Evolutionary analyses of positively selected sites in the interferon-induced innate immunity factor *Mx1* of bats

seit 1558

Martin Hölzer

RNA Bioinformatics and High Throughput Analysis

Friedrich-Schiller-University Jena

31st TBI Winterseminar in Bled

February 29, 2016

Now, here, you see, it takes all the running you can do, to keep in the same place.

"The Red Queen has to run faster and faster in order to keep still where she is. That is exactly what you all are doing!" - Red Queen to Alice

Now, here, you see, it takes all the running you can do, to keep in the same place.

"arms race" between host and virus

- Red Queen to Alice

Sironi, Manuela, et al. "Evolutionary insights into host-pathogen interactions from mammalian sequence data." Nature Reviews Genetics 16.4 (2015): 224-236.

Sneries																	`		
1		0.0.0	CCA	TTC	2	A C C	A C T	C C DA	2 2 C	COM	A C T	CIEC	2 2 6	1 A T C	227	T A 💽	CTT	AC	
2		2 2 2	GGA	TTG	ΔΤΤ	AGG	AG1	660	AAC		ACC	CMT	2 2 2	ATC	2 2 2	TAT	CTT	AGG	
3		AAG	GGA	TTG	ATT	AGA	GGT	GIC	AAC	ТАТ	ACT	CAT	AAA	ATC	AAT	TAT	CTC	AGG	
4		AAA	GGA	TTG	ATT	AGA	AGT	ACC	AAA	CAT	ACC	ACT	AAA	ATC	AAT	TAT	СТС	AGG	
5		AAA	GGA	TTG	ATT	AGA	AGT	ACC	AAT	CAC	ACC	ACT	AAA	ATC	AAT	TAT	CTT	AGG	
6		AAA	GGA	TTG	ттт	AGA	A G 🖸	GCC	AAC	CAA	ACC	ССТ	AAA	ATT	ΑΑΤ	ТАТ	CTG	AGG	
7		AAA	AGA	TTC	ATT	AGA	CGT	GCC	AAC	CAT	ACT	ТСТ	AAA	ATC	AAT	TAC	СТТ	A G 🖪	
8		AAA	GGA	CT G	АТТ	AGA	АСТ	TCC	AAC	СТТ	АCТ	ACT	AGA	ATG	AAT	ТАТ	СТТ	AGG	
9		AAA	GGA	ΤΤG	АТТ	AGA	ACT	TCC	AAC	СТТ	АCТ	ACT	AGA	ΑTG	ΑΑΤ	ТАТ	СТТ	A G 🖪	
10		AAA	GGA	ΤΤG	ΑΤΤ	GGA	ACT	TCC	AAT	СПТ	ACT	ACT	AGA	ΑTG	ΑΑΤ	ΤΑΤ	$C \ T \ T$	AGG	
11		A A 🎞	GGA	ΤΤG	ΑΤΤ	AGA	ACT	ТСС	AAC	СТТ	АСТ	ACT	GAA	ΑTG	AGT	ΤΑΤ	СТА	A G G	
12		AAA	G G 🖸	ΤΤG	ΑΤΤ	AGA	AGA	GCC	AAC	CAG	АСТ	CCT	AAA	ATC	AGT	ΤΑΤ	СТТ	A G G	
13		AAA	GGA	ΤΤG	A T C	AGA	AAT	CCC	AAC	CAT	ACT	CCT	A A C	ATC	AGT	ΤΑΤ	СТТ	AGG	
14		AAA	GGG	ΤΤΑ	CTT	AGA	GGT	GCC	ACC	AAT	ACT	CCT	AAA	ATC	AAT	TAC	СТТ	AGA	
			******																6
																			3
Supon		ubctituti	on	7				Spec	ies										(
(no am	ino acid	renlace	ment)					1		. K	G L	I R	S A	N R	TR	K I	N Y	L R	
(110 0111	nio acia	replace						2		. K	G L	I R	G G	NY	т н	K I	N Y	L R	
Non-sy	ynonyma	ous subs	titution					3		. к	G L	I R	G G	N Y	тн	ΚI	N Y	L R	
(amino	acid rep	placeme	nt)					4		. K	GL	I R	S T	КН	тт	ΚI	N Y	L R	
dN/dS	<1							5		. K	GL	I R	S T	N H	тт	K I	N Y	L R	
(negati	ive selec	tion)						6		. к	GL	FR	S A	N Q	T P	K I	N Y	L R	
-NU-IC	7							/		. к	R F	I R	R A	N H	TS	K I	N Y	L R	
(noutro	r∼1 al avalut	ion)						8		. K	GL	IR	TS	NL	ТТ	R M	N Y	LR	
(neutra	arevolut	IOH)						9		. к	GL	IR	TS	NL	TT	R M	NY	LR	
dN/dS	>1							10		. K	GL	I G	TS	NL	TT	R M	NY	LR	
(positi)	ve select	ion)						12	• •	- N	GL	TR	TS	NL	TT	EM	SY	LR	
Linear	e_snerif	ic soloct	ion					12	• •	. K	GL	TR	K A	N Q	TP	K I	SY	LR	
lenisor	tic selec	tion)						14		. K	GL	TD	C A	T H	T P	N I V T	NV	TP	
Labiboo		cioni)						7.4		. r	9 1	л	G A	1 19	1 P	IV I	14 1	лц	

