A Generic Group Contribution Method

Daniel Merkle Nikolai Nøjgaard

Institut for Matematik og Datalogi

Syddansk Universitet
February 15, 2016

Generative Chemistries

A Typical Group Contribution Method

Making it Generic

Testing it Out

Discussion

Generative Chemistries

- The study of exploring chemical spaces of unknown compounds.
- Given a set of molecules and a set of reactions, the chemical space is modeled as a hypergraph.
- Inferring hyperpaths in hypergraphs.

Motivation

- Asses the chemical quality of hyperpaths.
- Affected by various chemical properties.
- Wetlab? Expensive..
- Need a predictive method!

The Group Contribution Method!

- Assumes a linear relationship between property and chemical structures (groups).
- Decomposes molecules into a set of groups.
- The target property can then be predicted as the sum of contributions of its corresponding groups:

$$
t=\sum_{i \in G} G_{i} \cdot C_{i}
$$

The Three Problems

- Group Identification.
- Compound Decomposition.
- Model Learning.

Group Identification

- Expert knowledge required.
- Differentiates on non-topological characteristics.
- Aromatic rings etc.
- Assigned a priority.

TABLE 1 Structural groups used in group contribution method

Description of molecular substructure
Molecular substructures involving halogens
-Cl (attached to a primary carbon with no other chlorine atoms attached)*
-Cl (attached to a secondary carbon with no other chlorine atoms attached)*
-Cl (attached to a tertiary carbon with no other chlorine atoms attached)*
-Cl (attached to a primary carbon with one other chlorine atom attached)*
-Cl (attached to a secondary carbon with one other chlorine atom attached)*
-Cl (attached to a primary carbon with two other chlorine atoms attached)*
-Br (attached to an aromatic ring)*
-I (attached to an aromatic ring)*
-F (attached to an aromatic ring)*

Compound Decomposition

- Given a set of groups G find the frequency they occur in a compound C, such that every vertex of C is assigned to exactly one group.
- The monomorphism problem!
- NP-complete...
- Given G, C, and a set of rules R, a graph decomposition is a function:

$$
f: f(G, C, R) \rightarrow F
$$

such that F_{i} corresponds to the number of monomorphisms from G_{i} to C that is valid under R.

- Results may vary wildly.

Ronald G. Forsyth, Peter D. Karp, Michael L. Mavrovouniotis (1997): Estimation of equilibrium constants using automated group contribution methods, CABIOS, V. 13

Example

$\mathrm{H}_{3} \mathrm{C}, \mathrm{OH}, \mathrm{W}=\mathrm{O}, \mathrm{C}-\mathrm{C}$

Example

$\mathrm{H}_{3} \mathrm{C}, \mathrm{OH}, \mathrm{W}=\mathrm{O}, \mathrm{C}-\mathrm{C}$

Example

$$
\mathrm{H}_{3} \mathrm{C}, \mathrm{OH}, \mathrm{~W}=\mathrm{O}, \mathrm{C}-\mathrm{C}
$$

Example

$$
\mathrm{H}_{3} \mathrm{C}, \mathrm{OH}, \mathrm{~W}=\mathrm{O}, \mathrm{C}-\mathrm{C}
$$

Example

$\mathrm{H}_{3} \mathrm{C}, \mathrm{OH}, \mathrm{W}=\mathrm{O}, \mathrm{C}-\mathrm{C}$

Model Learning

$$
\begin{array}{rlc}
F_{0} & =\{1,1,1,0\} & t_{0}=20 \\
F_{1} & =\{0,2,1,0\} & t_{1}=-2 \\
\vdots & \vdots \\
F_{i} & =\left\{F_{i 0}, F_{i 1}, F_{i 3}, F_{i 4}\right\} & t_{i}=t_{i v}
\end{array}
$$

- Ordinary Least Squares Regression:

$$
\min \left(\sum_{i=1 .|t|}\left(t_{i}-F_{i}^{T} b\right)^{2}\right)
$$

- Validated with Cross Validation.

Shortcomings Of The Current Approaches

- Expert knowledge required.
- Limited to few chemical spaces.
- Priority setting.
- Introducing new compounds.
- We need something flexible!

A Generic Approach - Goals

- Automatic group identification.
- Consistency in predictive estimations.
- Fast predictive decomposition.
- Main goal is not to out-perform existing implementations.

Generic Group Identification

- Potentially $2^{|V(g)|}$ different subgraphs.
- Not feasible.
- Repeating patterns might be important.
- Frequent Subgraph Mining.
- Also NP-complete... But feasible!
- Only simple groups.

Example

Figure: Frequent Subgraph mining with min_support $=2$

Example

Figure: Frequent Subgraph mining with min_support=2

Example

Figure: Frequent Subgraph mining with min_support=2

Example

Figure: Frequent Subgraph mining with min_support $=2$

Example

Figure: Frequent Subgraph mining with min_support $=2$

Generic Compound Decomposition

- Still finding monomorphisms.
- Still NP-complete..
- No priorities.
- Reminder, just a function:

$$
f: f(G, C, R) \rightarrow F
$$

- Overlapping allowed.
- Beware of collinearity.

Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento (2004): A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, V. 26

Example

$$
C \quad C-C \quad O \quad C=O
$$

Figure: Overlapping Graph Decomposition

Example

$$
C \quad C-C \quad O \quad C=O
$$

Figure: Overlapping Graph Decomposition

Example

Figure: Overlapping Graph Decomposition

Generic Model Learning

- Many variables few data points.
- Ordinary Least Squares at its worst.
- Let's look at some possible alternatives.

The Suitors

- Ordinary Least Squares
- Already out.

The Suitors

- Ordinary Least Squares
- Already out.
- Principle Component Regression
- Computes the entire eigen matrix.
- Forced to potentially use all variables.
- Does not determine importance of components based on target property.

The Suitors

- Ordinary Least Squares
- Already out.
- Principle Component Regression
- Computes the entire eigen matrix.
- Forced to potentially use all variables.
- Does not determine importance of components based on target property.
- Partial Least Squares
- Components can be computed iteratively.
- Includes target properties in component selections.
- Still forced to use all original variables.

The Suitors

- Ordinary Least Squares
- Already out.
- Principle Component Regression
- Computes the entire eigen matrix.
- Forced to potentially use all variables.
- Does not determine importance of components based on target property.
- Partial Least Squares
- Components can be computed iteratively.
- Includes target properties in component selections.
- Still forced to use all original variables.
- Stepwise Regression
- Includes feature selection.
- Very sensitive to collinearity between variables.

The Suitors

- Ordinary Least Squares
- Already out.
- Principle Component Regression
- Computes the entire eigen matrix.
- Forced to potentially use all variables.
- Does not determine importance of components based on target property.
- Partial Least Squares
- Components can be computed iteratively.
- Includes target properties in component selections.
- Still forced to use all original variables.
- Stepwise Regression
- Includes feature selection.
- Very sensitive to collinearity between variables.
- Least Absolute Shrinkage and Selection Operator (LASSO)
- Also includes feature selection.
- Can be adjusted to be less sensitive to collinearity.
- Sounds promising!

Model Validation

- Repeated Double Cross Validation
- Optimize model complexities while giving realistic estimations of prediction errors.

Peter Filzmoser, Bettina Liebmann, Kurt Varmuza (2009): Repeated double cross validation, Journal of Chemometrics, V. 23

Single Pass Limitations

- Hard to control granularity.
- min_support too high = over fitting.
- min_support too low $=$ under fitting.

Under Fitting

Figure: Model learned with groups occurring in one third of the compounds. Cross validation repeated 10 times

Over Fitting

Figure: Model learned with all groups occurring in at least one compound and is smaller than 7 atoms. Cross validation repeated 10 times

Solution? Think iteratively!

```
Algorithm 1 learnGroups \((C, i)\)
    1: \(m \leftarrow \frac{|C|}{3}\)
    2: \(G \leftarrow \operatorname{gSpan}(C, m)\)
    3: \(y \leftarrow \operatorname{properties}(C)\)
    4: \(X \leftarrow \operatorname{decomposed}(C, G)\)
    5: \(M \leftarrow\) learn \((X, y)\)
    6: while \(i>0\) do
    7: \(\quad O \leftarrow\) outliers(M)
8: \(\quad G^{\prime} \leftarrow \operatorname{gSpan}(O, m)\)
9: \(\quad G^{\prime} \leftarrow G^{\prime} /\left(G \cap G^{\prime}\right)\)
10: if \(G^{\prime}=\emptyset\) then
11: \(\quad m \leftarrow m-1\)
12: continue
13: end if
14: \(\quad G \leftarrow G^{\prime} \cup G\)
15: Decompose compounds, learn model based on the new \(G\), and decrement \(i\)
16: end while
17: return \(M\)
```


Lets Try It Out On Thermodynamics

Figure: PLS. Groups smaller than 7. 6 iterations

Figure: LASSO. Groups smaller than 7. 6 iterations

Results

	SEP	IQR	MAD	CDF 0.5	$\|G\|$	Avg. p
Jankowski	2.22	-	-	-	73	73
lasso-6iter	9.91	8.22	7.74	5.54	87	36.28
lasso-underfit	24.46	17.14	16.88	11.53	38	12.38
lasso-overfit	18.52	13.56	12.50	9.46	2365	36.02
pls-4iter	11.48	8.33	8.26	6.00	78	78

Groups - Sample

$$
C \quad=-6.68
$$

$$
\mathrm{O}-\mathrm{P} \quad=-80.39
$$

Figure: Sample of groups learned from lasso-6iter

Discussion

- It's pretty generic!
- Single group identification.
- Variance based group exclusion.
- Stopping criterion.
- How to measure uncertainty in data.
- Better outlier detection.
- Use reactions as test data.
- Non-linear approaches.

