	ew

Methods

Statistical Classification of Languages Generalising Ward's Method for Use with Manhattan Distances

<u>Trudie Strauss</u>^{1,2} Michael J. von Maltitz²

¹Institute for Bioinformatics University of Leipzig Germany

²Department of Mathematical Statistics and Actuarial Science University of the Free State South Africa

TBI Winterseminar, Bled, 2016

Trudie Strauss[,], Michael J. von Maltitz

Universities of the Free State (South Africa) and Leipzig (Germany)

Overview	Methods	Results and Validation	Summary and Conclusion
	000		
	00		

Outline

- Motivation
- Background
- Quantifying Languages?

2 Methods

- Data
- Statistical Language Signature and Distance Calculation
- Hierarchical Clustering: Ward's Linkage Algorithm

3 Results and Validation

<u>Trudie Strauss</u>⁷, Michael J. von Maltitz Statistical Classification of Languages

Overview	Methods	Results and Validation	Summary and Conclusion
0 0	00 000 00		
Motivation			

• The question arises whether groupings of languages, similarities between languages and language traits well known in the field of linguistics can be extracted or independently observed using unsupervised techniques; that is, whether it is possible to autonomously classify languages without any prior linguistic knowledge or assumptions.

Overview	Methods	Results and Validation	Summary and Conclusion
	00 000 00		
Background			

- August Schleicher: one of the first to suggest in 1873 that languages follow the same evolutionary process as Darwin suggested biological organisms do in nature.
- This contributed to the foundation being laid for Comparative Linguistics and Quantitative Comparative Linguistics.
- Methods of language classifications are based on biological classifications.

Overview	Methods	Results and Validation	Summary and Conclusion
	000		
•	00		
Quantifying Langu	ages?		

Quantifying Languages

Suggestion: Quantifiable/statistical language signature (SLS)

- We count the number of bi-gram (adjacent pairs of letters) occurrences in a language
- The matrix of the relative bi-gram frequencies in a language constitutes that language's SLS.

Example: bi-gram frequency

We know that the bi-gram "th" is observed much more in English and "en" much more in German.

- Using this SLS, we compute the distances between languages.
- Based on this distance matrix, we are able to do cluster analysis.

Overview	Methods	Results and Validation	Summary and Conclusion
	• 0 000 00		
Data			

Process

- 32 Indo-European languages are analysed.
- Previous authors suggest the use of translations of the Universal Declaration of Human Rights as corpus.
- Advantage: the different texts are more or less the same in length.
- However: problem of loanwords could bias results when assessing the proximity between languages.
- For this reason, we expand our analysis to a corpus of non-parallel newspaper texts. For languages where newspaper texts weren't available translations from the Universal Declaration of Human Rights or the Bible were used (Asturian, Breton, Friulian, Scottish and Welsh).

Overview	Methods	Results and Validation	Summary and Conclusion
	○ ● ○○○		
0 Data	00		

- While all the selected languages use the Latin alphabet, we have to include diacritics.
- We introduce an alphabet consisting of 65 characters: the 26 letters of the Latin alphabet, blank spaces between characters and 38 special characters.

а	b	с	d	е	f	g	h	i	j	k
Ι	m	n	0	р	q	r	S	t	u	v
w	х	у	z	_	ä	à	á	â	å	ã
æ	Ç	ê	ë	è	é	ì	í	î	ñ	ö
ø	ò	ó	õ	ô	Š	ß	ü	ù	ú	û
ý	ž	Ś	ź	ð	ż	ł	ć	ą	ę	

Table: Table of characters used for analysis

<u>Trudie Strauss</u>[,], Michael J. von Maltitz Statistical Classification of Languages

- For each language 65 × 65 matrix of relative bi-gram frequencies, with entries $RF(\alpha, \beta) = \frac{n_{\alpha\beta}}{(n-1)}$
- This SLS is then used in the distance calculation between languages
- Simple distance measurement: Manhattan (*I*₁ norm) distance

Manhattan Distance

$$D_{Manhattan}(\mathbf{a},\mathbf{b}) = \sum_{i=1}^{65} \sum_{j=1}^{65} \left|a_{ij} - b_{ij}
ight|$$

where a_{ij} represents the ij^{th} element of the SLS matrix for language **a**.

