Philipp Peters

University of Natural Resources and Life Sciences, Vienna

 31^{st} TBI Winterseminar February 18^{th} , 2016

Sugar beet (Beta vulgaris)

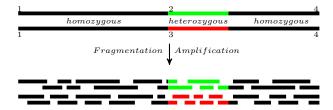
- ▶ Diploid with n = 9 chromosomes
- ► Estimated genome size: 731 Mbp
- ▶ Reference assembly¹ was created with a double-haploid plant

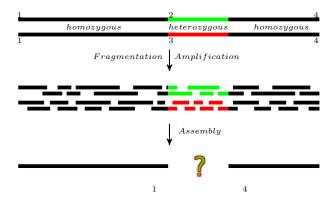
Dohm et al., The genome of the recently domesticated crop plant sugar beet (Beta vulgaris), Nature, 2014

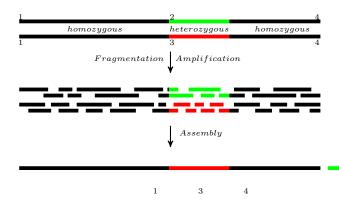
Bled. February 18th, 2016

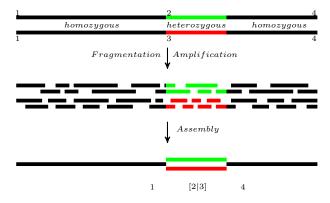
Assembly of heterozygous Fodder beet

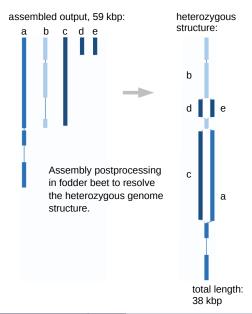
Fodder beet


- Diploid
- lacktriangle Estimated genome size pprox sugar beet
- ► Assembly size: 955 Mbp

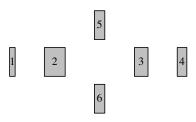

Assembled by J. Dohm, using Roche's Newbler

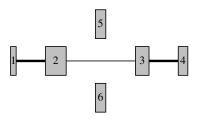

- Highly heterozygous (Different alleles at one or more loci on homologous chromosomes)
- ► Task: Resolve the heterozygous structure of the genome



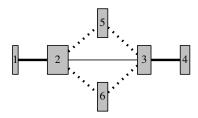


- Raw Data
 - ► Moleculo reads (8-9x Coverage)
 - ► Illumina Mate-Pairs
- Assembled Data (Newbler)
 - Assembly (955 Mbp)
 - Additional information on Contig connections and coverage

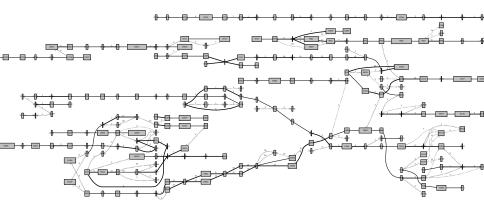

assembled output, 59 kbp:


Create Assembly Graph

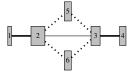
► Contigs as vertex set

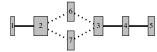

Create Assembly Graph

- ► Contigs as vertex set
- ► Scaffold-connections of Newbler-assembly as edge set (solid)

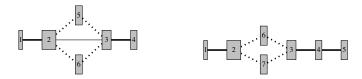

Create Assembly Graph

- Contigs as vertex set
- Scaffold-connections of Newbler-assembly as edge set (solid)
- ► Additional Links from Newbler-output as edge set (dotted)




Create Assembly Graph

- ► Contigs as vertex set
- Scaffold-connections of Newbler-assembly as edge set (solid)
- Additional Links from Newbler-output as edge set (dotted)



Cycles



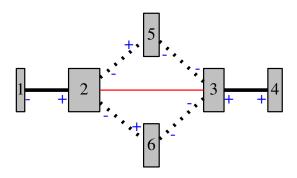
Cycles

ightharpoonup Find all cycles in graph ightarrow NP-complete Problem

Cycles

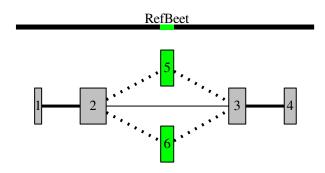
- ightharpoonup Find all cycles in graph ightarrow NP-complete Problem
- ► Which cycles are the good/correct cycles?

Splits



► Which splits are the good/correct splits?

Filtering Criteria


- ▶ 3'- and 5'-ends consistent
- Distances consistent / realistic

- ► Structural criteria
- Coverage

Cycle Validation

- ▶ Mapping of Fodder beet Contigs against RefBeet 1.2
- ► Two Contigs on same position in RefBeet
 - ⇒ Possible heterozygous pair

Cycle Detection

	Scaffolds Only		
# Contigs	106732		
# Cycles	3429		
# Filtered Cycles	1733		
# Validated Cycles	1511	87.2 %	
Length Component	676.5 Mbp		
Length Filt. Cycles	34.8 Mbp	5.1 %	
Length Hetero	$2 \times 9 \text{ Mbp}$	2 × 1.33 %	
Runtime	8.4 h		
	1.4 GHz 4-core	9	

Cycle Detection

	Scaffolds		Scaffolds	
	Only		&	
			Contigs	
# Contigs	106732		163961	
# Cycles	3429		19452	
# Filtered Cycles	1733		3976	
# Validated Cycles	1511	87.2 %	3425	86.1 %
Length Component	676.5 Mbp		761.1 Mbp	
Length Filt. Cycles	34.8 Mbp	5.1 %	64.9 Mbp	8.5 %
Length Hetero	$2 \times 9 \text{ Mbp}$	2 × 1.33 %	2 × 14.2 Mbp	2 × 1.87 %
Runtime	8.4 h		10.8 h	
	1.4 GHz 4-core	<u> </u>	1.4 GHz 4-core	

Scaffold Reduction

	Scaffolds Only	
# Scaffolds	55093	
# Scaffolds Before	27196	
(consisting of \geq 4 Contigs)		
# Scaffolds After	24882 (-8.5 %)	
# Connected Scaffolds	816	
(consisting of > 1 Contig)		

Scaffold Reduction

	Scaffolds		Scaffolds	
	Only		&	
			C	ontigs
# Scaffolds	affolds 550		55093	
# Scaffolds Before	27196		32811	
(consisting of \geq 4 Contigs)				
# Scaffolds After	24882	(-8.5 %)	29408	(-10.4 %)
# Connected Scaffolds	816		1038	
(consisting of > 1 Contig)				

Outlook

- ► Find more/better criteria for Cycles and Splits
- ► Add more layers of information (coverage, neighborhood,...)
- ► Add Phasing
- ► Improve Validation
- ► Use information/output from other Scaffolders
- Data Set Simulation for Testing
- ▶ Make it usable (not only for me...)

Acknowledgements

Bioinformatics BOKU Vienna

- ► Heinz Himmelbauer
- ▶ Juliane Dohm

Funding and Data Access

- ▶ illumına i
- ► BMBF project AnnoBeet

