Evolutionary analyses of positively selected sites in the interferon-induced innate immunity factor Mx1 of bats

seit 1558
Martin Hölzer

RNA Bioinformatics and High Throughput Analysis

Friedrich-Schiller-University Jena

31st TBI Winterseminar in Bled

February 29, 2016

Run!

Now, here, you see, it takes all the running you can do, to keep in the same place.

- Red Queen to Alice

Run!

Now, here, you see, it takes all the running you can do, to keep in the same place.

- Red Queen to Alice

- "arms race" between host and virus

Co-Evolution and detecting natural selection

Sironi, Manuela, et al. "Evolutionary insights into host-pathogen interactions from mammalian sequence data." Nature Reviews Genetics 16.4 (2015): 224-236.

3 of 10

Co-Evolution and detecting natural selection

Species

Synonymous substitution
(no amino acid replacement)
Non-synonymous substitution
(amino acid replacement)
$\mathrm{dN} / \mathrm{dS}<1$
(negative selection)
dN/dS-1
(neutral evolution)
dN/dS >1
(positive selection)
Lineage-specific selection
(episodic selection)

Species
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Sironi, Manuela, et al. "Evolutionary insights into host-pathogen interactions from mammalian sequence data." Nature Reviews Genetics 16.4 (2015): 224-236.

3 of 10

Co-Evolution and detecting natural selection

Synonymous substitution (no amino acid replacement)	Species		
	$\mathrm{dS}=\frac{\# \text { syn substitutions }}{\# \text { syn } \text { sites }}$	2	
Non-synonymous substitution		3	
(amino acid replacement)			
dN/dS <1 (negative selection)		dN \# non-syn substitutions	5
	6		
dN/dS - 1	7 8		
(neutral evolution)		9	
dN/dS > 1		10	
(positive selection)		11	
		12	
Lineage-specific selection		13	
(episodic selection)		14	

Sironi, Manuela, et al. "Evolutionary insights into host-pathogen interactions from mammalian sequence data." Nature Reviews Genetics 16.4 (2015): 224-236.

3 of 10

Co-Evolution and detecting natural selection

Species

Sironi, Manuela, et al. "Evolutionary insights into host-pathogen interactions from mammalian sequence data." Nature Reviews Genetics 16.4 (2015): 224-236.

3 of 10

Mx GTPases

- Myxovirus resistance protein 1 (A) and 2 (B), two $M x$ copies in most mammals

Haller et al. "Mx GTPases: dynamin-like antiviral machines of innate immunity." Trends in microbiology (2015): 154-163.

Mx GTPases

- Myxovirus resistance protein 1 (A) and 2 (B), two $M x$ copies in most mammals
- dynamin-like GTPases

Haller et al. "Mx GTPases: dynamin-like antiviral machines of innate immunity." Trends in microbiology (2015): 154-163.

Mx GTPases

- Myxovirus resistance protein 1 (A) and 2 (B), two $M x$ copies in most mammals
- dynamin-like GTPases
- induced by IFN I/III

Haller et al. "Mx GTPases: dynamin-like antiviral machines of innate immunity." Trends in microbiology (2015): 154-163.

Mx GTPases

- Myxovirus resistance protein 1 (A) and 2 (B), two $M x$ copies in most mammals
- dynamin-like GTPases
- induced by IFN I/III
- key antiviral effector proteins in mammals

Haller et al. "Mx GTPases: dynamin-like antiviral machines of innate immunity." Trends in microbiology (2015): 154-163.

Mx GTPases

- Myxovirus resistance protein 1 (A) and 2 (B), two $M x$ copies in most mammals
- dynamin-like GTPases
- induced by IFN I/III
- key antiviral effector proteins in mammals
- blocking early steps of viral replication cycles (DNA, RNA)

Haller et al. "Mx GTPases: dynamin-like antiviral machines of innate immunity." Trends in microbiology (2015): 154-163.