Sironi, Manuela, et al. "Evolutionary insights into host-pathogen interactions from mammalian sequence data." Nature Reviews Genetics 16.4 (2015): 224-236.

Species																	`.	· · · · · · · · · · · · · · · · · · ·	
1		AAA	GGA	ΤTG	ΑΤΤ	AGG	AGT	GCA	AAC	CGT	ACT	CGC	AAG	ATC	AAT	TAC	СТТ	AGA	
2		AAA	GGA	ΤΤG	ΑΤΤ	AGG	GGT	GGC	AAC	TAT	A C 🖸	САТ	AAA	ATC	AAC	TAT	СТТ	AGG	
3		A A G	GGA	ТТG	ΑΤΤ	AGA	GGT	GGC	AAC	ТАТ	АCТ	САТ	AAA	ΑTC	AAT	ТАТ	CTC	AGG	
4		AAA	GGA	ТТG	ΑΤΤ	AGA	AGT	ACC	AAA	CAT	A C 🖸	АСТ	AAA	ΑTC	AAT	ТАТ	CTG	AGG	
5		AAA	GGA	ΤTG	ΑΤΤ	AGA	AGT	ACC	A A 🔳	CAC	A C 🖸	АСТ	AAA	ΑTC	AAT	TAT	$C \ \mathbb{T} \ \mathbb{T}$	AGG	
6		AAA	GGA	ΤTG	ТТТ	AGA	A G 🖸	GCC	AAC	CAA	A C 🖸	ССT	AAA	ΑT	ΑAΤ	ΤΑΤ	CTG	AGG	
7		AAA	AGA	т т С	ΑΤΤ	AGA	СGТ	GCC	AAC	CAT	АCТ	ТСТ	AAA	ATC	AAT	T A 🖸	$C \ T \ T$	A G 🖪	
8		AAA	GGA	CT G	ΑΤΤ	AGA	ACT	TCC	AAC	СТТ	АСТ	АСТ	AGA	ATG	ΑΑΤ	ΤΑΤ	СТТ	A G G	
9		AAA	GGA	ΤΤG	ΑΤΤ	AGA	ACT	TCC	AAC	СТТ	АСТ	АСТ	AGA	ATG	ΑΑΤ	ΤΑΤ	СТТ	A G 🖪	
10		AAA	GGA	ΤΤG	ΑΤΤ	GGA	ACT	TCC	A A 🔳	CTT	ACT	ACT	AGA	ATG	ΑΑΤ	TAT	СТТ	AGG	
11		A A T	GGA	ΤΤG	ATT	AGA	ACT	TCC	AAC	СТТ	ACT	ACT	GAA	ATG	AGT	TAT	СТА	AGG	
12		AAA	GGG	ΤΤG	ATT	AGA	AGA	GCC	AAC	CAG	ACT	ССT	AAA	ATC	AGT	TAT	СТТ	AGG	
13		AAA	GGA	TTG	ATC	AGA	AAT	ССС	AAC	CAT	ACT	CCT	AAG	ATC	AGT	TAT	CTT	AGG	
14		AAA	GGG	TTA	CTT	AGA	GGT	GCC	ACC	AAT	ACT	CCT	AAA	ATC	AAT	TAC	CTT	AGA	

