RIsearch2

Large-scale RNA-RNA interaction prediction

Anne Wenzel

Center for non-coding RNA in Technology and Health Department of Veterinary Clinical and Animal Sciences Faculty of Health and Medical Sciences University of Copenhagen

> 31st TBI Winterseminar Bled, Slovenia February 2016

UNIVERSITY OF COPENHAGEN MEDICAL SCIENCES Regulatory, non-coding RNAs

- often function by forming a duplex with other RNAs
- many identified but unknown targets
- their interactome provides insight to function

Goal: Predict RNA-RNA duplexes in silico on genome-wide scale

BIOINFORMATICS ORIGINAL PAPER

Vol. 28 no. 21 2012, pages 2738–2746 doi:10.1093/bioinformatics/bts519

Sequence analysis

Advance Access publication August 24, 2012

RIsearch: fast RNA-RNA interaction search using a simplified nearest-neighbor energy model

Anne Wenzel^{1,2}, Erdinç Akbaşli³ and Jan Gorodkin^{1,2,*}

¹Center for non-coding RNA in Technology and Health, ²Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg, Denmark and ³Software Development Group, University of Copenhagen, Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark Associate Editor. No Hofacker

- dinucleotide scoring matrix in Smith–Waterman-like algorithm
- approximates Nearest Neighbor energy model
- computed energies deviate from full model, BUT
- candidates are ranked similar
- fast method for predicting near-complementary duplexes

Search space

- RIsearch: DP over $\underline{m \times n}$
- ▶ idea: seed-and-extend (DP on either end over 1²)
- GUUGle + RIsearch performs very well for miRNAs
- Now: one stop shop \rightarrow RIsearch2

Suffix array enables very fast seed detection

- build generalized suffix array of the target (entire human genome stored in 47 GiB)
- build partial suffix array of the query (according to seed settings)
- match suffix arrays (allowing wobble pairs)

Extend seeds with DP as before

DP matrix anchored at first/last position of seed

RIsearch2: building the target index

>targetSeqA
gacag
>targetSeqB
cua

A G

S	Δ	
	0	
	1	
	2	
	3	
	4	
	5	
	6	
	7	
	8	
	9	
1	0	
1	1	
1	2	
1	3	
1	4	
1	5	

gacagcuguccuauag acaqcuquccuauaq cagcuguccuauag agcuguccuauag gcuquccuauag cuguccuauag uguccuauag quccuauaq uccuauag ccuauag cuauag uauaq auaq uaq aq

RIsearch2: building the target index

acagcuguccuaua	g
ag	
agcuguccuauag	
auag	
cagcuguccuauag	
ccuauag	
cuauag	
cuguccuauag	
g	
gacagcuguccuau	ag
gcuguccuauag	
guccuauag	
uag	
uauag	
uccuauag	
uguccuauag	

RIsearch2: building (partial) query SA

RIsearch2: building (partial) query SA

RIsearch2: building (partial) query SA

cuag cugcuag gcuag ugcuag

acagcuguccuauag aq aqcuquccuauaq auag cagcuguccuauag ccuauaq cuauag cuguccuauag q gacageugueeuauag gcuguccuauag quccuauaq uag uauag uccuauaq uguccuauag

4	
1	acagcuguccuauag
1	ag
3	agcuguccuauag
2	auag
2	cagcuguccuauag
9	ccuauag
)	cuauag
5	cuguccuauag
5	g
)	gacageugueeuauag
4	gcuguccuauag
7	guccuauag
3	uag
1	uauag
3	uccuauag
5	uguccuauag

SA

KEY

uguccuauag

RIsearch2: Benchmark

100 miRNAs vs. repeat-masked human genome

variant	run time			
Vallant	[h:mm:ss]			
RIsearch				
1 optimal per query-target pair (miR-chr-strand)	65:58:21			
suboptimals ≤ -10 kcal/mol	184:47:47			
RIsearch2 with different seed sizes anywhere in the query				
-s 8	2:28:39			
-s 7	6:36:24			
-s 6	19:10:45			
RIsearch2 with seeds position-constrained in the query				
-s 1:8/6 (1-6 / 2-7 / 3-8)	4:05:43			
-s 2:7 (2-7)	1:29:08			
-s 2:7/5 (2-6 / 3-7)	8:49:09			

This is single-core time, additionally RIsearch2 is multi-threaded.

Application 1: miRNA sponge discovery

RIsearch2 is especially efficient when constrained to seed region

- screen all human mature miRNAs against the human genome
- identify genomic regions with high binding site density
- select candidates based on difference real vs. shuffled

miR-7 cluster on shuffled chrX

Pan et al., in prep.

Off-targeting is a problem in probe/siRNA design

siRNAs can effect transcripts other than the intended target

- (near-)perfect complementarity : silencing
- ▶ imperfect binding to 3' UTR : miRNA-like effect

Approach:

- use RIsearch2 to screen for potential off-targets
- combine with accessibility profiles and transcript abundance
- partition function to quantify off-target volume (per siRNA)
- compute off-targeting probabilities (per transcript)

Application 2: search for off-targets (cont.)

Predicted off-targets are down-regulated upon siRNA transfection (combined results for 6 siRNAs [Burchard, 2009])

METHOD = RIsearch2 = MIRZA-G [Gumienny, 2015]

RIsearch2 coders (in descending order of recentness of their contributions): Ferhat Alkan Oana Palasca Peter Kerpedjiev Anders F Rudebeck

Peter F. Stadler Ivo L. Hofacker

Jan Gorodkin and our whole group at RTH