Mx GTPases

Mitchell, Patrick S., et al. "Evolution-guided identification of antiviral specificity determinants in the broadly acting interferon-induced innate immunity factor MxA." Cell host \& microbe 12.4 (2012): 598-604.

Mx GTPases

B
Barbary macaque rhesus macaque African green monkey

Bolivian woolly monkey
common squirel monkey
$33 \quad 540$
CQDQVYRGALQKVREKELEEEKK-KKSWDVGTFQSS-STDS CQDQVYRGALQKVREKELEEEKK-KKSWDIGTFQPS-STES CQDQVYRGALQKVREKELEEEKK-KKSWDVGTFQPS-STDS
CODQVYRGALQKVREKELEEEKK-KKSWDFGAFQSSSATDS CQDQVYRGALQKVREKELEEEKK-KKSWDFGAFRSSSATDS CQDQVYRGALQKVREKEMEEEKK-KKPWDLGVFQSSSTTDA
CQDQVYRSALOKVREKELEEEKRSKKSCFAMVVEPS-SSES CQDQVYRSALQKVRENELEEEKKSKKPCFTMIVEHF-SAES CQDQVYRNALQKVREKELEEEKKSKRSCFAMTPEOS-SADS CQDOUYRGALOKVREKEMEEEKKSNKSCFSMIAEOF-SAES CQDQVYRGALOKVREKEMEEEKKSNK

Mitchell, Patrick S., et al. "Evolution-guided identification of antiviral specificity determinants in the broadly acting interferon-induced innate immunity factor MxA." Cell host \& microbe 12.4 (2012): 598-604.

$$
{ }_{\Omega}
$$

Mx1 in bats?

Mx1 in bats?

Mx1 in bats?

Mx1 in bats?

