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Clustering ncRNA sequences using structure conservation

human GACACAGU

GraphClust [Heyne et al., Bioinformatics, 2012]:

Clusters ncRNA sequences

Can find paralogs belonging to
same ncRNA class

Features based on local
sequence and structure

RNAscClust:

Clusters paralogous RNA
sequences structurally aligned to
their orthologs

Extends GraphClust approach:

⇒ Derives evolutionary
conserved sequence and
secondary structure
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Single sequence vs alignment clustering
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Identifying similarities of secondary structures

Neighborhood Subgraph Pairwise Distance (NSPD) Graph Kernel

[Costa and De Grave, Proceedings ICML 10, 2010]
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intuitively: structure k-mers

ncRNAs highly similar if many shared substructures
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Measuring structure similarity of multiple alignments
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human
chimp
pig

mouse

threshold t
base pair
reliabilities

constraints( ( (       ) ) )

PETfold

[Seemann et al., NAR, 2008]
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[Lorenz et al., Alg for Mol Biol, 2011]

→ use NSPD Graph Kernel to compare alignments
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RNAscClust pipeline: From input alignments to clustering

Set of
multiple alignments

Reliable basepairs

Constrained folding

Pairwise similarities

Clustering of
multiple alignments

NSPD Graph Kernel

GraphClust postprocessing steps
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Constructing a benchmark data set

Split Rfam 12 family seed alignments into subalignments:

Human

Mouse

Pig

Chimp

Rfam family
seed alignment

Family
subalignments

split

1 Each subalignment contains one human sequence

2 Similar sequences from different species form a subalignment
⇒ subalignments have max. sequence identity

Ideal clustering groups only subalignments from same Rfam family
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Comparing sequence to alignment clustering

Subalignments in benchmark set
Human

Cluster with GraphClust

Extract human
sequences

Human sequences in benchmark set

Cluster with RNAscClust

Compare clustering performance
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Low covariation in the benchmark data set

Benchmark set has high Average Pairwise Sequence Identity (APSI) in
alignments
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→ limit APSI to study effect of covariation on clustering performance
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Benchmark sets with different degrees of covariation

Create 2 additional benchmark data set with controlled APSI in alignments
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Clustering performance metrics - V-measure

Homogeneity H: each cluster contains only members of a single family

Completeness C : all members of a given family are in same cluster

V-measure [Rosenberg and Hirschberg, 2007] is harmonic mean of H and C :

V =
2 · H · C
H + C
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Clustering performance metrics - Adjusted Rand Index

a = #object pairs from same family assigned to same cluster

b = #object pairs from different families assigned to different clusters

n = number of alignments

Rand Index =
a + b(n

2

)
Adjusted Rand Index [Hubert and Arabie, 1985] is Rand Index [Rand,
1971] adjusted for chance

12 / 15



More covariation improves RNAscClust performance

V-measure Adjusted Rand Index
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RNAscClust – Conclusion

Leverage conserved sec. structure derived from multiple alignments

NSPD Graph Kernel as similarity measure

Improved clustering compared to GraphClust

Next step:

Genome-scale clustering of potential ncRNAs
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Identifying similarities of secondary structures

Neighborhood Subgraph Pairwise Distance (NSPD) Kernel used in
GraphClust [Heyne et al., Bioinformatics, 2012]
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RNAscClust full pipeline

Local sensitivity 
hashing 

GraphClust methodology

RNAscClust specific input and methodology

Candidate clusters
of 

multiple alignments
Sparse feature 
vectorization

  Iterate until no candiate left

1 2 3 4 5

6 7 8

Predicting sets of
 sec. structures

Input multiple
alignments

Cluster refinement 
and extension

Candidate clusters
of representatives

Report
clusters

Steps executed in parallel are shown as stacks
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V-measure

Clusters K = {K1, . . . ,Km}; true classes C = {C1, . . . ,Cn}. Homogeneity
h is defined as:

h =

{
1 if H(C |K ) = 0

1− H(C |K)
H(C) else

H(C |K ) is the conditional entropy of the classes given the clustering and
H(C ) is the entropy of the classes, i.e.,

H(C |K ) = −
|K |∑
k=1

|C |∑
c=1

ack
N

log
ack∑|C |
c=1 ack

H(C ) = −
|C |∑
c=1

∑|K |
k=1 ack

n
log

∑|K |
k=1 ack

n
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V-measure

Clusters K = {K1, . . . ,Km}; true classes C = {C1, . . . ,Cn}.
On the other hand, completeness c is defined as:

c =
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V-measure is harmonic mean of homogeneity and completeness and is not
normalized wrt. random labeling. 0.0 is as bad as it can be, 1.0 is perfect.

19 / 15



Constructing a benchmark data set

Split each Rfam 12 family seed alignment into subalignments. Similar
sequences from different species form a subalignment.

Human

Mouse

Pig

Chimp

Rfam family
seed alignment

Family
subalignments

split

20 / 15



Constructing a benchmark data set

1) Each sequence in the alignment is represented as a node in a graph.

Human Mouse PigChimp
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Constructing a benchmark data set

2) Remove sequences with pairwise sequence identify (PSI) > 0.95.

Human Mouse PigChimp
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Constructing a benchmark data set

3) Add edge between sequences from diff. species with PSI ∈ (0.9, 0.95].

Human Mouse PigChimp
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Constructing a benchmark data set

4) Search for cliques in graph.

Human Mouse PigChimp
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Constructing a benchmark data set

5) Add clique with max. APSI as subalignment to benchmark data set.

Human Mouse PigChimp

Family subalignments (Cliques)

1
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Constructing a benchmark data set

6) Add edge between sequences from diff. species with PSI ∈ (0.8, 0.9].
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Family subalignments (Cliques)

1
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Constructing a benchmark data set

7) Add clique as subalignment to benchmark data set.
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Constructing a benchmark data set

8) Add edge between sequences from diff. species with PSI ∈ (0.7, 0.8].

Human Mouse PigChimp

Family subalignments (Cliques)

1 2
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