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Polyhedral self-assembly

Disclaimer: I am a mathematician.

In 2013 Gradǐsar et al. (National Institute of Chemistry, Slovenia)
successfully designed a self-assembly tetrahedral polypeptide called tet12.

It is a linear chain of twelve peptides, separated by flexible links, such that
certain pairs of peptides “glued” together and formed coiled coil dimers.

The end result was a stable tetrahedron in which each of its six edges was
a coiled coil dimer.
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N. Bašić (UP FAMNIT) DP approach to generation of strong traces February 16, 2017 2 / 59



Polyhedral self-assembly
Every peptide is a chain composed of several amino acids. The tet12 is
composed of 476 amino acids and can be encoded as a string of length
476 using one-letter codes:

tet12 = start + aph + link + p3 + link + bcr + link + gcnsh +
link + aph + link + p7 + link + gcnsh + link + p4 +
link + p5 + link + p8 + link + bcr + link + p6 + stop,

where
aph = "MKQLEKELKQLEKELQAIEKQLAQLQWKAQARKKKLAQLKKKLQA",

bcr = "DIEQELERAKASIRRLEQEVNQERSRMAYLQTLLAK",

gcnsh = "QLEDKVEELLSKNYHLENEVARLKKLVG",

p3 = "SPEDEIQQLEEEIAQLEQKNAALKEKNQALKYG",

p4 = "SPEDKIAQLKQKIQALKQENQQLEEENAALEYG",

p5 = "SPEDENAALEEKIAQLKQKNAALKEEIQALEYG",
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Every peptide is a chain composed of several amino acids. The tet12 is
composed of 476 amino acids and can be encoded as a string of length
476 using one-letter codes:

tet12 = start + aph + link + p3 + link + bcr + link + gcnsh +
link + aph + link + p7 + link + gcnsh + link + p4 +
link + p5 + link + p8 + link + bcr + link + p6 + stop,

where
p6 = "SPEDKNAALKEEIQALEEENQALEEKIAQLKYG",

p7 = "SPEDEIQALEEKNAQLKQEIAALEEKNQALKYG",

p8 = "SPEDKIAQLKEENQQLEQKIQALKEENAALEYG",

start = "MYHHHHHHSRAG",

link = "SGPG" and
stop = "SGTS".

In the above expression (??), operation + denotes concatenation of
strings.
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N. Bašić (UP FAMNIT) DP approach to generation of strong traces February 16, 2017 8 / 59



Polyhedral self-assembly
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Multiset of orthogonal peptide pairs

Some of the peptide pairs in this chain are “compatible”, i.e., they will
interlock and form stable coiled coil dimers. On the other hand, those
pairs that do not have strong affinity to each other will not form a coiled
coil dimer. Let P be a multiset of 2m peptides. In the case of tet12 the
multiset P is

{aph,aph,bcr,bcr,gcnsh,gcnsh,p3,p4,p5,p6,p7,p8}.

We can imagine a graph with a vertex for every peptide in P and an edge
between two of them if and only if they are compatible. If this graph is a
disjoint union of m copies of K2 it induces a partition on P into pairs.
Then P is called a multiset of orthogonal peptide pairs.
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Multiset of orthogonal peptide pairs

The problem of determining whether a pair of peptides forms a stable
coiled coil dimer and the problem of finding a large multiset of orthogonal
peptide pairs are both interesting from a chemical point of view.

In our model this information will be given in advance. We know from
experimental evidence that the following pairs are orthogonal peptide pairs:

(p3,p4), (p5,p6), (p7,p8), (gcnsh,gcnsh), (aph,aph) and (bcr,bcr).

Certain pairs consist of two copies of the same peptide. They are called
homodimers. Otherwise they are called heterodimers.

This information alone is not sufficient to fully describe the glueing process
that leads to the tetrahedron.
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The glueing process

The polypeptide chain Tet12 is directed (from start to stop) and so
are all peptides along it.

Two peptides may be glued together in such way that they both point in
the same direction. In this case they form a parallel dimer. If they point in
opposite directions, they form an anti-parallel dimer.

The problem of determining whether a given dimer is parallel or
anti-parallel resides outside our current model. This information is
provided as input data.