				_															
Supon	////	ubctituti	on	7				Spec	ies										
(no am	ino acid	renlace	ment)					1		. K	GL	I R	S A	N R	TR	ΚI	N Y	L R	
(no an		replace	mene)	de.	# syr	ı substit	utions	2		. к	GL	I R	GG	N Y	тн	K I	N Y	L R	
Non-sy	nonyma	ous subst	titution	u u s	- #	syn sit	es	3		. K	GL	I R	GG	NY	т н	K I	N Y	L R	
(amino	acid rep	placeme	nt)					4		. K	GL	I R	S T	КН	тт	K I	N Y	L R	
dN/dS	<1							5		. к	GL	I R	S T	N H	тт	K I	N Y	L R	
(negati	ve selec	tion)			# non-s	yn subs	titutions	6		. K	GL	F R	S A	NQ	т р	K I	N Y	L R	
ALL IC	2			an=	= # no	on-syn s	ites	7		. K	R F	I R	R A	N H	TS	K I	N Y	L R	
aiv/as	~1									. к	GL	I R	TS	NL	тт	R M	N Y	L R	
neutra	evolut	ION)						9		. к	GL	IR	TS	NL	тт	R M	N Y	L R	
dN/dS	>1							10		. к	GL	I G	TS	NL	тт	R M	NY	L R	
(positiv	e select	ion)						12		. N	GL	1 R	TS	NL	тт	EM	SY	LR	
Lineag	o coocif	ic coloct	ion					12		. K	GL	1 R	RA	NQ	TP	KI	SY	LR	
lanisoc	e-specii lic selec	tion)	1011					14		. K	GL	I R	N P	N H	TP	K I	S Y	LR	
L'obisoc	inc belec	cion)						14		. K	GΓ	ык	GA	1 IN	1 P	V T	IN Y	ь к	

Sironi, Manuela, et al. "Evolutionary insights into host-pathogen interactions from mammalian sequence data." Nature Reviews Genetics 16.4 (2015): 224-236.

