RNAscClust – clustering RNAs using structure conservation and graph-based motifs

Milad Miladi¹ Alexander Junge²

miladim@informatik.uni-freiburg.de

ajunge@rth.dk

¹Bioinformatics Group, University of Freiburg

²Center for non-coding RNA in Technology and Health (RTH), University of Copenhagen

31st TBI Winterseminar Bled, Slovenia February 2016

GraphClust [Heyne et al., Bioinformatics, 2012]:

- Clusters ncRNA sequences
- Can find paralogs belonging to same ncRNA class
- Features based on local sequence and structure

Clustering ncRNA sequences using structure conservation

GraphClust [Heyne et al., Bioinformatics, 2012]:

- Clusters ncRNA sequences
- Can find paralogs belonging to same ncRNA class
- Features based on local sequence and structure

RNAscClust:

- Clusters paralogous RNA sequences structurally aligned to their orthologs
- Extends GraphClust approach:

Clustering ncRNA sequences using structure conservation

GraphClust [Heyne et al., Bioinformatics, 2012]:

- Clusters ncRNA sequences
- Can find paralogs belonging to same ncRNA class
- Features based on local sequence and structure

RNAscClust:

- Clusters paralogous RNA sequences structurally aligned to their orthologs
- Extends GraphClust approach:
 ⇒ Derives evolutionary conserved sequence and secondary structure

Single sequence vs alignment clustering

Single sequence vs alignment clustering

Identifying similarities of secondary structures

Neighborhood Subgraph Pairwise Distance (NSPD) Graph Kernel [Costa and De Grave, Proceedings ICML 10, 2010]

- intuitively: structure k-mers
- ncRNAs highly similar if many shared substructures

Measuring structure similarity of multiple alignments

base pair reliabilities

constraints

PETfold

[Seemann et al., NAR, 2008]

Measuring structure similarity of multiple alignments

 \rightarrow use NSPD Graph Kernel to compare alignments

RNAscClust pipeline: From input alignments to clustering

Split Rfam 12 family seed alignments into subalignments:

Split Rfam 12 family seed alignments into subalignments:

- Each subalignment contains one human sequence
- Similar sequences from different species form a subalignment ⇒ subalignments have max. sequence identity

Split Rfam 12 family seed alignments into subalignments:

- Each subalignment contains one human sequence
- Similar sequences from different species form a subalignment ⇒ subalignments have max. sequence identity

Ideal clustering groups only subalignments from same Rfam family

Comparing sequence to alignment clustering

Low covariation in the benchmark data set

Benchmark set has high Average Pairwise Sequence Identity (APSI) in alignments

Low covariation in the benchmark data set

Benchmark set has high Average Pairwise Sequence Identity (APSI) in alignments

 \rightarrow limit APSI to study effect of covariation on clustering performance

Benchmark sets with different degrees of covariation

Create 2 additional benchmark data set with controlled APSI in alignments

0.64 mean APSI 26 families 166 alignments

0.49 mean APSI 10 families 92 alignments

- Homogeneity H: each cluster contains only members of a single family
- Completeness C: all members of a given family are in same cluster
- V-measure [Rosenberg and Hirschberg, 2007] is harmonic mean of H and C:

$$V = \frac{2 \cdot H \cdot C}{H + C}$$

- a = #object pairs from same family assigned to same cluster
- b = #object pairs from different families assigned to different clusters
- *n* = number of alignments

Rand Index =
$$\frac{a+b}{\binom{n}{2}}$$

• Adjusted Rand Index [Hubert and Arabie, 1985] is Rand Index [Rand, 1971] adjusted for chance

More covariation improves RNAscClust performance

- Leverage conserved sec. structure derived from multiple alignments
- NSPD Graph Kernel as similarity measure
- Improved clustering compared to GraphClust

- Leverage conserved sec. structure derived from multiple alignments
- NSPD Graph Kernel as similarity measure
- Improved clustering compared to GraphClust