For the case of tet12, we know that (aph,aph) and (bcr,bcr) are
antiparallel dimers, whilst, all other pairs are parallel dimers.
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The glueing process

The polypeptide chain is modeled with a labeled directed path of length
2m, where m is the number of peptide pairs. Instead of names
aph,p3,bcr, . . . we will use letter a, b, c, . . .
Let ~P2m+1 be the directed path on 2m + 1 vertices. (It contains 2m arcs
which represent peptides.) Let Σ be an alphabet with one symbol for each
different peptide. For the case of tet12,

Σ = {a, b, c, d , e, f , g , h, i}.

The map w : A(~P2m+1)→ Σ assigns a symbol to each arc. This labeled
digraph can be represented as the sequence

(a, b, c, d , a, e, d , f , g , h, c, i).
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The glueing mapping

The information on which peptides glue together is encoded in the glueing
mapping

gl : Σ→ Σ t Σ−1,

where Σ−1 = {x−1 | x ∈ Σ}.

The mapping gl for tet12:

x a b c d e f g h i
gl(x) a−1 f c−1 d h b i e g

Note: If gl(x) ∈ Σ then x and gl(x) glue together in a parallel way. If
gl(x) ∈ Σ−1 then x and gl(x) glue together in an anti-parallel way. Note
that if gl(x) ∈ {x , x−1} then x is a homodimer.
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The glueing mapping
Some notes for the mathematical audience

The mapping gl can be extended to gl : Σ t Σ−1 → Σ t Σ−1 by defining

gl(x−1) = gl(x)−1 and (x−1)−1 = x .

Note that gl is an involution on Σ t Σ−1.

Let r : Σ t Σ−1 → Σ t Σ−1 such that r(x) = x−1. Then 〈gl , r〉 generates
a group that is a subgroup of bijections on Σ t Σ−1. The group 〈gl , r〉
acts on Σ t Σ−1. The set x 〈gl ,r〉 = {α(x) | α ∈ 〈gl , r〉} is called the orbit
of x . The elements of the orbit space

(Σ t Σ−1)/〈gl , r〉 = {x 〈gl ,r〉 | x ∈ Σ}

correspond to peptide pairs.
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The glueing sequence

A glueing sequence is a bijection

s : {1, 2, . . . ,m} → (Σ t Σ−1)/〈gl , r〉.

The mapping s is usually given as a vector with m elements from Σ which
are representatives of each orbit. This mapping tells us that the peptide
pair s(1) glues first, followed by s(2) and so on.

The question of determining the glueing sequence lies outside this model.
The glueing sequence is crucial from the chemical viewpoint. If the
sequence is wisely chosen then the polypeptide chain has a greater chance
to form the desired polyhedron (note that in a real chemical experiment, a
range of malformed byproducts may occur). Besides high folding yield, a
good glueing sequence also folds rapidly on temperature quenching.

Note: Our model is general enough to also cover the DNA self-assembly.
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The glueing sequence

We know that the pair (aph,aph) is the most stable and will be the first
to glue. It is followed respectively by (p3,p4), (p5,p6), (bcr,bcr),
(p7,p8) and finally (gcnsh,gcnsh). In our abstract model we use letters
a, b, c, . . . to represent peptides. The glueing sequence of tet12 is

(a, b, g , c, e, d).
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An example: tet12
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Another example: Some random labeling of ~P13

Note that the labeling of the path ~P13 cannot be chosen arbitrarily. The
path below does not result in the tetrahedron even though its labels are a
permutation of the original ones:

Take the same glueing mapping and glueing sequence as in the glueing
process of the tet12.
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Another example: Some random labeling of ~P13
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Another example: Some random labeling of ~P13

The end result in this case is the bouquet graph with 6 loops.

Conclusion: It is not trivial to find a labeled path that will result in the
desired polyhedron.
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The first mathematical model

The first mathematical model for this problem, which was developed with
trivalent polyhedra in mind, was described by Klavžar and Rus. A year
later, the model was refurbished by Fijavž, Pisanski and Rus to include all
polyhedra.

Definition
A double trace in a graph G is a walk which traverses every edge exactly
twice.

A double trace in a simple graph can be given as a sequence of vertices

W = w0 w1 w2 . . .w2m,

where indices are taken modulo 2m.
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The first mathematical model

It is easy to see that every graph G admits a double trace. If we replace
every edge of G by a digon, we obtain an Eulerian multigraph G ′. An
Eulerian circuit in G ′ corresponds to a double trace in G . Because all
vertices in G ′ are of even degree the following proposition follows:

Proposition
Every graph G has a double trace.