<u>Trudie Strauss</u>⁷, Michael J. von Maltitz Statistical Classification of Languages

vei		

Methods

Results and Validation

Summary and Conclusion

Statistical Language Signature and Distance Calculation

	a	b	с	d	e	f	g	h	i	j	k	I
а	66	1440	3109	2915	138	924	1564	196	3409	132	995	7145
b	1750	120	68	16	3972	1	3	6	914	34	0	1390
с	3870	23	577	22	4425	15	12	3869	1790	2	1489	1113
d	2123	22	53	347	5388	24	245	29	3061	30	3	236
е	5948	412	3054	8417	3056	1118	907	244	1313	26	308	3631
-												
I	3935	70	66	2018	6153	262	41	15	4743	0	207	4968
m	4059	693	102	21	5801	22	8	7	2529	0	3	32
n	2461	86	2568	8539	5598	485	8358	81	2510	114	563	382
ο	608	725	1107	1102	303	5650	538	148	757	78	635	2600
р	2432	11	32	36	3425	18	18	494	930	1	3	2056
q	24	1	0	0	1	0	0	0	2	0	0	0
r	4420	184	907	1572	12631	190	791	90	4974	5	892	727
s	3046	76	1053	317	6126	80	28	2432	3582	1	347	435
t	3718	79	331	33	8393	48	22	23291	7297	3	11	639
u	722	603	1047	695	1022	112	921	18	596	7	60	2083

<ロ> <回> <回> <回> <回> < 回> æ

UFS

Trudie Strauss[,], Michael J. von Maltitz

Universities of the Free State (South Africa) and Leipzig (Germany)

Overview	Methods	Results and Validation	Summary and Conclusion
	00		
	000		
	00		
Statistical Langua	ge Signature and Distance	Calculation	

	Afrikaans	Asturian	Bosnian	Breton	Catalan	Corsican	Czech	Danish	Dutch	English	French	Frisian
Afrikaans	0	0,96515	1,0102	0,89913	0,86591	1,02001	1,02262	0,59663	0,39112	0,6794	0,81761	0,54186
Asturian	0,96515	0	0,99925	1,04379	0,52906	0,79417	1,02723	0,97517	0,97343	0,82293	0,65994	1,00643
Bosnian	1,0102	0,99925	0	1,11275	0,94135	0,85996	0,69827	0,96544	0,99022	0,99511	1,0363	1,03927
Breton	0,89913	1,04379	1,11275	0	0,92933	1,10858	1,13446	0,90414	0,84986	0,96679	0,97215	0,94902
Catalan	0,86591	0,52906	0,94135	0,92933	0	0,6921	1,0281	0,84858	0,85455	0,73635	0,5067	0,92676
Corsican	1,02001	0,79417	0,85996	1,10858	0,6921	0	1,09125	1,01112	1,01452	0,86632	0,8022	1,04947
Czech	1,02262	1,02723	0,69827	1,13446	1,0281	1,09125	0	1,02036	1,03145	1,00025	1,04501	1,06281
Danish	0,59663	0,97517	0,96544	0,90414	0,84858	1,01112	1,02036	0	0,56734	0,70068	0,80991	0,63004
Dutch	0,39112	0,97343	0,99022	0,84986	0,85455	1,01452	1,03145	0,56734	0	0,69883	0,84201	0,48651
English	0,6794	0,82293	0,99511	0,96679	0,73635	0,86632	1,00025	0,70068	0,69883	0	0,67513	0,7221
French	0,81761	0,65994	1,0363	0,97215	0,5067	0,8022	1,04501	0,80991	0,84201	0,67513	0	0,85856
Frisian	0,54186	1,00643	1,03927	0,94902	0,92676	1,04947	1,06281	0,63004	0,48651	0,7221	0,85856	0

æ

Trudie Strauss[,], Michael J. von Maltitz

Universities of the Free State (South Africa) and Leipzig (Germany)

<ロ> <回> <回> <回> <回> < 回>

Overview	Methods	Results and Validation	Summary and Conclusion
	00		
	•0		
Hierarchical Cluste	ering: Ward's Linkage Alge	orithm	

Ward's Linkage Algorithm

- Ward's method: Minimisng intra-cluster variation and maximising inter-cluster variance.
- Joins the two clusters A and B that minimise the increase in the sum of squared errors (SSE):

$$I_{AB} = SSE_{AB} - (SSE_A + SSE_B)$$

- Because we use the Manhattan distance, we change the objective function from minimising SSE to minimising Absolute Deviation.
- We show that the Lance Williams Parameters for this objective function are the same as for the objective function of minimum SSE.

