Tree-Representations of Binary Relations

Marc Hellmuth
Dptm. Mathematics and Computer Science University of Greifswald, Germany
Joint work with Nic Wieseke and Peter F. Stadler

TBI Winterseminar 14-21. Feb. 2016

Outline

1. Motivation
2. Tree-Representation of

- one symmetric relation
- one non-symmetric relation
- sets of symmetric relations
- sets of non-symmetric relations
(2-structures, Di-cographs and Symbolic Ultrametrics)

Motivation

An ordered pair (x, y) of two genes is

- "Ica"-orthologs if Ica $(x, y)=\bullet=$ speciation
- "Ica"-paralogs if Ica $(x, y)=\square=$ duplication
- "Ica"-xenologs if $\operatorname{Ica}(x, y)=\Delta=H G T$ and Δ "points from" x to y in T

Motivation

The gene-tree determines three distinct relations

- R_{\bullet}, the "Ica"-orthologs ($\left.\operatorname{Ica}(x, y)=\bullet\right)$
- R_{\square}, the "Ica"-paralogs (Ica $\left.(x, y)=\square\right)$
- $R_{\mathbf{\Delta}}$, the "Ica"-xenologs $(\operatorname{Ica}(x, y)=\Delta, \Delta$ "points from" x to y in T)

Motivation

Orthologs can be estimated without inferring a gene- or species trees.
Assume we have estimated binary relations R_{1}, \ldots, R_{k} s.t.

$$
(x y) \in R_{i} \text { iff } \operatorname{lca}(x y)=i \text { in ordered tree } T
$$

Thus, it is important to understand, when those relations R_{1}, \ldots, R_{k} can be "represented" in a single tree.

Motivation

We consider irreflexive relations $(x, x) \notin R$ for all $x \in X$.
If both pairs $(x, y),(y, x) \in R$ we simply write $x-y \in R$

One binary relation

One symmetric relation R over X

A tree-representation of a Relation R over X is a tree with leaf set X and event-labels $0(\bullet)$ and $1(\bullet)$ s.t.:

$$
\operatorname{lca}(x y)=1 \Leftrightarrow(x, y) \in R
$$

One symmetric relation R over X

A tree-representation of a Relation R over X is a tree with leaf set X and event-labels $0(\bullet)$ and $1(\bullet)$ s.t.:

$$
\operatorname{Ica}(x y)=1 \Leftrightarrow(x, y) \in R
$$

One symmetric relation R over X

A tree-representation of a Relation R over X is a tree with leaf set X and event-labels $0(\bullet)$ and $1(\bullet)$ s.t.:

$$
\operatorname{lca}(x y)=1 \Leftrightarrow(x, y) \in R
$$

One symmetric relation R over X

A tree-representation of a Relation R over X is a tree with leaf set X and event-labels $0(\bullet)$ and $1(\bullet)$ s.t.:

$$
\operatorname{Ica}(x y)=1 \Leftrightarrow(x, y) \in R
$$

One symmetric relation R over X

A tree-representation of a Relation R over X is a tree with leaf set X and event-labels $0(\bullet)$ and $1(\bullet)$ s.t.:

$$
\operatorname{Ica}(x y)=1 \Leftrightarrow(x, y) \in R
$$

One symmetric relation R over X

A tree-representation of a Relation R over X is a tree with leaf set X and event-labels $0(\bullet)$ and $1(\bullet)$ s.t.:

$$
\operatorname{lca}(x y)=1 \Leftrightarrow(x, y) \in R
$$

Discriminating Trees

Here, discriminating trees, since those trees

- contain all information about the relation
- are unique (up to isom.)

Discriminating Trees

Here, discriminating trees, since those trees

- contain all information about the relation
- are unique (up to isom.)
- don't pretend higher resolution than actually supported by the data.

Do all symmetric relations R have a tree-representation?

Relation R over X

Do all symmetric relations R have a tree-representation?

Relation R over X

$|X|=2$

Do all symmetric relations R have a tree-representation?

Relation R over X

Do all symmetric relations R have a tree-representation?