Warning: A double trace in a graph G does not in general give rise to a
directed path (which represents a polypeptide) that will result in the graph
G after the glueing process is performed.
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The first mathematical model

The skeleton of the tetrahedron is the graph K4. Let V (K4) = {1, 2, 3, 4}.
The walk

W = 1 2 4 2 3 1 4 3 1 2 3 4 1

is a double trace in K4. How to obtain the polypeptide chain?

The result of the glueing process on the polypeptide obtained from the
above double trace:
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The first mathematical model

Definition
Let e = uv ∈ E (G) and let W = w0 w1 w2 . . .w2m be a double trace in G .
If there exists an integer i such that (wi−1,wi ,wi+1) = (v , u, v) then W
has a retracing.
Let u ∈ V (G) and let v , v ′ ∈ G(u) such that v 6= v ′. If there exist integers
i and j , i 6= j , such that wi = wj = u and
{wi−1,wi+1} = {wj−1,wj+1} = {v , v ′} then W has a repetition through
vertex u.

Klavžar and Rus defined the notion of a stable trace:

Definition
A stable trace is a double trace that has no retracing and no repetition
through its vertices.
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The first mathematical model

A stable trace of a graph G gives rise to a polypeptide that results in the
graph G when the glueing process is performed.

Note: The double trace from previous example has both a retracing and a
repetition. In both cases the vertex labeled with 4 is involved.

Rus and Klavžar proved the following theorem:

Theorem (Klavžar and Rus)
A graph G admits a stable trace if and only if δ(G) ≥ 3.
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The second mathematical model

Fijavž, Pisanski and Rus generalised the notion of a stable trace:

Definition
Let G be a graph, v ∈ V (G) and N ⊆ G(v). Let W be a double trace in
G . Then W has a N-repetition at v if for all integers i such that wi = v it
holds that the pair {wi−1,wi+1} is either contained in N or disjoint from
N.

Definition
A n-stable trace is a double trace where for all v ∈ V (G) and for all
N ⊆ G(v) such that 1 ≤ |N| ≤ n it holds that W has no N-repetition.
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The second mathematical model

They defined the important notion of a strong trace:

Definition
Let G be a graph and let W be a double trace of G . If for every vertex
v ∈ V (G) it holds that W has a N-repetition at v if and only if N = G(v)
or N = ∅ then W is called a strong trace.

They also proved the following theorem which is based on a deep result
from topological graph theory:

Theorem (Fijavž, Pisanski and Rus)
Every graph admits a strong trace.
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The second mathematical model
Parallel and antiparallel traces

Let W be a double trace of a graph G . The double trace W traverses
each edge e ∈ E (G) exactly two times. If W traverses an edge e in the
same direction both times then e is parallel with respect to W . Otherwise,
it is antiparallel with respect to W .

If all edges of G are parallel with respect to W then W itself is called a
parallel trace. Similarly, if all edges of G are antiparallel with respect to W
then W is called an antiparallel trace. It is easy to see that a parallel /
antiparallel edge of W gives rise to a parallel / antiparallel dimer in the
self-assembled polypeptide.
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Obtaining new traces from the old ones

It is possible to obtain a new double trace from existing one. We can
change the direction of tracing (reverse the trace W ) or start at a different
vertex (shift the trace W ). If the graph G posesses a symmetry, we can
obtain a new trace by acting by a graph automorphism α ∈ Aut(G) on W .

Definition
Double traces W and W ′ are equivalent if W ′ can be obtained from W by
using any combination of the following operations:

reversion of W ;
shifting W ;
applying a permutation on W induced by an automorphism of G .

Otherwise, traces W and W ′ are called non-equivalent.
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Obtaining new traces from the old ones
Canonical traces

Let T (G) denote the set of all double traces of a graph G . The
equivalence of double traces is an equivalence relation on the set T (G).
This is clearly also an equivalence relation on any subset of T (G), such as
stable traces, strong traces and so on. Assume that vertices
V (G) = {v0, . . . , vn−1} of the graph G are linearly ordered as

v0 < v1 < · · · < vn−1.

This ordering induces a lexicographic ordering on the set of double traces
of G , i.e., W ≤W ′ if and only if W = W ′ or there exists an index i ,
0 ≤ i ≤ 2m, such that wi < w ′i and wj = w ′j for all j < i . Every subset
S ⊆ T (G) has a lexicographically smallest member which is called the
canonical representative of S.
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Obtaining new traces from the old ones

Let us define mappings ρ, σi : T (G)→ T (G) as

ρ(w0 . . .w2m) = w2m . . .w0 and σi (w0 . . .w2m) = wi . . .w2m+i .

