Orthologs, turn-over, and remolding of tRNAs in primates

Anne Hoffmann

Department of Computer Science, and Interdisciplinary Center for Bioinformatics Universität Leipzig

19th February 2016

Remolding

Mutation inside the anticodon such that the tRNA identity changes

Remolding

Mutation inside the anticodon such that the tRNA identity changes

Alloacceptor anticodon change

Remolding

Mutation inside the anticodon such that the tRNA identity changes

Alloacceptor anticodon change **Isoacceptor** anticodon change

- tRNA genes act as repetitive elements
- loss of tRNAs leads to large differences in the tRNA complements
- reconstruction of the history of a gene familiy is not possible with common methods
 - reciprocal best match
 - phylogenetic tree-based
- \rightarrow Aim: create a framework to distinguish paralogs and orthologs in gene families of related species

1. Annotation of tRNAs

 \rightarrow tRNA gene detection in genome sequences applying tRNAscan-SE

- $\bullet\,$ It is able to detect ${\sim}99\%$ of eukaryotic nuclear tRNA genes
- 5 primates and human
- 12 drosophilids

2. Determine anchors of tRNAs

I) MSA block based approach

 \rightarrow Sequence-unique MAF blocks of multiz alignments

2. Determine anchors of tRNAs

I) MSA block based approach

 \rightarrow Sequence-unique MAF blocks of multiz alignments

- II) Orthologous proteins approach
- \rightarrow 1 : 1 set of orthologs
- \rightarrow Linear coordinate interpolation

 $t^* = p^b + \frac{q^b - p^b + 1}{q^a - p^a + 1} t^a$

2. Determine anchors of tRNAs

- I) MSA block based approach
- \rightarrow Sequence-unique MAF blocks of multiz alignments

- II) Orthologous proteins approach
- \rightarrow 1 : 1 set of orthologs
- \rightarrow Linear coordinate interpolation

4. Orthology reconstruction

4. Orthology reconstruction

 \rightarrow Generalized list alignments

Ptr	-	-	-	-	-	V	~	V	~	R	~
Hsa	-	-	-	-	-	V	~	V	~	R	~
Ggo	-	-	-	-	-	V	~	V	~	R	~
Pab	F	F	Κ	Κ	L	V	V	V	V	R	R
Nle	-	-	-	-	-	V	~	V	~	R	~
Mmu	F	F	Κ	Κ	L	V	~	V	~	R	~

4. Orthology reconstruction

Gain, loss and duplications of tRNAs in primates (MSA)

- 482 singeltons
- 64 tRNAs of a single species
- $ightarrow rac{2}{3}$ syntenically conserved tRNAs
- 327 cliques, without duplications
- 206 including duplications

Gain, loss and duplications of tRNAs in primates (OP)

 $\bullet~231$ genomic clusters of tRNAs, of which 166 are nontrivial

 $\rightarrow\,$ Less numbers of evolutionary events detectable

Comparison of the different methods

• Number of clustered tRNAs

Comparison of the different methods

- Number of ortholog edges
- $\bullet~83\%$ of the edges of MSA are recovered with PO

Remolding events in primates (MSA)

- Alloacceptor (red), isoacceptor (blue)
- Most remolding events constitute pseudogenes

- Created significant methods to detect phylogenetic events on tRNAs
- MSA is sensitive for predictions of remolding events
- Remolding events mostly occur in pseudogenes
- A large number of gain and loss of tRNAs are species specific

Acknowledgements

Many thanks to:

- Peter F. Stadler
- Clara I. Bermúdez Santana
- Maribel Hernández Rosales
- Sarah J. Berkemer
- Cristian A. Velandia-Huerto
- Nancy Retzlaff
- Liliana Romero Marroquin

Thank you for your attention!