<u>Trudie Strauss</u>[,], Michael J. von Maltitz Statistical Classification of Languages

Therefore, the updating function for the distance matrix follows:

Updating the Distance Matrix

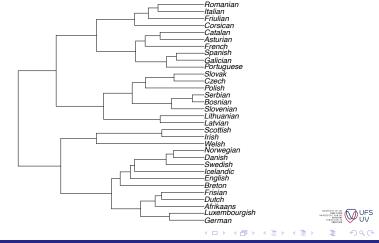
If points i and j are combined into cluster ij, then the distance between the new cluster ij and another cluster k, is defined as:

$$d_{k(ij)} = \frac{n_i + n_k}{n_i + n_j + n_k} d_{ki} + \frac{n_j + n_k}{n_i + n_j + n_k} d_{kj} - \frac{n_k}{n_i + n_j + n_k} d_{ij}$$

We use the hclust package in R, specifying the option method = "ward.D2"

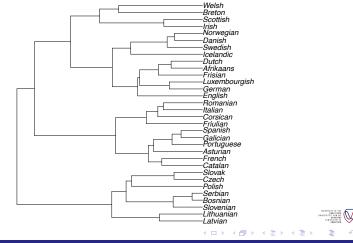
Trudie Strauss⁷, Michael J. von Maltitz

Universities of the Free State (South Africa) and Leipzig (Germany)


- Results from clustering summarized in Dendrograms
- Because we expanded Ward's Method to Manhattan distances, we include Euclidean distance Results for the sake of comparison
- Results are then compared to show that original characteristic of Ward's Method is still in tact with Manhattan distances

<u>Trudie Strauss</u>[,], Michael J. von Maltitz Statistical Classification of Languages

Overview	Methods	Results and Validation	Summary and Conclusion
	00 000 00		

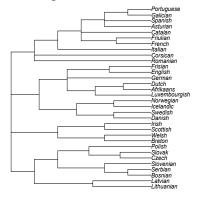

Figure: Ward's Linkage using Euclidean Distances

<u>Trudie Strauss</u>[,], Michael J. von Maltitz Statistical Classification of Languages

Overview	Methods	Results and Validation	Summary and Conclusion
	00		
	000		

Figure: Ward's Linkage using Manhattan Distance

<u>Trudie Strauss</u>[,], Michael J. von Maltitz


Universities of the Free State (South Africa) and Leipzig (Germany)

UFS

UΜ

Overview	Methods	Results and Validation	Summary and Con
	000		
	00		

We compare the trees with a benchmark tree created, without branch lengths from info obtained from Glottolog 2.6.

Robinson-Foulds distance between trees:

- Euclidean: 33
- Manhattan: 21

Inclusion

Trudie Strauss', Michael J. von Maltitz

Universities of the Free State (South Africa) and Leipzig (Germany)

Over	view

Methods

Cluster Validation Measures

Table: Comparison of Cluster Validation: Euclidean Distance vs. Manhattan distance

Cluster Characteristic	Validation Measure	Euclidean Distance	Manhattan Distance
Compactness	Silhouette Width	0.2129	0.2571
and Separation	Dunn Index	0.5557	0.6246
Connectedness	Connectivity	17.10	16.52

Trudie Strauss⁷, Michael J. von Maltitz

Universities of the Free State (South Africa) and Leipzig (Germany)

Overview 0 0 0	Methods 00 000 00	Results and Validation	Summary and Conclusion
C			

- We were able to quantify languages, determine distance and cluster them purely statistically.
- We expanded Ward's Method to include use of Manhattan distance matrix.
- We showed that using Manhattan distance doesn't violate the characteristic of Ward's Method (minimising within-cluster variation, and maximising between-cluster variation)

<u>Trudie Strauss</u>⁷, Michael J. von Maltitz Statistical Classification of Languages

Summary

Overview	Methods	Results and Validation	Summary and Conclusion
	00		

Thank you

University Leipzig

- Peter Stadler
- Nancy Retzlaff
- Christian Höner zu Siederdissen

University of the Free State

- Michael von Maltitz
- Sean van der Merwe

UNIVERSITEIT

Universities of the Free State (South Africa) and Leipzig (Germany)