Note: σ0 = σ2m = idT (G).
Let α ∈ Aut(G). The automorphism α acts on T (G) in the following way:

α(w0 . . .w2m) = α(w0) . . . α(w2m).

Then Aut(G), R = {id, ρ} and S = {σi | i = 0, . . . , 2m − 1} are three
groups acting on T (G). Elements of the orbit space

T (G)/(Aut(G)× R × S)

are precisely equivalence classes of double traces for the equivalence
relation.
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The tetrahedron has 3 non-equivalent strong traces

The group Aut(G)× R × S partitions the 672 different strong traces of
the tetrahedron graph into 3 equivalence classes of sizes 288, 288 and 96:
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The tetrahedron has 3 non-equivalent strong traces
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Enumeration of strong traces

There is a branch-and-bound algorithm that outputs each canonical strong
trace of G .

There is another approach using dynamic programming.
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Dynamic programming approach

We may view the strong traces as walks traversing all flags of a map M
which is a combinatorial representation of a cellular embedding of the
graph G . The trace can be therefore interpreted as a 2-regular graph
whose vertices are flags of M. This motivates us to define the following:

Definition
Let M = (Φ, τ0, τ1, τ2) be a map. Choose a mapping λ : E (G)→ {−1, 1}.
An (undirected) map trace, denoted Qλ, is a 2-regular graph whose set of
vertices is Φ and its edges are defined as follows:

φ ∼ τ1(φ);
φ ∼ τ0(φ) when λ(eφ) = 1 and φ ∼ τ2τ0(φ) when λ(eφ) = −1.
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Dynamic programming approach
Map trace Qλ in general consists of one or more even cycles. We are only
interested in those traces that are connected:

Definition
A connected (undirected) map trace Qλ is a map trace which has a single
connected component.

If we choose an initial flag φ0 and a direction, we can assign a strong trace
to a connected map trace Qλ. Traverse the map trace Qλ in the given
direction starting at φ0 to obtain the closed walk
(φ0, φ1, φ2, . . . , φ4m = φ0). Then

W (Qλ) = (vφ0 , vφ2 , vφ4 , . . . , vφ4m )

is a strong trace. Most of the time, we are interested in non-equivalent
strong traces. Because by shifting and reversing a strong trace W we
obtain an equivalent strong trace, the intial flag φ0 and the direction on
the connected map trace Qλ can be arbitrarily chosen.
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Dynamic programming approach

Embedding of the bipyramid in the plane and one of its connected map
traces:

The magenta line represents the map trace.
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Not every strong trace is compatible with every map

Definition
Map M is compatible with a strong trace W if there exists a map trace Q
such that W = W (Q).

Not every strong trace is compatible with every map. For example, if a
strong trace of the bipyramid from the previous slide contains the
subsequence (1, 2, 5) then it is obviously not compatible with the map.
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Connection between map traces and strong traces
Different map traces may yield the same strong trace as in the case of the
cycle graph C5 embedded in the plane:

If minimum degree in the graph is at least 3, the map trace is either:
uniquely determined from the strong trace or
it is not compatible with the given map M.

Note: For most applications it is sufficient to find strong traces that are
compatible with a fixed embedding of the graph G .
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Point of departure: Brute-force

We can immediately obtain a simple brute-force algorithm with the time
complexity that is exponential in the number of edges of the skeleton
graph. The algorithm enumerates all strong traces that are compatible
with a given map M:
Let M be a map with 4m flags and let G = Skel(M). Let L = ∅.
Iterate over all subsets E ⊆ E (G). For a given set E define the mapping
λE : E (G)→ {−1, 1}, such that

λE(e) =
{

1, e ∈ E ;
−1, otherwise.

(1)

Check whether QλE is a connected map trace. If it is connected, take
W = W (QλE ). Then determine the canonical strong trace W ′ that is
equivalent to W and add W ′ to the set L.
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Main idea

We cut the map (that has a strong trace drawn on it) along its edges.
From the tetrahedron we obtain four ‘jigsaw puzzle pieces’:

The strong trace that was drawn on the map can be obtained from these
jigsaw pieces by glueing them back together. This is the main idea behind
the dynamic programming algorithm.
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Signature of a partial map trace

By choosing a proper subset of faces of the map, we obtain a surface with
boundary. This boundary is a disjoint union of cycles:

C1, C2, . . . , Cr .

