all distinct $x, y, z \in X$ it holds that

 $|\{D_{xy}, D_{xz}, D_{yz}\}| \leq 2$

Sloppy: "No triangle has 3 distinct pairs of colors."

 \Leftrightarrow

- 1. [Di-Cograph]
- 2'. \mathscr{C}^1 in rver. refinment is tree-like (no elements overlap)

Based on the latter characterization, we have designed an $O(|X|^2)$ -recognition algorithm to test whether there is a tree-representation, and if so, construct it – **ask Nic for the fancy details ;)**

1. Tree-representable sets of disjoint relations

- 2. From the "Constructive Characterization" we get for free an $O(|X|^2)$ -time recognition algorithm and a good hint for possible heuristics to clean up estimates of sets of relations.
- 3. NP-completeness of Editing-Problem
- 4. Generalizations to sets of NON-disjoint relation = colored multi-di-graphs:

- 1. Tree-representable sets of disjoint relations
- 2. From the "Constructive Characterization" we get for free an $O(|X|^2)$ -time recognition algorithm and a good hint for possible heuristics to clean up estimates of sets of relations.
- 3. NP-completeness of Editing-Problem
- Generalizations to sets of NON-disjoint relation = colored multi-di-graphs:

- 1. Tree-representable sets of disjoint relations
- 2. From the "Constructive Characterization" we get for free an $O(|X|^2)$ -time recognition algorithm and a good hint for possible heuristics to clean up estimates of sets of relations.
- 3. NP-completeness of Editing-Problem
- Generalizations to sets of NON-disjoint relation = colored multi-di-graphs:

- 1. Tree-representable sets of disjoint relations
- 2. From the "Constructive Characterization" we get for free an $O(|X|^2)$ -time recognition algorithm and a good hint for possible heuristics to clean up estimates of sets of relations.
- 3. NP-completeness of Editing-Problem
- Generalizations to sets of NON-disjoint relation = colored multi-di-graphs:

- 1. Tree-representable sets of disjoint relations
- 2. From the "Constructive Characterization" we get for free an $O(|X|^2)$ -time recognition algorithm and a good hint for possible heuristics to clean up estimates of sets of relations.
- 3. NP-completeness of Editing-Problem
- Generalizations to sets of NON-disjoint relation = colored multi-di-graphs:

- 1. Tree-representable sets of disjoint relations
- 2. From the "Constructive Characterization" we get for free an $O(|X|^2)$ -time recognition algorithm and a good hint for possible heuristics to clean up estimates of sets of relations.
- 3. NP-completeness of Editing-Problem
- Generalizations to sets of NON-disjoint relation = colored multi-di-graphs:

THANK YOU!