Species																		· · · · · · · · · · · · · · · · · · ·	
1		AAA	GGA	ΤTG	ATT	AGG	AGT	GCA	AAC	CGT	ACT	CGC	AAG	ATC	AAT	TAC	СТТ	AGA	
2		AAA	GGA	ΤΤG	ATT	AGG	GGT	GGC	AAC	TAT	A C 🖸	САТ	AAA	ATC	AAC	TAT	СТТ	AGG	
3		A A G	GGA	ТТG	АТТ	AGA	GGT	GGC	AAC	ТАТ	АCТ	САТ	AAA	ΑTC	AAT	ТАТ	CTC	AGG	
4		AAA	GGA	ТТG	АТТ	AGA	AGT	ACC	AAA	CAT	A C 🖸	ACT	AAA	ΑTC	AAT	ТАТ	CTG	AGG	
5		AAA	GGA	ΤTG	ΑΤΤ	AGA	AGT	ACC	AAT	CAC	A C 🖸	ACT	AAA	ΑTC	AAT	TAT	$C \ \mathbb{T} \ \mathbb{T}$	A G G	
6		AAA	GGA	ΤTG	ТТТ	AGA	A G 🖸	GCC	AAC	CAA	A C 🖸	ССТ	AAA	A T 🔳	AAT	ΤΑΤ	CTG	A G G	
7		AAA	AGA	т т С	ΑΤΤ	AGA	СGТ	GCC	AAC	CAT	АCТ	ТСТ	AAA	ATC	AAT	T A 🖸	$C \ T \ T$	A G A	
8		AAA	GGA	CT G	ΑΤΤ	AGA	ACT	TCC	AAC	СТТ	АСТ	ACT	AGA	ATG	ΑΑΤ	ΤΑΤ	СТТ	A G G	
9		AAA	GGA	ΤΤG	ΑΤΤ	AGA	ACT	TCC	AAC	СТТ	АСТ	ACT	AGA	ATG	ΑΑΤ	ΤΑΤ	СТТ	A G A	
10		AAA	GGA	ΤΤG	ΑΤΤ	GGA	ACT	TCC	AAT	CTT	ACT	ACT	AGA	ATG	ΑΑΤ	TAT	СТТ	A G G	
11		A A T	GGA	ΤΤG	ATT	AGA	ACT	TCC	AAC	СТТ	ACT	ACT	GAA	ATG	AGT	TAT	СТА	AGG	
12		AAA	GGG	ΤΤG	ATT	AGA	AGA	GCC	AAC	CAG	ACT	CCT	AAA	ATC	AGT	TAT	СТТ	AGG	
13		AAA	GGA	TTG	ATC	AGA	AAT	ССС	AAC	CAT	ACT	CCT	AAG	ATC	AGT	TAT	CTT	AGG	
14		AAA	GGG	TTA	CTT	AGA	GGT	GCC	ACC	AAT	ACT	CCT	AAA	ATC	AAT	TAC	CTT	AGA	
			*****																6
																			}
Supon	mouse	ubctituti	on	7				Spec	ies										1
(no am	ino acid	renlace	ment)					1		. K	GL	I R	S A	N R	TR	ΚI	N Y	L R	
(no an	nio acia	replace	mene)	de.	# syr	ı substit	utions	2		. к	GL	I R	GG	N Y	тн	K I	N Y	L R	
Non-sy	nonyma	ous subst	titution	u u s	- #	syn sit	es	3		. K	GL	I R	GG	NY	т н	K I	N Y	L R	
(amino	acid rep	placeme	nt)					4		. K	GL	I R	S T	КН	тт	K I	N Y	L R	
dN/dS	<1							5		. к	GL	I R	S T	N H	тт	K I	N Y	L R	
(negati	ve selec	tion)			# non-s	yn subs	titutions	6		. K	GL	FR	S A	NQ	т р	K I	N Y	L R	
- NULC	2			an=	= #no	on-syn s	ites	7		. K	R F	I R	R A	N H	TS	K I	N Y	L R	
dN/dS	~1									. K	GL	I R	T S	NL	тт	R M	N Y	L R	
(neutra	a evolut	ion)					_	9		. к	GL	I R	TS	NL	тт	R M	N Y	L R	
dN/dS	>1					dN	1	10		. к	GL	I G	TS	NL	тт	R M	N Y	L R	
(positi)	/e select	ion)			ω		-	11		. N	GL	IR	TS	NL	тт	EM	S Y	L R	
Lincor	o coocif	ic coloct	ion			us		12	• •	. K	GL	IR	RA	NQ	TP	KI	SY	LR	
lanisor	e-specifi lic selec	tion)	1011					14	• •	. K	GL	IR	N P	N H	TP	K I	S Y	LR	
L (chipod	inc belec	cion)						14		. K	GΓ	ык	GA	1 IN	1 P	V T	IN Y	ык	

Sironi, Manuela, et al. "Evolutionary insights into host-pathogen interactions from mammalian sequence data." Nature Reviews Genetics 16.4 (2015): 224-236.

• Myxovirus resistance protein 1 (A) and 2 (B), two *Mx* copies in most mammals

Haller et al. "Mx GTPases: dynamin-like antiviral machines of innate immunity." Trends in microbiology (2015): 154-163.

- Myxovirus resistance protein 1 (A) and 2 (B), two *Mx* copies in most mammals
- dynamin-like GTPases

Haller et al. "Mx GTPases: dynamin-like antiviral machines of innate immunity." Trends in microbiology (2015): 154-163.

- Myxovirus resistance protein 1 (A) and 2 (B), two *Mx* copies in most mammals
- dynamin-like GTPases
- induced by IFN I/III

Haller et al. "Mx GTPases: dynamin-like antiviral machines of innate immunity." Trends in microbiology (2015): 154-163.

- Myxovirus resistance protein 1 (A) and 2 (B), two *Mx* copies in most mammals
- dynamin-like GTPases
- induced by IFN I/III
- key antiviral effector proteins in mammals

Haller et al. "Mx GTPases: dynamin-like antiviral machines of innate immunity." Trends in microbiology (2015): 154-163.

- Myxovirus resistance protein 1 (A) and 2 (B), two *Mx* copies in most mammals
- dynamin-like GTPases
- induced by IFN I/III
- key antiviral effector proteins in mammals
- blocking early steps of viral replication cycles (DNA, RNA)

Haller et al. "Mx GTPases: dynamin-like antiviral machines of innate immunity." Trends in microbiology (2015): 154-163.

Mitchell, Patrick S., et al. "Evolution-guided identification of antiviral specificity determinants in the broadly acting interferon-induced innate immunity factor MxA." Cell host & microbe 12.4 (2012): 598-604.