Workflow to detect positively selected sites

Workflow to detect positively selected sites

Workflow to detect positively selected sites

Workflow to detect positively selected sites

Workflow to detect positively selected sites

[^0]
Workflow to detect positively selected sites

Workflow to detect positively selected sites

[^1]
Workflow to detect positively selected sites

[^2]
Workflow to detect positively selected sites

[^3]
Workflow to detect positively selected sites

[^4]
Workflow to detect positively selected sites

[^5]
Workflow to detect positively selected sites

[^6]
Positive selection in newly cloned bat $M x 1$ sequences

Positive selection in newly cloned bat $M x 1$ sequences

Positive selection in newly cloned bat $M x 1$ sequences

Positive selection in newly cloned bat $M x 1$ sequences

2																						Loop																			
535	536	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552	553	554	5555	556	557	558	559	560	561	562	563	564	565	565	567	568	569	570	571	572	573	574	57557	576.577
49		caa	SAC		Eed	ACT	CAT	CTA	CAG A	ATG A	ATC ${ }^{\text {a }}$	MEA ${ }^{\text {S }}$	GAG	M9	GMA	TA	GAA	Cas	AAC	--	--	--	--	NAG	AG	AMG	TCC	ढTC	T1	GcG	ता	TCT	cosi	AAC	AAT	TCC	Cas	AGC	---	70	
A4		C4a	1	T	cos	ACT	T00	TS	cas	24.14	Tc\|	3	40	A6	iAA	TA	iAa	cas	CAG	--	-	--	...	AAR	A4S	ARA	сто	O00	T1	oca	CCT	тCT	348	asc	AOC	TCT	TCC	Cat	ASC	-me	
*		reas	scc		cos	Gct	GCG	cto	cada	${ }_{0}$	ATC	GA	Gag	Parc	ina	TCA	Ha	ind	jac	A06		GGG	atr	Tपा	नc	Cag	CAG	ACG	TCO	TLT	वार	acs		col	Th	act	toc	TCL	.-.	-	σ
A		cag	606		cge	ACC	G06	ETG	GGA	ad A	atc ${ }^{\text {c }}$	G	GGG	ATG	Sin	gcc	N	Gang	AT	---	Ag	AG	46	246	AG	GMG	Cat	AाT	TrC	T1	Gin	G4G		CCI	$\pi 6$	TCC	TGC	TCC	---	-	IC,
1		CAS	ATS	T2	CAG	AGT	TCA	TA	Cag	4	ATC		008	Aag	946	AAS	TA5	PAG	SAA	A		ATS	HAS	AAS	tas	π	AST	Tot	TG	AAC	cा	caa	Cag	AGT	TCA	AOT	AAC	TCC	---		-
$\triangle A G$		46	GTG		CAG	GA	TCh	TA	CAG	M	GTC	0	GAG	Mas	Ag	AKT	A	M	CAA	---	--	aAC	MG	AAT	M	TCA	AGA	जा	TG		Cा	GTA	CAG	AGT	TCT	cca		A ${ }^{\text {ce }}$	TCG	cces	G6.
${ }^{4}$		ChG	GTG		LGG	Ara	TCA	TR	CAG	ata g	GTC ${ }^{\text {a }}$	age	GMg	ME	Ac	ang	ifs	M 4	GIT		CAAA	tac	As	AMT	Wal	TCA	AGA	जा	TE	Nac	CI	GAP	CAG	AGT	T1	CCA	AMT	GTC	ace	oxp	,
							${ }^{0.624}$									0.680			0.973							0.797	0.971	0.825				0.772			0.850		0.777	0.997			
							0.843									0.881			0.990							0.920	0.909	0.934		0.564		0.903			0.946	0.523	0.930	0.999			
							0.627									0.657			0.963							0.774	0.964	0.897				0.759			0.943		0.726	0.996			
						0.563	0.842									0.862			0.985							0.897	0.986	0.957		0.515		${ }_{0}^{0.886}$			0.9760	0.674	0.906	b.999			
							0.789									0.837			0.974							0.914	0.986	0.937				0.917			0.970	0.734	0.596	0.994			
						0.778	0.920									0.930			0.988					0.590			0.994	D.974			0.5520	0.956			0.986	0.880	0.657	0.998			

Positive selection in newly cloned bat $M x 1$ sequences

Positive selection: more bat species

Positive selection: bats and other mammals

substitutions/site

Thank you for your attention!

Thanks to all my group members!
Manja Marz
Konrad Sachse
Holger Bierhoff
Franziska Hufsky
Markus Fricke
Konstantin Riege
Emanuel Barth
Nelly F. M. Berrospi
Bertram Vogel
Michael Gaspar

Akash Srivastava
... and Georg and Jonas (Mx-guys from Universitätsklinikum Freiburg)

Calculating selective pressure, K_{a} / K_{s}

- K_{a} / K_{s} ratio is an indicator of selective pressure acting on protein-coding genes

Calculating selective pressure, K_{a} / K_{s}

- K_{a} / K_{s} ratio is an indicator of selective pressure acting on protein-coding genes
- K_{a} : number of non-synonymous substitutions per non-synonymous site

Calculating selective pressure, K_{a} / K_{s}

- K_{a} / K_{s} ratio is an indicator of selective pressure acting on protein-coding genes
- K_{a} : number of non-synonymous substitutions per non-synonymous site
- K_{s} : number of synonymous substitutions per synonymous site

Calculating selective pressure, K_{a} / K_{s}

- K_{a} / K_{s} ratio is an indicator of selective pressure acting on protein-coding genes
- K_{a} : number of non-synonymous substitutions per non-synonymous site
- K_{s} : number of synonymous substitutions per synonymous site
- homologous genes with a K_{a} / K_{s} ratio above 1 are evolving under positive selection
- at least some of the mutations concerned must be advantageous

Calculating selective pressure, K_{a} / K_{s}

- K_{a} / K_{s} ratio is an indicator of selective pressure acting on protein-coding genes
- K_{a} : number of non-synonymous substitutions per non-synonymous site
- K_{s} : number of synonymous substitutions per synonymous site
- homologous genes with a K_{a} / K_{s} ratio above 1 are evolving under positive selection
- at least some of the mutations concerned must be advantageous
- if all the mutations are neutral or disadvantageous, the ratio will be in the range 0 to 1