Next step:

• Genome-scale clustering of potential ncRNAs

Acknowledgements

Bioinformatics Group, University of Freiburg:

- Milad Miladi
- Fabrizio Costa
- Rolf Backofen

Funding:

RTH, University of Copenhagen:

- Stefan Seemann
- Jakob Hull Havgaard
- Jan Gorodkin

DFG, Danish Center for Scientific Computing, Innovation Fund Denmark, Danish Cancer Society

Acknowledgements

Bioinformatics Group, University of Freiburg:

- Milad Miladi
- Fabrizio Costa
- Rolf Backofen

RTH, University of Copenhagen:

- Stefan Seemann
- Jakob Hull Havgaard
- Jan Gorodkin

Funding:

DFG, Danish Center for Scientific Computing, Innovation Fund Denmark, Danish Cancer Society

Thank you for your attention!

Identifying similarities of secondary structures

Neighborhood Subgraph Pairwise Distance (NSPD) Kernel used in GraphClust [Heyne et al., Bioinformatics, 2012]

- ullet pprox structure k-mers
- ncRNAs highly similar if many shared substructures

RNAscClust full pipeline

Steps executed in parallel are shown as stacks

V-measure

Clusters $K = \{K_1, \ldots, K_m\}$; true classes $C = \{C_1, \ldots, C_n\}$. Homogeneity h is defined as:

$$h = \begin{cases} 1 & \text{if } H(C|K) = 0\\ 1 - \frac{H(C|K)}{H(C)} & \text{else} \end{cases}$$

H(C|K) is the conditional entropy of the classes given the clustering and H(C) is the entropy of the classes, i.e.,

$$H(C|K) = -\sum_{k=1}^{|K|} \sum_{c=1}^{|C|} \frac{a_{ck}}{N} \log \frac{a_{ck}}{\sum_{c=1}^{|C|} a_{ck}}$$
$$H(C) = -\sum_{c=1}^{|C|} \frac{\sum_{k=1}^{|K|} a_{ck}}{n} \log \frac{\sum_{k=1}^{|K|} a_{ck}}{n}$$

V-measure

Clusters $K = \{K_1, \ldots, K_m\}$; true classes $C = \{C_1, \ldots, C_n\}$. On the other hand, completeness *c* is defined as:

$$c = egin{cases} 1 & ext{if } H(K|C) = 0 \ 1 - rac{H(K|C)}{H(K)} & ext{else} \end{cases}$$

where H(K|C) is the conditional entropy of the clustering given the classes and H(K) is the entropy of the clustering, i.e.,

$$H(K|C) = -\sum_{c=1}^{|C|} \sum_{k=1}^{|K|} \frac{a_{ck}}{N} \log \frac{a_{ck}}{\sum_{k=1}^{|K|} a_{ck}}$$
$$H(K) = -\sum_{k=1}^{|K|} \frac{\sum_{c=1}^{|C|} a_{ck}}{n} \log \frac{\sum_{c=1}^{|C|} a_{ck}}{n}$$

V-measure is harmonic mean of homogeneity and completeness and is not normalized wrt. random labeling. 0.0 is as bad as it can be, 1.0 is perfect. 19/15 Split each Rfam 12 family seed alignment into subalignments. *Similar* sequences from *different* species form a subalignment.

Human Chimp

Mouse Pig

1) Each sequence in the alignment is represented as a node in a graph.

2) Remove sequences with pairwise sequence identify (PSI) > 0.95.

3) Add edge between sequences from diff. species with $PSI \in (0.9, 0.95]$.

4) Search for cliques in graph.

5) Add clique with max. APSI as subalignment to benchmark data set.

6) Add edge between sequences from diff. species with $PSI \in (0.8, 0.9]$.

7) Add clique as subalignment to benchmark data set.

8) Add edge between sequences from diff. species with $PSI \in (0.7, 0.8]$.

Family subalignments (Cliques)