Mitchell, Patrick S., et al. "Evolution-guided identification of antiviral specificity determinants in the broadly acting interferon-induced innate immunity factor MxA." Cell host & microbe 12.4 (2012): 598-604.

Positive selection: more bat species

Positive selection: bats and other mammals

Thank you for your attention!

Manja Marz Konrad Sachse Holger Bierhoff Franziska Hufsky Markus Fricke Konstantin Riege Emanuel Barth Nelly F. M. Berrospi Bertram Vogel Michael Gaspar Akash Srivastava

Thanks to all my group members!

... and Georg and Jonas (Mx-guys from Universitätsklinikum Freiburg)

• *K_a/K_s* ratio is an indicator of selective pressure acting on protein-coding genes

- *K_a/K_s* ratio is an indicator of selective pressure acting on protein-coding genes
 - Ka: number of non-synonymous substitutions per non-synonymous site

- *K_a/K_s* ratio is an indicator of selective pressure acting on protein-coding genes
 - K_a: number of non-synonymous substitutions per non-synonymous site
 - K_s: number of synonymous substitutions per synonymous site

- *K_a/K_s* ratio is an indicator of selective pressure acting on protein-coding genes
 - Ka: number of non-synonymous substitutions per non-synonymous site
 - \circ K_s: number of synonymous substitutions per synonymous site
- homologous genes with a K_a/K_s ratio above 1 are evolving under positive selection
 - at least some of the mutations concerned must be advantageous

- *K_a/K_s* ratio is an indicator of selective pressure acting on protein-coding genes
 - Ka: number of non-synonymous substitutions per non-synonymous site
 - \circ K_s: number of synonymous substitutions per synonymous site
- homologous genes with a K_a/K_s ratio above 1 are evolving under positive selection
 - at least some of the mutations concerned must be advantageous
- if all the mutations are neutral or disadvantageous, the ratio will be in the range 0 to 1

- *K_a/K_s* ratio is an indicator of selective pressure acting on protein-coding genes
 - Ka: number of non-synonymous substitutions per non-synonymous site
 - \circ K_s: number of synonymous substitutions per synonymous site
- homologous genes with a K_a/K_s ratio above 1 are evolving under positive selection
 - at least some of the mutations concerned must be advantageous
- if all the mutations are neutral or disadvantageous, the ratio will be in the range 0 to 1
- however, if some of the mutations are advantageous and some disadvantageous, the ratio could be less than 1

- *K_a/K_s* ratio is an indicator of selective pressure acting on protein-coding genes
 - Ka: number of non-synonymous substitutions per non-synonymous site
 - \circ K_s: number of synonymous substitutions per synonymous site
- homologous genes with a K_a/K_s ratio above 1 are evolving under positive selection
 - at least some of the mutations concerned must be advantageous
- if all the mutations are neutral or disadvantageous, the ratio will be in the range 0 to 1
- however, if some of the mutations are advantageous and some disadvantageous, the ratio could be less than 1
- *K_a*/*K_s* dN/dS ω

- *K_a/K_s* ratio is an indicator of selective pressure acting on protein-coding genes
 - Ka: number of non-synonymous substitutions per non-synonymous site
 - \circ K_s: number of synonymous substitutions per synonymous site
- homologous genes with a K_a/K_s ratio above 1 are evolving under positive selection
 - at least some of the mutations concerned must be advantageous
- if all the mutations are neutral or disadvantageous, the ratio will be in the range 0 to 1
- however, if some of the mutations are advantageous and some disadvantageous, the ratio could be less than 1
- $K_a/K_s dN/dS \omega$ $\kappa Ts/Tv$

Val Met Arg Thr G T T A T G A A G A C C Total

		Val			Met			Arg)		Th	•	
	G	Т	Т	Α	Т	G	Α	Α	G	Α	С	С	Total
degeneracy			(4)						(2)			(4)	
# non-syn sites	1	1	0	1	1	1	1	1	$\frac{2}{3}$	1	1	0	$9\frac{2}{3}$

		Val			Met			Arg			Thr		
	G	Т	Т	Α	Т	G	Α	А	G	Α	С	С	Total
degeneracy			(4)						(2)			(4)	
# non-syn sites	1	1	0	1	1	1	1	1	$\frac{2}{3}$	1	1	0	$9\frac{2}{3}$
# syn sites	0	0	1	0	0	0	0	0	1/3	0	0	1	2 ¹ / ₃