Calculating selective pressure, K_{a} / K_{s}

- K_{a} / K_{s} ratio is an indicator of selective pressure acting on protein-coding genes
- K_{a} : number of non-synonymous substitutions per non-synonymous site
- K_{s} : number of synonymous substitutions per synonymous site
- homologous genes with a K_{a} / K_{s} ratio above 1 are evolving under positive selection
- at least some of the mutations concerned must be advantageous
- if all the mutations are neutral or disadvantageous, the ratio will be in the range 0 to 1
- however, if some of the mutations are advantageous and some disadvantageous, the ratio could be less than 1

Calculating selective pressure, K_{a} / K_{s}

- K_{a} / K_{s} ratio is an indicator of selective pressure acting on protein-coding genes
- K_{a} : number of non-synonymous substitutions per non-synonymous site
- K_{s} : number of synonymous substitutions per synonymous site
- homologous genes with a K_{a} / K_{s} ratio above 1 are evolving under positive selection
- at least some of the mutations concerned must be advantageous
- if all the mutations are neutral or disadvantageous, the ratio will be in the range 0 to 1
- however, if some of the mutations are advantageous and some disadvantageous, the ratio could be less than 1
- $K_{a} / K_{s}-\mathrm{dN} / \mathrm{dS}-\omega$

Calculating selective pressure, K_{a} / K_{s}

- K_{a} / K_{s} ratio is an indicator of selective pressure acting on protein-coding genes
- K_{a} : number of non-synonymous substitutions per non-synonymous site
- K_{s} : number of synonymous substitutions per synonymous site
- homologous genes with a K_{a} / K_{s} ratio above 1 are evolving under positive selection
- at least some of the mutations concerned must be advantageous
- if all the mutations are neutral or disadvantageous, the ratio will be in the range 0 to 1
- however, if some of the mutations are advantageous and some disadvantageous, the ratio could be less than 1
- $K_{a} / K_{s}-\mathrm{dN} / \mathrm{dS}-\omega \quad \kappa-\mathrm{Ts} / T v$

Example: calculating K_{a} / K_{s}

Example: calculating K_{a} / K_{s}

	Va			Met			Arg			Thr			
	G	T	T	A	T	G	A	A	G	A	C	C	Tota
degeneracy			(4)						(2)			(4)	

Example: calculating K_{a} / K_{s}

	Val			Met			Arg			Thr			
	G	T	T	A	T	G	A	A	G	A	C	C	Total
degeneracy			(4)						(2)			(4)	
\# non-syn sites	1	1	0	1	1	1	1	1	$\frac{2}{3}$	1	1	0	$9 \frac{2}{3}$

Example: calculating K_{a} / K_{s}

	Val			Met			Arg			Thr			
	G	T	T	A	T	G	A	A	G	A	C	C	Total
degeneracy			(4)						(2)			(4)	
\# non-syn sites	1	1	0	1	1	1	1	1	3	1	1	0	$9 \frac{2}{3}$
\# syn sites	0	0	1	0	0	0	0	0	3	0	0	1	$2 \frac{1}{3}$

Example: calculating K_{a} / K_{s}

	Val			Met			Arg			Thr			
	G	T	T	A	T	G	A	A	G	A	C	C	Total
degeneracy			(4)						(2)			(4)	
\# non-syn sites	1	1	0	1	1	1	1	1	$\frac{2}{3}$	1	1	0	$9{ }^{2}$
\# syn sites	0	0	1	0	0	0	0	0	3	0	0	1	$2 \frac{1}{3}$

- nucleotide sites give $9 \frac{2}{3}$ non-synonymous sites and $2 \frac{1}{3}$ synonymous sites in this peptide

