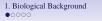
2. Data Preparation 0000000

3. Results

4. Conclusion

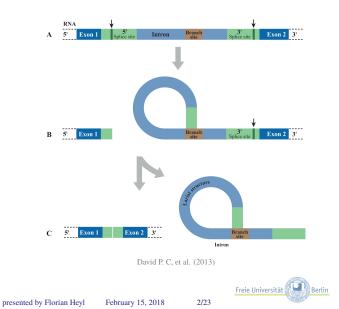
Predicting exon splicing changes triggered by methylation profiles 33rd TBI Winterseminar in Bled


presented by Florian Heyl

February 15, 2018

presented by Florian Heyl

February 15, 2018

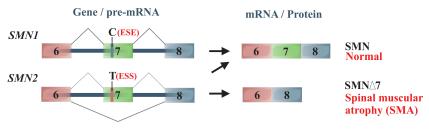


2. Data Preparation

3. Results

4. Conclusion

1.1. Splicing


1. Biological Background ○●○○○ 2. Data Preparation

3. Results

4. Conclusion

1.2. Alternative Splicing

• 90% of the genes are alternatively spliced

Cooper T. A, et al. (2009)

February 15, 2018

2. Data Preparation

3. Results

4. Conclusion

1.3. Influence of DNA Methylation

- Most prevalent form 5-Methylcytosine (5mC)
- Methylated CpG-islands at the transcription start site induce gene silencing

Does DNA methylation also influences alternative splicing?

2. Data Preparation

3. Results 0000000

4. Conclusion

1.3. Influence of DNA Methylation

- Various proteins linked to DNA methylation and alternative splicing
 - Transcriptional repressor CTCF
 - Multifunctional protein MeCP2
 - Heterochromatin protein HP1

1. Biological Background ○○○○● 2. Data Preparation

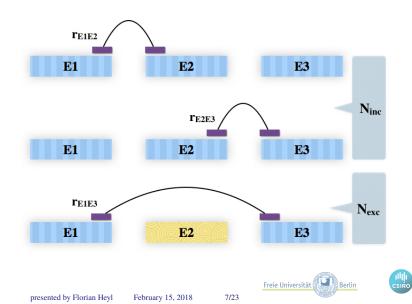
3. Results

4. Conclusion

1.3. Influence of DNA Methylation

Predictive Model

- Input: Methylation profiles and target event
- Output: Probability for state of splicing



2. Data Preparation

3. Results 0000000

4. Conclusion

2.1. Read Counts

2. Data Preparation

3. Results 0000000

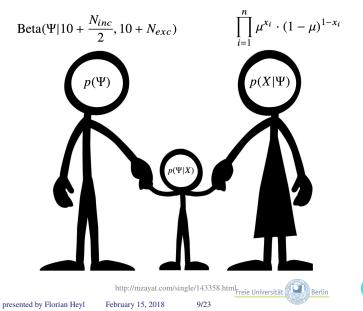
4. Conclusion

2.1. Read Counts

$$N_{total} = \frac{N_{inc}}{2} + N_{exc}$$
$$\Psi = p(Inc) = \frac{\frac{N_{inc}}{2}}{N_{total}}$$

presented by Florian Heyl

February 15, 2018


2. Data Preparation

3. Results

4. Conclusion

CSIRC

2.1. Read Counts

2. Data Preparation

3. Results

4. Conclusion

2.1. Read Counts

$$p(\Psi|X) = p(X|\Psi) \cdot p(\Psi)$$

log $p(\Psi|X) = \log p(X|\Psi) + \log p(\Psi)$
$$\frac{d}{d\Psi} \log p(\Psi|X) = \frac{d}{d\Psi} \log p(X|\Psi) + \frac{d}{d\Psi} \log p(\Psi)$$

$$0 = \frac{d}{d\Psi} \log p(X|\Psi) + \frac{d}{d\Psi} \log p(\Psi)$$

February 15, 2018

2. Data Preparation

3. Results 0000000

4. Conclusion

CSIRO

2.2. Get Exons

1. Remove X, Y and M chromosome

presented by Florian Heyl

February 15, 2018

2. Data Preparation

3. Results 0000000

4. Conclusion

CSIRC

2.2. Get Exons

1. Remove X, Y and M chromosome

2. Find genes with at least 3 exons

2. Data Preparation

3. Results 0000000

4. Conclusion

2.2. Get Exons

- 1. Remove X, Y and M chromosome
- 2. Find genes with at least 3 exons
- 3. Remove short exons (< 50 bp)

2. Data Preparation

3. Results 0000000

4. Conclusion

2.2. Get Exons

- 1. Remove X, Y and M chromosome
- 2. Find genes with at least 3 exons
- 3. Remove short exons (< 50 bp)
- 4. Excluded exon < 0.2

2. Data Preparation

3. Results 0000000

4. Conclusion

2.2. Get Exons

- 1. Remove X, Y and M chromosome
- 2. Find genes with at least 3 exons
- 3. Remove short exons (< 50 bp)
- 4. Excluded exon < 0.2
- 5. Included exon > 0.8