		Val			Met			Arg			Thr		
	G	Т	Т	Α	Т	G	Α	А	G	Α	С	С	Total
degeneracy			(4)						(2)			(4)	
# non-syn sites	1	1	0	1	1	1	1	1	$\frac{2}{3}$	1	1	0	$9\frac{2}{3}$
# syn sites	0	0	1	0	0	0	0	0	$\frac{1}{3}$	0	0	1	$2\frac{1}{3}$

nucleotide sites give 9²/₃ non-synonymous sites and 2¹/₃ synonymous sites in this peptide

		Val			Met			Arg	g		Thr		
	G	Т	Т	Α	Т	G	A	A	G	Α	С	С	Total
degeneracy			(4)						(2)			(4)	
# non-syn sites	1	1	0	1	1	1	1	1	$\frac{2}{3}$	1	1	0	9 ² / ₃
# syn sites	0	0	1	0	0	0	0	0	1 3	0	0	1	$2\frac{1}{3}$

• nucleotide sites give $9\frac{2}{3}$ non-synonymous sites and $2\frac{1}{3}$ synonymous sites in this peptide

Val Leu Arg Thr G T A C T G A A A A C C Total

		Val			Met			Arg			Thr		
	G	Т	Т	Α	Т	G	Α	А	G	Α	С	С	Total
degeneracy			(4)						(2)			(4)	
# non-syn sites	1	1	0	1	1	1	1	1	23	1	1	0	$9\frac{2}{3}$
# syn sites	0	0	1	0	0	0	0	0	$\frac{1}{3}$	0	0	1	2 ^ĭ / ₃

nucleotide sites give 9²/₃ non-synonymous sites and 2¹/₃ synonymous sites in this peptide

		Val			Leu			Arg			Th	r	
	G	Т	Α	С	Т	G	Α	Α	Α	A	С	С	Total
# substitutions													
# non-syn	0	0	0	1	0	0	0	0	0	0	0	0	1

		Val			Met			Arg			Thr		
	G	Т	Т	Α	Т	G	Α	А	G	Α	С	С	Total
degeneracy			(4)						(2)			(4)	
# non-syn sites	1	1	0	1	1	1	1	1	$\frac{2}{3}$	1	1	0	$9\frac{2}{3}$
# syn sites	0	0	1	0	0	0	0	0	$\frac{1}{3}$	0	0	1	2 ^ĭ / ₃

nucleotide sites give 9²/₃ non-synonymous sites and 2¹/₃ synonymous sites in this peptide

		Val			Leu			Arg			Thr		
	G	Т	Α	С	Т	G	А	А	Α	А	С	С	Total
# substitutions													
# non-syn	0	0	0	1	0	0	0	0	0	0	0	0	1
# syn	0	0	1	0	0	0	0	0	1	0	0	0	2

Now,

$$K_{a} = \frac{\#nonsyn_substitutions}{\#nonsyn_sites} = \frac{1}{9\frac{2}{3}} = 0.103$$
and

$$K_{s} = \frac{\#syn_substitutions}{\#syn_sites} = \frac{2}{2\frac{1}{3}} = 0.857$$
Thus,

$$\frac{K_{a}}{K_{s}} = \frac{dN}{dS} = \omega = \frac{0.103}{0.857} = 0.12$$

CodeML: Output

- CodonFreq=F3x4 (estimation of codon frequency distribution)
- NSsites=M2a (positive selection)

Model	NSsites	р	Parameters
M0 (one ratio)	0	1	0
M1a (neutral)	1	2	$p_0 (p_1 = 1 - p_0),$
M2a (selection)	2	4	$\omega_0 < 1, \omega_1 = 1$ $p_0, p_1 (p_2 = 1 - p_0 - p_1),$ $\omega_0 < 1, \omega_1 = 1, \omega_0 > 1$
M3 (discrete)	3	5	$p_0, p_1 (p_2 = 1 - p_0 - p_1)$
M7 (beta)	7	2	$\omega_0, \omega_1, \omega_2$ p, q
M8 (beta&w)	8	4	$p_0 (p_1 = 1 - p_0),$
			$p, q, \omega_s > 1$

NOTE.—The site models are implemented using the control variable NSsites in CODEML, and p is the number of free parameters in the ω distribution.