Relation R over X

$|X|=2$

Do all symmetric relations R have a tree-representation?

Relation R over X

$|X|=2$
$|X|=3$

Do all symmetric relations R have a tree-representation?

Relation R over X

Do all symmetric relations R have a tree-representation?

Relation R over X

$|X|=4$

Do all symmetric relations R have a tree-representation?

Relation R over X

$|X|=4$

Do all symmetric relations R have a tree-representation?

Relation R over X

$|X|=4$

Do all symmetric relations R have a tree-representation?

Relation R over X

$|X|=4$

Do all symmetric relations R have a tree-representation?

Relation R over X

$|X|=4$

Do all symmetric relations R have a tree-representation?

Relation R over X

If $1 \leq|X| \leq 3$, then all relations R over X have a tree-representation.

If $|X|=4$, then all relations R over X have a tree-representation, except:

$$
\begin{aligned}
& A-B, B-C, C-D \in R \\
& A-C, A-D, B-D \notin R
\end{aligned}
$$

Theorem (Corneil et al. (1981))
Let R be a symmetric relation over some set X. Then the following statements are equivalent:

1. R has a tree-representation.
2. The graph-representation of R does not contain induced P_{4} ' $s=$ Cographs

Theorem (Corneil et al. (1981))
Let R be a symmetric relation over some set X. Then the following statements are equivalent:

1. R has a tree-representation.
2. The graph-representation of R does not contain induced P_{4} 's =Cographs

Theorem (Corneil et al. (1981))

Let R be a symmetric relation over some set X.
Then the following statements are equivalent:

1. R has a tree-representation.
2. The graph-representation of R does not contain induced P_{4} ' $s=$ Cographs

Theorem (Corneil et al. (1981))

Let R be a symmetric relation over some set X. Then the following statements are equivalent:

1. R has a tree-representation.
2. The graph-representation of R does not contain induced P_{4} ' $s=$ Cographs

Non-symmetric relations R.

A tree with labels $0(\bullet), 1$ and $\overrightarrow{1}(\bullet)$ represents a binary relation R, if:

$$
\text { Ica }(x y)= \begin{cases}1 & \text { if }(x, y),(y, x) \in R \\ \overrightarrow{1} & \text { if }(x, y) \in R,(y, x) \notin R \text { and } x \text { is left from } y \text { in } T \\ 0 & \text { otherwise }\end{cases}
$$

Do all non-symmetric relations R have a tree-representation?

Theorem (Engelfriet et al. (1996))
Let R be an arbitrary relation over some set X.
Then the following statements are equivalent:

1. R has a tree-representation.
2. The graph-representation of R does not contain any of the graphs below as induced subgraph. =Di-Cographs

k disjoint symmetric relations $R_{1}, \ldots R_{k}$

Generalization to sets of symmetric relations

 Question: When can disjoint symmetric relations $R_{1}, R_{2}, \ldots, R_{k}$ over X all be represented in a single tree?
Generalization to sets of symmetric relations

Question: When can disjoint symmetric relations $R_{1}, R_{2}, \ldots, R_{k}$ over X all be represented in a single tree?

For R_{1} und $R_{1}, R_{2}=\overline{R_{1}}$ we simply have:
R_{1} must have a tree-representation. (Hence, $R_{2}=\overline{R_{1}}$ has a tree-representation).

Generalization to sets of symmetric relations

Question: When can disjoint symmetric relations $R_{1}, R_{2}, \ldots, R_{k}$ over X all be represented in a single tree?

For R_{1} und $R_{1}, R_{2}=\overline{R_{1}}$ we simply have:
R_{1} must have a tree-representation. (Hence, $R_{2}=\overline{R_{1}}$ has a tree-representation).

