## STATISTICS ON BIOLOGICAL NETWORKS

## André Fujita

Associate Professor Dept. of Computer Science Inst. of Math and Statistics
University of São Paulo

Alexander von Humboldt Fellow Institut für Informatik Bioinformatik
University of Leipzig

> 33 $3^{\text {rd }}$ TBI Winter Seminar in Bled
> February $11^{\text {th }}-16^{\text {th }}, 2018$.

## NETWORK



Seven bridges of Konigsberg (1736)


Leonhard P. Euler 1707-1783


## VARIABILITY



## STATISTICS



Francis Galton
1822-1911


William Sealy Gosset 1876-1937


Karl Pearson 1857-1936


Ronald Aylmer Fisher 1890-1962

## STATISTICS ON NETWORKS

1. Parameter estimation
2. Model selection
3. T-test
4. ANOVA
5. Correlation


## Statistics



Graph theory


## Statistics



Graph theory

Graph $\boldsymbol{G}$
Adjacency matrix


A(G)

Structural properties of graphs


Takahashi et al., 2012

Spectral distribution


Eigenvalues

Graph G
Adjacency matrix
A(G)


Spectral distribution
Graph entropy $\mathrm{H}(\rho)=-\int_{-\infty}^{\infty} \rho(\lambda) \log \rho(\lambda) \mathrm{d} \lambda$


Eigenvalues

ERDÖS-RÉNYI RANDOM GRAPH MODEL


## ERDÖS-RÉNYI RANDOM GRAPH

 MODEL

3

## ERDÖS-RÉNYI RANDOM GRAPH

 MODEL

ERDÖS-RÉNYI RANDOM GRAPH MODEL


ERDÖS-RÉNYI RANDOM GRAPH
MODEL


ERDÖS-RÉNYI RANDOM GRAPH
MODEL


ERDÖS-RÉNYI RANDOM GRAPH
MODEL


ERDÖS-RÉNYI RANDOM GRAPH MODEL


ERDÖS-RÉNYI RANDOM GRAPH MODEL


ERDÖS-RÉNYI RANDOM GRAPH MODEL


ERDÖS-RÉNYI RANDOM GRAPH MODEL


ERDÖS-RÉNYI RANDOM GRAPH MODEL


ERDÖS-RÉNYI RANDOM GRAPH ENTROPY
(5)


## WATTS-STROGATZ RANDOM GRAPH MODEL

## Regular <br> Small-world <br> Random



Increasing randomness

WATTS-STROGATZ RANDOM GRAPH ENTROPY


## GRAPH ENTROPY



## DATASETS

ADHD-200 Consortium

- 759 subjects
- 479 controls ( 253 males, $12.23 \pm 3.26$ y.o.)
- 159 combined hyperactive/ impulsive and inattentive ( 130 males, $11.24 \pm 3.05$ y.o.)
- 11 hyperactive/impulive $(\rho-$ males, $13.40 \pm 4.51$ y...)
- 110 inattentive ( 85 males, $12.06 \pm 2.55$ y.o.)
- Pre-processing: Athena pipeline

ABIDE I Consortium

- 814 subjects
- 529 controls (430 males, $17.47 \pm 7.81$ y.o.)
- 285 autism patients (255 males, $17.53 \pm 7.13$ y.o.)
- Pre-processing: Athena pipeline


## GRAPH ENTROPY

## Attention Deficit

 Hyperactivity Disorder

Sato et al., 2013

Autism Spectrum Disorder


Sato et al., 2015

## PARAMETER ESTIMATION



# ERDÖS-RÉNYI RANDOM GRAPH MODEL 



## WATTS-STROGATZ RANDOM MODEL

Regular<br>Small-world<br>Random



Increasing randomness

## PARAMETER ESTIMATION



$$
\operatorname{KL}\left(\rho_{1} \mid \rho_{2}\right)=\int_{-\infty}^{\infty} \rho_{1}(\lambda) \log \frac{\rho_{1}(\lambda)}{\rho_{2}(\lambda)} \mathrm{d} \lambda \quad \hat{\theta}=\underset{\theta}{\operatorname{argmin} \operatorname{KL}\left(\hat{\rho}_{g} \mid \rho_{\theta}\right)}
$$

