
Canonicalization of Data Structures

Jakob Lykke Andersen

Research Group Bioinformatics and Computational Biology
Faculty of Computer Science

University of Vienna
Institute for Theoretical Chemistry

University of Vienna

Bled, February 2018

1/24

Introduction
Model

A mathematical object in some class M.
Example: a rational number, 3

4

Representation
An object of an abstract data type R used to store the model.
Example: a pair of integers, (3, 4)

Implementation
An object of a concrete type used to store the model.
Example: std::pair<int, int>(3, 4)

What if a model has multiple representations?

Example
M = Q, the rational numbers
R = Z× Z, pairs of integers
But 2

5 = 4
10 , so (2, 5) should be considered “equal” to (4, 10).

Notation: (2, 5) ∼= (4, 10) (“isomorphic to”)
(2, 5) r= (2, 5) (“representationally equal to”)

2/24

Introduction
Model

A mathematical object in some class M.
Example: a rational number, 3

4

Representation
An object of an abstract data type R used to store the model.
Example: a pair of integers, (3, 4)

Implementation
An object of a concrete type used to store the model.
Example: std::pair<int, int>(3, 4)

What if a model has multiple representations?

Example
M = Q, the rational numbers
R = Z× Z, pairs of integers
But 2

5 = 4
10 , so (2, 5) should be considered “equal” to (4, 10).

Notation: (2, 5) ∼= (4, 10) (“isomorphic to”)
(2, 5) r= (2, 5) (“representationally equal to”)

2/24

Introduction
Model

A mathematical object in some class M.
Example: a rational number, 3

4

Representation
An object of an abstract data type R used to store the model.
Example: a pair of integers, (3, 4)

Implementation
An object of a concrete type used to store the model.
Example: std::pair<int, int>(3, 4)

What if a model has multiple representations?

Example
M = Q, the rational numbers
R = Z× Z, pairs of integers
But 2

5 = 4
10 , so (2, 5) should be considered “equal” to (4, 10).

Notation: (2, 5) ∼= (4, 10) (“isomorphic to”)
(2, 5) r= (2, 5) (“representationally equal to”)

2/24

Introduction
Model

A mathematical object in some class M.
Example: a rational number, 3

4

Representation
An object of an abstract data type R used to store the model.
Example: a pair of integers, (3, 4)

Implementation
An object of a concrete type used to store the model.
Example: std::pair<int, int>(3, 4)

What if a model has multiple representations?

Example
M = Q, the rational numbers
R = Z× Z, pairs of integers
But 2

5 = 4
10 , so (2, 5) should be considered “equal” to (4, 10).

Notation: (2, 5) ∼= (4, 10) (“isomorphic to”)
(2, 5) r= (2, 5) (“representationally equal to”)

2/24

Canonicalization

Given a representation G ∈ R find a new representation C(G),
such that:

I It represents the same model: C(G) ∼= G
I All canonicalized isomorphic representations are the same:
∀G ′ ∈ R,G ′ ∼= G : C(G ′) r= C(G)

How do we specify and implement canonicalization in practice?

3/24

Representations
Besides the r= operation we need:

I A class of operations, Op, that do not change the model.
I A total order

r
< among (isomorphic) representations.

Fraction Example:
Op:

I Multiplying with an integer: (2, 5) · 2 = (2 · 2, 5 · 5) ∼= (2, 5)
I Dividing with a common factor: (4,10)

2 =
(
4
2 ,

10
2

)
∼= (4, 10)

I (and compositions of those operations)
r
<:

I Prefer both positive over both negative: (2, 5)
r
< (−2,−5)

I Prefer (neg., pos.) over (pos., neg.): (−2, 5)
r
< (2,−5)

I Prefer smaller (absolute) numbers (lexicographically):
(2, 5)

r
< (4, 10), (1, 2)

r
< (2, 3)

4/24

Canonicalization
Given G ∈ R:

I Find op ∈ Op that minimizes op(G), wrt.
r
<

I Return op(G) as the canonical form.

Fraction Example:
Given (a, b),

I Find f = GCD(|a|, |b|)
I If b < 0: let op = Div(f) ◦Mul(-1)

else: let op = Div(f)
I Return op((a, b))

In Practice:
I Probably return op. The user can compute op(G) if needed.
I

r
< may be implicitly defined by the canonicalization algorithm.