Generalization to sets of symmetric relations

 Question: When can disjoint symmetric relations $R_{1}, R_{2}, \ldots, R_{k}$ over X all be represented in a single tree?$$
\begin{aligned}
R_{1}= & \{G 1-G 2, G 1-G 3, G 1-G 4, G 1-G 5, G 2-G 5, \\
& G 3-G 4, G 3-G 5, G 4-G 5\}=\text { "all green edges" } \\
R_{2}= & \{G 2-G 3, G 2-G 4\}=\text { "all red edges" } \\
R_{3}= & \{G 3-G 4\}=\text { "all blue edges" }
\end{aligned}
$$

Generalization to sets of symmetric relations

 Question: When can disjoint symmetric relations $R_{1}, R_{2}, \ldots, R_{k}$ over X all be represented in a single tree?
Theorem (Böcker und Dress (1999), H. et. al (2014))

Disjoint symmetric relationen $R_{1}, R_{2}, \ldots, R_{k}$ over X can be represented in a single tree, if and only if both conditions are satisfied:

1. [Cograph] Each R_{i} has a tree-representation, that is, the graph-representation of each R_{i} does not contain induced P_{4} 's;
2. [Δ-condition] No triangle in the graph-representation of $\cup_{i=1}^{k} R_{i}$
(= edge-colored complete graph) has 3 distinct colors.

k disjoint relation R_{1}, \ldots, R_{k}

Sets of non-symmetric disjoint relations

Wlog. let R_{1}, \ldots, R_{k} be relations s.t. $\cup_{i} R_{i}=X \times X_{\text {|irr }}$.

Sets of non-symmetric disjoint relations

Wlog. let R_{1}, \ldots, R_{k} be relations s.t. $\cup_{i} R_{i}=X \times X_{\text {irr }}$.
A tree-representation of relations R_{1}, \ldots, R_{k} over X is a tree with leaf set X and event-labels $(i, j), i, j \in\{1, \ldots, k\}$ s.t.:

$$
\text { Ica }(x y)= \begin{cases}(i, i) & \text { if }(x, y),(y, x) \in R_{i} \\ (i, j) & \text { if }(x, y) \in R_{i},(y, x) \in R_{j}, i \neq j \text { AND } x \text { is left from } y \text { in } T\end{cases}
$$

Sets of non-symmetric disjoint relations

Theorem (Engelfriet et al. (1996))

Let R_{1}, \ldots, R_{k} be disjoint relations over X. Then the following statements are equivalent:

1. R_{1}, \ldots, R_{k} can be represented in a single tree.
2. The graph-representation of $\cup_{i=1}^{k} R_{i}$ (= arc-colored complete di-graph) is a uniformly non-prime (unp.) 2-structure

What are unp. 2-structures? - They are defined in terms of modules (omitted here)

Constructive Characterization

Since $\cup_{i} R_{i}=X \times X_{\text {lirr }}$, for each distinct vertices $x, y \in X$:

Constructive Characterization

Since $\cup_{i} R_{i}=X \times X_{\text {irr }}$, for each distinct vertices $x, y \in X$:
Either $\quad(x y),(y x) \in R_{i} \quad$ or $\quad(x y) \in R_{i}$ and $(y x) \in R_{j}, j \neq i$.

Constructive Characterization

Since $\cup_{i} R_{i}=X \times X_{\text {irr }}$, for each distinct vertices $x, y \in X$:
Either $\quad(x y),(y x) \in R_{i} \quad$ or $\quad(x y) \in R_{i}$ and $(y x) \in R_{j}, j \neq i$.
Hence we have on the arcs ($x y$) and ($y x$) either one color i or two colors i, j.

Constructive Characterization

Since $\cup_{i} R_{i}=X \times X_{\text {irr }}$, for each distinct vertices $x, y \in X$:
Either $\quad(x y),(y x) \in R_{i} \quad$ or $\quad(x y) \in R_{i}$ and $(y x) \in R_{j}, j \neq i$.
Hence we have on the arcs ($x y$) and ($y x$) either one color i or two colors i, j.
Define $D_{x y}:=\{i, j \mid(x, y)$ has color $i,(y, x)$ has color $j\}$