2. Data Preparation

3. Results 0000000

4. Conclusion

CSIRO

2.3. Get Intron Regions

1. Extend 500 bp up- and downstream of exon

2. Data Preparation

3. Results 0000000

4. Conclusion

2.3. Get Intron Regions

- 1. Extend 500 bp up- and downstream of exon
- 2. Remove group (up. intron + exon + do. intron) if introns overlaps with another exon

2. Data Preparation

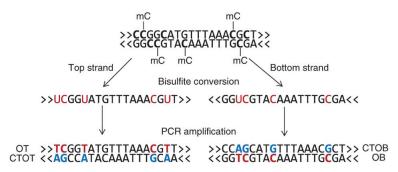
3. Results 0000000

4. Conclusion

CSIRC

2.4. Methylation Data

presented by Florian Heyl


February 15, 2018

2. Data Preparation

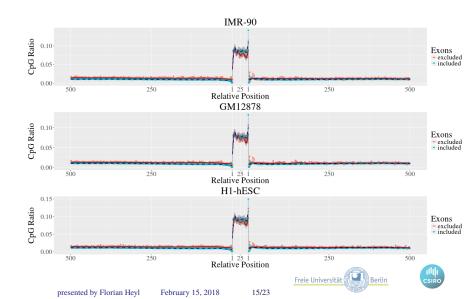
3. Results 0000000

4. Conclusion

2.4. Methylation Data

Krueger F., et al. (2012)

presented by Florian Heyl

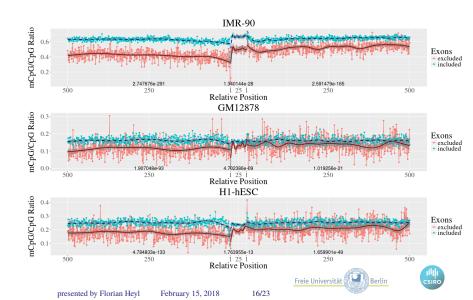

February 15, 2018

2. Data Preparation

3. Results

4. Conclusion

3.1. CpG Profiles



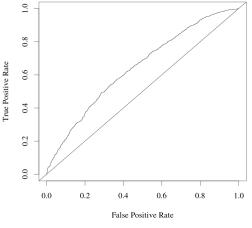
2. Data Preparation

3. Results

4. Conclusion

3.2. mCpG/CpG Profile

2. Data Preparation


3. Results

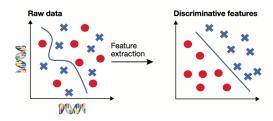
4. Conclusion 00

CSIRO

3.3. Gradient Boosting Machine

IMR-90 Accuracy = 0.604 AUC = 0.643

February 15, 2018


2. Data Preparation

3. Results

4. Conclusion

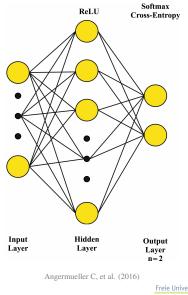
3.4. Why using Deep Learning?

- data $x \to \phi(x)$
 - \rightarrow problem specific
 - \rightarrow labour-intensive

Angermueller C, et al. (2016)

February 15, 2018

2. Data Preparation


3. Results

4. Conclusion

111

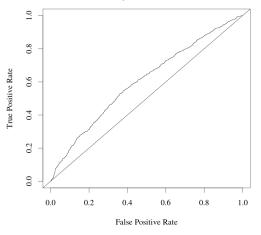
CSIRO

3.5. Architecture of the ANN

presented by Florian Heyl

February 15, 2018

2. Data Preparation


3. Results

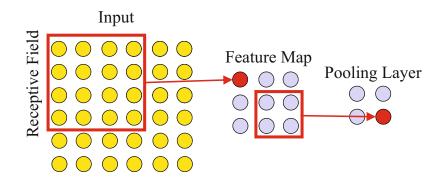
4. Conclusion 00

CSIRO

3.6. Performance of the ANN

IMR-90 Accuracy = 0.58 AUC = 0.603

February 15, 2018



2. Data Preparation

3. Results

4. Conclusion

3.7. Convolutional Neural Network

21/23

Freie Universität

2. Data Preparation

3. Results 0000000

4. Conclusion ●○

որի

CSIRO

4.1. What to Change?

• Use probability of methylation

2. Data Preparation

3. Results 0000000

4. Conclusion ●○

որի

CSIRO

4.1. What to Change?

- Use probability of methylation
- Add zeros

2. Data Preparation

3. Results 0000000

4. Conclusion ●○

որի

CSIRO

4.1. What to Change?

- Use probability of methylation
- Add zeros
- Apply CNN

2. Data Preparation

3. Results 0000000

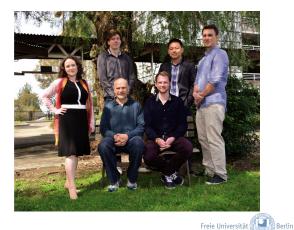
4. Conclusion ●○

CSIRC

4.1. What to Change?

- Use probability of methylation
- Add zeros
- Apply CNN
- Apply deep learning tricks

2. Data Preparation 00000000


3. Results 0000000

4. Conclusion ○●

4.2. Finish

Thanks to:

- Annalisa Marsico (Freie Universität Berlin)
- Denis Bauer

presented by Florian Heyl

February 15, 2018