Example: calculating K_{a} / K_{s}

	Val			Met			Arg			Thr			
	G	T	T	A	T	G	A	A	G	A	C	C	Total
degeneracy			(4)						(2)			(4)	
\# non-syn sites	1	1	0	1	1	1	1	1	2	1	1	0	$9 \frac{2}{3}$
\# syn sites	0	0	1	0	0	0	0	0	$\frac{1}{3}$	0	0	1	$2 \frac{1}{3}$

- nucleotide sites give $9 \frac{2}{3}$ non-synonymous sites and $2 \frac{1}{3}$ synonymous sites in this peptide

		Leu		Arg			Thr			
G	A	C	G	A	A	A	A	C	C	Total

Example: calculating K_{a} / K_{s}

	Val			Met			Arg			Thr			
	G	T	T	A	T	G	A	A	G	A	C	C	Total
degeneracy			(4)						(2)			(4)	
\# non-syn sites	1	1	0	1	1	1	1	1	$\frac{2}{3}$	1	1	0	$9 \frac{2}{3}$
\# syn sites	0	0	1	0	0	0	0	0	$\frac{1}{3}$	0	0	1	$2 \frac{1}{3}$

- nucleotide sites give $9 \frac{2}{3}$ non-synonymous sites and $2 \frac{1}{3}$ synonymous sites in this peptide

		Leu		Arg			Thr			
G	A	C	G	A	A	A	A	C	C	Total

\# substitutions
\# non-syn
00
100
000
000
1

Example: calculating K_{a} / K_{s}

	Val			Met			Arg			Thr			
	G	T	T	A	T	G	A	A	G	A	C	C	Total
degeneracy			(4)						(2)			(4)	
\# non-syn sites	1	1	0	1	1	1	1	1	$\frac{2}{3}$	1	1	0	$9 \frac{2}{3}$
\# syn sites	0	0	1	0	0	0	0	0	$\frac{1}{3}$	0	0	1	$2 \frac{1}{3}$

- nucleotide sites give $9 \frac{2}{3}$ non-synonymous sites and $2 \frac{1}{3}$ synonymous sites in this peptide

G	

\# substitutions
\# non-syn

0	0	0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	1	0	0	0	2

Example: calculating K_{a} / K_{s}

Now,

$$
K_{a}=\frac{\# \text { nonsyn_substitutions }}{\# \text { nonsyn_sites }}=\frac{1}{9 \frac{2}{3}}=0.103
$$

and

$$
K_{s}=\frac{\# \text { syn_substitutions }}{\# \text { syn_sites }}=\frac{2}{2 \frac{1}{3}}=0.857
$$

Thus,

$$
\frac{K_{a}}{K_{s}}=\frac{d N}{d S}=\omega=\frac{0.103}{0.857}=0.12
$$

CodeML: Output

- CodonFreq=F3x4 (estimation of codon frequency distribution)
- NSsites=M2a (positive selection)

Model	NSsites	p	Parameters		
M0 (one ratio) M1a (neutral)	0	1	ω		
M2a (selection)	1	2	$p_{0}\left(p_{1}=1-p_{0}\right)$, $\omega_{0}<1, \omega_{1}=1$ $p_{0}, p_{1}\left(p_{2}=1-p_{0}-p_{1}\right)$, $\omega_{0}<1, \omega_{1}=1, \omega_{2}>1$ M3 (discrete)		
M7 (beta)	3	4	5		$p_{0}, p_{1}\left(p_{2}=1-p_{0}-p_{1}\right)$
:---:					
$\omega_{0}, \omega_{1}, \omega_{2}$					
M8 (beta\& ω)					

NoTE.-The site models are implemented using the control variable NSsites in codeml, and p is the number of free parameters in the ω distribution.
\Longrightarrow [codeml.variable.mic]

[^0]: 6 of 10

[^1]: 6 of 10

[^2]: 6 of 10

[^3]: 6 of 10

[^4]: 6 of 10

[^5]: 6 of 10

[^6]: 6 of 10