Constructive Characterization

Since $\cup_{i} R_{i}=X \times X_{\text {irr }}$, for each distinct vertices $x, y \in X$:
Either $\quad(x y),(y x) \in R_{i} \quad$ or $\quad(x y) \in R_{i}$ and $(y x) \in R_{j}, j \neq i$.
Hence we have on the arcs ($x y$) and ($y x$) either one color i or two colors i, j.
Define $D_{x y}:=\{i, j \mid(x, y)$ has color $i,(y, x)$ has color $j\}$
Exmpl.: $D_{14}=D_{34}=\{\bullet \bullet \bullet\}, D_{13}=\{\bullet, \bullet\}, D_{24}=\{\bullet\}$

Constructive Characterization

$D_{x y}=\{i, j \mid(x, y)$ has color $i,(y, x)$ has color $j\}$

Theorem (2016)

Disjoint symmetric relationen $R_{1}, R_{2}, \ldots, R_{k}$ over X can be represented in a single tree, if and only if both conditions are satisfied:

1. [Di-Cograph] Each R_{i} has a tree-representation, that is, the graph-representation of each R_{i} is a di-cograph;
2. [Δ-condition] For all distinct $x, y, z \in X$ it holds that

$$
\left|\left\{D_{x y}, D_{x z}, D_{y z}\right\}\right| \leq 2
$$

Sloppy: "No triangle has 3 distinct pairs of colors."

Constructive Characterization

$$
\left|\left\{D_{13}, D_{14}, D_{34}\right\}\right|=|\{\{\bullet, \bullet\},\{\bullet, \bullet\}\}|=2
$$

Theorem (2016)
Disjoint symmetric relationen $R_{1}, R_{2}, \ldots, R_{k}$ over X can be represented in a single tree, if and only if both conditions are satisfied:

1. [Di-Cograph] Each Ri has a tree-representation, that is, the graph-representation of each R_{i} is a di-cograph;
2. [Δ-condition] For all distinct $x, y, z \in X$ it holds that

$$
\left|\left\{D_{x y}, D_{x z}, D_{y z}\right\}\right| \leq 2
$$

Sloppy: "No triangle has 3 distinct pairs of colors."

Constructive Characterization

Given set of relation R_{1}, \ldots, R_{k}
(= colored complete di-graph G with colors $c: E \rightarrow\{1, \ldots, k\}$)
Reversible refinement:
Define new relations $R_{1}^{\prime}, \ldots, R_{l}^{\prime}$ by setting new colors in G via

$$
c_{\text {new }}(x y)=c_{\text {new }}(a b) \Leftrightarrow c(x y)=c(a b) \text { AND } c(y x)=c(b a)
$$

Constructive Characterization

For each single relation R_{i} of R_{1}, \ldots, R_{k}
(= mono-chromatic subgraph with color $i=$ di-cographs)

1. Build the respective tree-representation
2. compute " 1 -clusters" $\mathscr{C}^{1}=$ set of leaves that are descendants of vertices with label " \rightarrow "

Constructive Characterization

For each single relation R_{i} of R_{1}, \ldots, R_{k}
(= mono-chromatic subgraph with color $i=$ di-cographs)

1. Build the respective tree-representation
2. compute " 1 -clusters" $\mathscr{C}^{1}=$ set of leaves that are descendants of vertices with label " \rightarrow "

$$
\mathscr{C}^{1}=\{\{1,3\}\}
$$

Constructive Characterization

For each single relation R_{i} of R_{1}, \ldots, R_{k}
(= mono-chromatic subgraph with color $i=$ di-cographs)

1. Build the respective tree-representation
2. compute " 1 -clusters" $\mathscr{C}^{1}=$ set of leaves that are descendants of vertices with label " \rightarrow "

$$
\mathscr{C}^{1}=\{\{1,3\}\}
$$

Constructive Characterization

For each single relation R_{i} of R_{1}, \ldots, R_{k}
(= mono-chromatic subgraph with color $i=$ di-cographs)

1. Build the respective tree-representation
2. compute " 1 -clusters" $\mathscr{C}^{1}=$ set of leaves that are descendants of vertices with label " \rightarrow "

$$
\mathscr{C}^{1}=\{\{1,3\},\{1,2,3,4\}\}
$$

Constructive Characterization

For each single relation R_{i} of R_{1}, \ldots, R_{k}
(= mono-chromatic subgraph with color $i=$ di-cographs)