5/24

Example: Circular RNA (circRNA)

A

G

U
G C

A

G

U
GC

Representation: A sequence of symbols A, C, G, U.
Example: AGUGCAGUGC

Operations: Rotate(i), for i ∈ Z
Example: Rotate(2,AGUGCAGUGC) = UGCAGUGCAG

r= and
r
<: component-wise and lexicographic comparison

Canonicalization: find the lexicographically smallest rotation
(can be done in linear time)

Symmetry Discovery: op is a symmetry if op(G) r= G
Example: Rotate(5) is a symmetry of AGUGCAGUGC, because

Rotate(5,AGUGCAGUGC) = AGUGCAGUGC
r= AGUGCAGUGC

Rotate(0) is a trivial symmetry

6/24

Example: Circular RNA (circRNA)

A

G

U
G C

A

G

U
GC

Representation: A sequence of symbols A, C, G, U.
Example: AGUGCAGUGC

Operations: Rotate(i), for i ∈ Z
Example: Rotate(2,AGUGCAGUGC) = UGCAGUGCAG

r= and
r
<: component-wise and lexicographic comparison

Canonicalization: find the lexicographically smallest rotation
(can be done in linear time)

Symmetry Discovery: op is a symmetry if op(G) r= G
Example: Rotate(5) is a symmetry of AGUGCAGUGC, because

Rotate(5,AGUGCAGUGC) = AGUGCAGUGC
r= AGUGCAGUGC

Rotate(0) is a trivial symmetry

6/24

Example: Double Stranded RNA
Representation:
A pair of sequences of symbols A, C, G, U, of equal length.

Example: AGUGC
UCACG

Operations: Reverse ◦ Swap
Example: (Reverse ◦ Swap)

(
AGUGC
UCACG

)
= GCACU

CGUGA

r= and
r
<: component-wise and lexicographic comparison

Example: AGUGC
UCACG

r
< GCACU

CGUGA

Canonicalization: take the
r
<-smallest of the two possibilities

7/24

Example: Double Stranded RNA, Only Binding Structure
Swapping all A with U and G with C preserves structure.

Representation:
A pair of sequences of symbols A, C, G, U, of equal length.

Operations: Reverse ◦ Swap and Invert (= Swap)
Example: Invert

(
AGUGC
UCACG

)
=

(
UCACG
AGUGC

)
r= and

r
<: component-wise and lexicographic comparison

Canonicalization: take the
r
<-smallest of the four possibilities

8/24

Example: Anti-Parallel Strong Traces, Take 1
Model: A graph G (representing a polygon), with a closed walk
visiting all edges twice and 〈more constraints〉.

Representation: A sequence of vertices t = (vi1 , vi2 , . . . , vi2m).

Operations: Reverse(t), Rotate(i , t), and
Permute(γ, t) for any automorphism (i.e., symmetry) γ of G .
r= and

r
<: component-wise and lexicographic comparison

Canonicalization: take the
r
<-smallest

(not trivial to do efficiently)

2

13

4

0

Figure 1: Shown is a square pyramid with vertex strong
trace t = (0,2,1,4,2,0,3,4,1,3,0,4,3,1,2,4). Here,
GAP(t) = (5,3,6,4,10,5,3,4,5,3,6,4,10,5,3,4). The gap
representation of the reversed walk t−1 is GAP(t−1) =
(4,10,5,3,4,5,3,6,4,10,5,3,4,5,3,6). Note, GAP(t−1) is not the
reversal of GAP(t). The canonical representation is then obtained by
taking the lexicographic minimum of GAP(t) and GAP(t−1). Thus,
we get CanonGAP(t) = (3,4,5,3,6,4,10,5,3,4,5,3,6,4,10,5)
which corresponds to a cyclic shift of GAP(t−1). The edge
strong trace (an edge {i, j} is just written as i j or ji) is tE =
(02,21,14,42,20,03,34,41,13,30,04,43,31,12,24,40). We ob-
tain GAP(tE) = (4,12,5,11,12,4,5,11,4,12,5,11,12,4,5,11) and
CanonGAP(tE) = (4,5,11,4,12,5,11,12,4,5,11,4,12,5,11,12).
The biological gap is BioGAP(tE) =
(4,4,5,5,4,4,5,5,4,4,5,5,4,4,5,5). Here t is the only strong
trace for the square pyramid that has smallest max bio gap 5, cf.
Tabular 4, where this specific embedding has ID 4.

For a vector W = w1w2 . . .wk, let W R denote the reverse
wk . . .w2w1 of W .

DEFINITION 3.3. Let t be a strong trace on the graph
G, then the canonical representation of t, denoted by
CanonGAP(t), is defined by

CanonGAP(t)= lex min{lex min(GAP(t)), lex min(GAP(tR))},

where lex min represents a function that returns the lexico-
graphical smallest shift of a given vector.