On each of those cycles we choose a reference vertex vi ∈ Ci and a
direction. The signature, denoted by σ(Q̃), of a partial map trace Q̃ can
be obtained in the following way:
Traverse, the cycles C1, C2, . . . of the boundary: start at the reference
vertex and travel in the chosen direction. For each flag φ that you
encounter, write down one symbol:

If the degree of vertex φ in the partial map trace is 2, write down the
symbol ?.
If the degree of vertex φ is 1, find the other end of this path. If it was
already labeled, write down its label. If it was not labeled yet, label it
using the smallest positive integer that was not used so far.
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Signature of a partial map trace
An example

Here 5 faces were chosen from a larger map. The boundary consists of two
cycles denoted C1 and C2. Reference vertices and directions are also
indicated. The signature of this partial map trace is

(1, 2, 3, 2, ?, ?, ?, ?, 3, 1, 4, 5, 6, 6, ?, ?, ?, ?, 4, 5, ?, ?).

N. Bašić (UP FAMNIT) DP approach to generation of strong traces February 16, 2017 48 / 59



Merging partial map traces

Partial map traces Q̃ and Q̃′ are compatible if for each edge e ∈ E (M)
that is shared between the boundaries of F and F ′ it holds that all
vertices {φ | eφ = e} of the disjoint union of partial map traces Q̃ and Q̃′
have the same degree (which is either 1 or 2).

We can merge partial map traces Q̃ and Q̃′ if they are compatible. While
there exists an edge e ∈ E (M) that is shared between F and F ′ and a
degree-1 vertex φ such that eφ = e, connect the vertices φ and τ2τ0(φ). In
this way we obtain the merged partial map trace Q̃ ◦ Q̃′.
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Merging partial map traces
An example

Suppose that faces F1 and F3 as well as faces F2 and F4 are adjacent.
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Key observation

In order to obtain σ(Q̃ ◦ Q̃′), we only need σ(Q̃) and σ(Q̃′).

The dynamic programming algorithm has three phases which we call the
preparation phase, the main phase and the final phase.
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The preparation phase

In the preparation phase of the algorithm, we prepare a list of signatures of
all admissible partial map traces of each face. A triangular face has 7
admissible partial map traces and 1 non-admissible partial map trace:

(1, 2, 2, 3, 3, 1) (1, 2, 2, 1, ?, ?) (1, 2, ?, ?, 2, 1)
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The preparation phase cont’d

(?, ?, 1, 2, 2, 1) (?, ?, ?, ?, 1, 1) (?, ?, 1, 1, ?, ?)
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The preparation phase cont’d

(1, 1, ?, ?, ?, ?)

In the preparation phase we also choose a linear ordering
f1 < f2 < · · · < f|F (M)| on the faces of F (M).
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The main phase

Begin with a single face f1 and iteratively add new faces to it, one by one.

Fi = {f1, . . . , fi}

For each Fi , choose an ordering on the cycles that comprise the boundary
of Fi and choose a reference vertex (and a direction) on each of the cycles.
Those reference vertices and directions are common to all signatures of Fi .

For each i = 1, 2, . . . , |F (M)| − 1 create a dictionary Di :
keys are signatures of all admissible partial map traces of Fi .
value that corresponds to a signature is the number of all partial map
traces with the given signature.

The initial dictionary D1 contains admissible signatures of the face f1,
values in this dictionary are equal to 1.
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The main phase cont’d

The dictionary Di+1 can be obtain from the dictionary Di and the list of
admissible signatures of the face fi+1. Combine each signature in Di with
each signature of fi+1. If they are compatible and the resulting signature is
admissible, increase the count of the resulting admissible signature in Di+1
by the corresponding value stored in Di .
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The key observation

The same signature can be obtained in many different ways. The signature
(1, 1, ?, ?, ?, ?) from dictionary D3 belongs to more than one partial map
trace:
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The final phase

In the final phase build the dictionary D|F (M)|. When the last face
f|M(G)| is added, the boundary disappears.
The number of different connected map trace is obtained.

Notes:
It is possible to reconstruct the i-th map trace from the data
structures that were used in the algorithm.
The symmetries of the map M were not taken into account here.
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Thanks to the organisers for this great event!
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