Size

| Model | 20 | 50 | 100 | 500 |
| :---: | :---: | :---: | :---: | :---: |
| ER $(m=0.5)$ | $0.503 \pm 0.013$ | $0.500 \pm 0.002$ | $0.500 \pm 0$ | $0.499 \pm 0.003$ |
| GI $(p=0.5)$ | $0506 \pm 0.039$ | $0.501 \pm 0.014$ | $0.501 \pm 0.008$ | $0.499 \pm 0.003$ |
| GE $(r=0.5)$ | $0.493 \pm 0.061$ | $0.506 \pm 0.037$ | $0.502 \pm 0.022$ | $0.500 \pm 0.010$ |
| BA $(p=1)$ | $1.128 \pm 0.309$ | $1.044 \pm 0.125$ | $1.026 \pm 0.047$ | $1.020 \pm 0.025$ |
| WS $(k=0.25)$ | $0.129 \pm 0.155$ | $0.069 \pm 0.011$ | $0.071 \pm 0.008$ | $0.070 \pm 0.003$ |
| KR $(k=0.25)$ | $0.264 \pm 0.013$ | $0.245 \pm 0.005$ | $0.250 \pm 0$ | $0.249 \pm 0.004$ | Takahashi et al., 2012 de Siqueira Santos et al., 2016

## MODEL SELECTION




Hirotugu Akaike 1927-2009

Akaike Information Criterion - AIC

$$
\begin{gathered}
\hat{L}=P(x \mid \hat{\theta}, M) \\
\text { AIC }=2 k-2 \ln (\hat{L})
\end{gathered}
$$

## MODEL SELECTION

## Kullback-Leibler divergence

$$
\operatorname{KL}\left(\rho_{g 1} \mid \rho_{g 2}\right)=\int_{-\infty}^{\infty} \rho_{1}(\lambda) \log \frac{\rho_{g 1}(\lambda)}{\rho_{g 2}(\lambda)} \mathrm{d} \lambda
$$

Unknown graph spectrum



## T test

## Control Treatment

| 0.018 | 2.974 |
| ---: | ---: |
| -0.184 | 1.993 |
| -1.371 | 3.567 |
| -0.599 | 2.474 |
| 0.294 | 1.055 |
| 0.389 | 0.456 |
| -1.208 | 4.654 |
| -0.363 | -0.148 |
| -1.626 | 0.231 |
| -0.256 | 1.612 |
| 1.101 | 4.254 |
| 0.755 | 3.035 |
| -0.238 | 4.236 |
| 0.987 | 3.263 |
| 0.741 | 3.138 |
| 0.089 | 1.571 |


$\mathrm{H}_{0}$ : the means of the two populations are equal
$1.571 \mathrm{H}_{1}$ : the means of the two populations are not equal


## COMPARISON TEST



Jensen-Shannon


$\operatorname{JS}\left(\rho_{g_{1}}, \rho_{g_{2}}\right)=\frac{1}{2} \mathrm{KL}\left(\rho_{g_{1}} \mid \rho_{g_{M}}\right)+\frac{1}{2} \mathrm{KL}\left(\rho_{g_{2}} \mid \rho_{g_{M}}\right) \quad$ Hypothesis test
where $\rho_{g_{M}}=\frac{1}{2}\left(\rho_{g_{1}}+\rho_{g_{2}}\right)$

Takahashi et al., 2012
$\mathrm{H}_{0}: \operatorname{JS}\left(\rho_{g_{1}}, \rho_{g_{2}}\right)=0$
$\mathrm{H}_{1}: \operatorname{JS}\left(\rho_{g_{1}}, \rho_{g_{2}}\right)>0$

## ADHD

A


Eigenvalues

B


Number of Clustering Average Degree Spectrum edges coefficient path length distribution

| Normal vs ADHD | 0.82 | 0.85 | 0.87 | 0.031 | 0.024 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Takahashi et al., 2012

## ANOVA

## (Analysis of Variance)

Condition 1 Condition 2 Condition 3
0.018
-0.184
-1.371
-0.599
0.294
0.389
-1.208
-0.363
-1.626
-0.256
1.101
0.755
-0.238
0.987
0.741
0.089
2.974
1.993
3.567
2.474
1.055
0.456
4.654
-0.148
0.231
1.612
4.254
3.035
4.236
3.263
3.138
1.571
1.729
-1.071
-2.339
-0.379
2.511
-0.044
0.929
-0.891
-0.892
1.204
-0.077
-1.944
-0.816


Condition 1 Condition 2 Condition 3
$-1.103 H_{0}$ : all the means are equal
$0.623 H_{1}$ : at least one of the means is not equal
-0.104


## ANOGVA: Analysis of Graph Variability



All Average Spectrum
$\mathrm{H}_{0}: \operatorname{KL}\left(\rho_{g_{1}}, \rho_{g_{\mathrm{M}}}\right)=\operatorname{KL}\left(\rho_{g_{2}}, \rho_{g_{\mathrm{M}}}\right)=\cdots=\operatorname{KL}\left(\rho_{g_{k^{\prime}}}, \rho_{g_{\mathrm{M}}}\right)=0$
$\mathrm{H}_{1}$ :At least one population of graphs is generated in a different manner
Fujita et al., 2017