1. Build the respective tree-representation
2. compute " 1 -clusters" $\mathscr{C}^{1}=$ set of leaves that are descendants of vertices with label " \rightarrow "

$$
\mathscr{C}^{1}=\{\{1,3\},\{1,2,3,4\},\{2,4\}\}
$$

Constructive Characterization

For each single relation R_{i} of R_{1}, \ldots, R_{k}
(= mono-chromatic subgraph with color $i=$ di-cographs)

1. Build the respective tree-representation
2. compute " 1 -clusters" $\mathscr{C}^{1}=$ set of leaves that are descendants of vertices with label " \rightarrow "

$$
\mathscr{C}^{1}=\{\{1,3\},\{1,2,3,4\},\{2,4\}\}
$$

Constructive Characterization

Theorem (2016)

Disjoint symmetric relationen $R_{1}, R_{2}, \ldots, R_{k}$ over X can be represented in a single tree,
\Leftrightarrow

1. [Di-Cograph] Each R_{i} has a tree-representation, that is, the graph-representation of each R_{i} is a di-cograph;
2. [Δ-condition] For all distinct $x, y, z \in X$ it holds that

$$
\left|\left\{D_{x y}, D_{x z}, D_{y z}\right\}\right| \leq 2
$$

Sloppy: "No triangle has 3 distinct pairs of colors."
\Leftrightarrow

1. [Di-Cograph]

2'. \mathscr{C}^{1} in rver. refinment is tree-like (no elements overlap)
Based on the latter characterization, we have designed an $O\left(|X|^{2}\right)$-recognition algorithm to test whether there is a tree-representation, and if so, construct it ask Nic for the fancy details;)

Summary and Outlook

1. Tree-representable sets of disjoint relations
2. From the "Constructive Characterization" we get for free an $O\left(|X|^{2}\right)$-time recognition algorithm and a good hint for possible heuristics to clean up estimates of sets of relations.
3. NP-completeness of Editing-Problem
4. Generalizations to sets of NON-disjoint relation = colored multi-di-graphs:

Summary and Outlook

1. Tree-representable sets of disjoint relations
2. From the "Constructive Characterization" we get for free an $O\left(|X|^{2}\right)$-time recognition algorithm and a good hint for possible heuristics to clean up estimates of sets of relations.
3. NP-completeness of Editing-Problem
4. Generalizations to sets of NON-disjoint relation = colored multi-di-graphs:

Summary and Outlook

1. Tree-representable sets of disjoint relations
2. From the "Constructive Characterization" we get for free an $O\left(|X|^{2}\right)$-time recognition algorithm and a good hint for possible heuristics to clean up estimates of sets of relations.
3. NP-completeness of Editing-Problem
4. Generalizations to sets of NON-disjoint relation = colored multi-di-graphs:

Summary and Outlook

1. Tree-representable sets of disjoint relations
2. From the "Constructive Characterization" we get for free an $O\left(|X|^{2}\right)$-time recognition algorithm and a good hint for possible heuristics to clean up estimates of sets of relations.
3. NP-completeness of Editing-Problem
4. Generalizations to sets of NON-disjoint relation = colored multi-di-graphs:

Summary and Outlook

1. Tree-representable sets of disjoint relations
2. From the "Constructive Characterization" we get for free an $O\left(|X|^{2}\right)$-time recognition algorithm and a good hint for possible heuristics to clean up estimates of sets of relations.
3. NP-completeness of Editing-Problem
4. Generalizations to sets of NON-disjoint relation = colored multi-di-graphs:

Summary and Outlook

1. Tree-representable sets of disjoint relations
2. From the "Constructive Characterization" we get for free an $O\left(|X|^{2}\right)$-time recognition algorithm and a good hint for possible heuristics to clean up estimates of sets of relations.
3. NP-completeness of Editing-Problem
4. Generalizations to sets of NON-disjoint relation = colored multi-di-graphs:

THANK YOU!