Fujita et al., 2017


## Correlation

| Gene X | Gene Y |  |  |
| :---: | :---: | :---: | :---: |
| -0.508 | 0.541 |  | $\because \cdot \square$ |
| -0.302 | -0.016 |  | \%ro\% |
| -1.302 | -1.067 | خ | $\because$ |
| -0.935 | -0.102 | $\stackrel{\square}{0}$ |  |
| 0.366 | 0.143 | © | 620 catas: |
| 0.193 | 0.481 |  | W\% |
| -0.876 | -1.216 |  | $\because \because \quad C \quad \operatorname{cov}(X$, |
| -0.845 | 0.215 |  | $\because \because \cdot \rho_{X, Y}=\square \sigma_{X}$ |
| -0.804 | -2.013 |  | $\therefore \cdots{ }^{2} \times \sigma_{X} \sigma_{Y}$ |
| -0.748 | 0.304 |  |  |
| 1.015 | 0.892 |  | Gene X |
| 0.280 | 1.028 |  |  |
| -0.966 | 0.553 |  |  |
| 0.926 | 0.783 |  | Hypothesis test |
| 0.882 0.559 | 0.401 -0.404 | $H_{0}: \rho_{X}$ | $=0 \mathrm{X}$ and Y are not linearly dependent |
| 0.559 | -0.404 | $H_{1}: \rho_{X}$ | $Y \neq 0 \mathrm{X}$ and Y are linearly dependent |



Fujita et al., 2016


Fujita et al., 2016

## AUTISM SPECTRUM DISORDER



$\cdot$
Somatomotor Visual

Default-mode
Cerebellar
Control

Fujita et al., 2016

## AUTISM SPECTRUM DISORDER



## statGraph

## statGraph: Statistical Methods for Graphs

Contains statistical methods to analyze graphs, such as graph parameter estimation, model selection based on the GIC (Graph Information Criterion), statistical tests to discriminate two or more populations of graphs (ANOGVA -Analysis of Graph Variability), correlation between graphs, and clustering of graphs.

Version: $\quad 0.1 .0$
Depends: $\quad R(\geq 2.10 .0)$, stats, graphics
Imports: igraph, MASS
Published: 2017-04-21
Author: $\quad$ Suzana S. Santos [aut], Andre Fujita [aut, cre]
Maintainer: Andre Fujita <fujita at ime.usp.br>
License: $\quad$ GPL $(\geq 3)$
URL: https://www.ime.usp.br/~fujita/software.html
NeedsCompilation: no
Citation: statGraph citation info
CRAN checks: statGraph results

## https://CRAN.R-project.org/package-statGraph

Reference manual:
Package source:
Windows binaries: r-devel: statGraph 0.1.0.zip, r-release: statGraph 0.1.0.zip, r-oldrel: statGraph 0.1.0.zip
OS X El Capitan binaries: r-release: statGraph 0.1.0.tgz
OS X Mavericks binaries: r-oldrel: statGraph 0.1.0.tgz

## Linking:

Please use the canonical form https://CRAN.R-project.org/package=statGraph to link to this page.

# CoGA: Co-expression Graph Analyzer 

Home
Tutorial
Manual
Download
Contact


CoGA (Co-expression Graph Analyzer) is an R package to identify differentially co-expressed gene sets between two phenotypes. The software infers gene regulatory networks from gene expression data, and compares topological properties of the inferred networks. Those properties include centrality, clustering coefficient, degree and spectrum distributions, and spectral entropy. In addition to the differential co-expression analyses, the tool provides graphical interfaces for network visualization, ranking of genes according to their "importance" in the network, and the standard single gene differential expression analysis.

## University of São Paulo (students)

Abner C.R. Neto (Post-Doc, CAPES)
Adèle H. Ribeiro (Ph.D. candidate, CAPES)
Bruno Yamada (undergrad student)
Carlos Farfan (Master candidate)
Carlos Relvas (Ph.D. candidate)
Eduardo Lira (Ph.D. candidate, CAPES)
Gabriela E. Soares (Ph.D. candidate, CAPES)
Grover E.C. Guzman (Ph.D. candidate, CAPES) João Madeira (undergrad student)
Juliana C. Cavalcanti (Master candidate)
Maciel C. Vidal (Ph.D. candidate, CAPES)
Suzana S. Santos (Ph.D. candidate, FAPESP)
Taiane C. Ramos (Ph.D. candidate, CNPq)
Vinicius J. Carvalho (Master candidate, CAPES)

## University of São Paulo

Carlos Eduardo Ferreira
Suely Kazue Nagahashi Marie
Federal University of ABC
João Ricardo Sato

Albert Einstein Research and Education Institute
Joana Bisol Balardin

## Friedrich Alexander Universität Erlangen-Nürnberg

Lars Schewe
Princeton University
Daniel Yasumasa Takahashi
Sorbonne Université
Catherine Matias

## University College London

Janaína Mourão-Miranda
Universität Leipzig
Peter Stadler

# Thank you for your attention 

André Fujita
fujita@ime.usp.br
https://www.ime.usp.br/~fujita