THEOREM 3.2. Let t1 and t2 be strong traces corresponding
to 1-face embeddings Π1 = Π1(G) and Π2 = Π2(G). Then
CanonGAP(t1) = CanonGAP(t2) if and only if Π1 and Π2 are
isomorphic.

Proof. We give here a sketch of the proof; for full details see
the Appendix. Our proof is based on several observations.
First, if a vector W is the vertex gap of an AST t, then
W determines t uniquely up to isomorphism; we call the
embedding corresponding to t the associated embedding of
W . Second, while GAP(t) depends on the starting point of t,

the cyclic shifts of GAP(t) are in 1-to-1 correspondence with
cyclic shifts of t. In particular, there is an unique embedding
associated with all shifts of GAP(t). The final ingredient
is that choosing the minimum among shifts of gaps of t
and tR leads exactly to identification of Π and ΠR in our
enumeration.

THEOREM 3.3. Given a strong trace t corresponding to a
orientable 1-face embedding of a graph G, CanonGAP(t) can
be computed in time O(m).

Proof. By Theorem 3.1, it is possible to compute the GAP(t)
and GAP(tR) in linear time. Additionally it was shown in [34]
that finding the lexicographically smallest shift of a vector
can be done in O(m). It follows directly that CanonGAP(t)
can be computed in O(m).

Theorem 3.3 immediately implies that there is a linear-
time algorithm deciding isomorphism of two embeddings
whose running time does not depend on the size of the
automorphism group of the graph.

THEOREM 3.4. There is an algorithm deciding isomor-
phism of any two 1-face embeddings in time O(m).

4 Algorithms.
The basis for all used algorithms is a branching strategy
for generating strong traces, as given in Algorithm 1. This
general strategy depends on the following three routines,
whose specifications leads to a particular algorithm.

isFeasible(t,v) returns true if appending v to t would lead to
a valid partial strong trace. This routine is the same in
all the used variants of the algorithm.

isCanonical(t,v) returns true if appending v to t might lead
to a canonical strong trace.

isCanonical(t) returns true if t is the canonical representa-
tive of its equivalence class.

We now describe two specifications of isCanonical(t,v)
and isCanonical(t), giving our version of the AEST algo-
rithm from [4] and our algorithm GapEST based on canonical
gap representations, respectively. We will use t ≺ t ′ to denote
that a trace t is lexicographically smaller than t ′.

We start with the description of isCanonical(t,v) in
the AEST algorithm. The algorithm assumes that v0v1 is
always an edge of G and that all strong traces start with this
edge. From each set of pairwise isomorphic strong traces, the
algorithm chooses the canonical strong trace defined as the
strong trace that is lexicographically minimum. To this end,
the algorithm keeps a set SA of automorphisms of the graph,
which is used to cut branches of the search tree that cannot
lead to a lexicographically minimum strong trace. At each
step, all automorphisms in SA fix the current partial trace t.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited158

D
ow

nl
oa

de
d

02
/1

1/
18

 to
 1

30
.2

25
.1

56
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

But what about the graph?
What is a vertex?
What is the representation?

[Bašić et al., MATCH, 2017] [Hellmuth et al., ALENEX, 2018]
9/24

Example: Anti-Parallel Strong Traces, Take 1
Model: A graph G (representing a polygon), with a closed walk
visiting all edges twice and 〈more constraints〉.

Representation: A sequence of vertices t = (vi1 , vi2 , . . . , vi2m).

Operations: Reverse(t), Rotate(i , t), and
Permute(γ, t) for any automorphism (i.e., symmetry) γ of G .
r= and

r
<: component-wise and lexicographic comparison

Canonicalization: take the
r
<-smallest

(not trivial to do efficiently)

2

13

4

0

Figure 1: Shown is a square pyramid with vertex strong
trace t = (0,2,1,4,2,0,3,4,1,3,0,4,3,1,2,4). Here,
GAP(t) = (5,3,6,4,10,5,3,4,5,3,6,4,10,5,3,4). The gap
representation of the reversed walk t−1 is GAP(t−1) =
(4,10,5,3,4,5,3,6,4,10,5,3,4,5,3,6). Note, GAP(t−1) is not the
reversal of GAP(t). The canonical representation is then obtained by
taking the lexicographic minimum of GAP(t) and GAP(t−1). Thus,
we get CanonGAP(t) = (3,4,5,3,6,4,10,5,3,4,5,3,6,4,10,5)
which corresponds to a cyclic shift of GAP(t−1). The edge
strong trace (an edge {i, j} is just written as i j or ji) is tE =
(02,21,14,42,20,03,34,41,13,30,04,43,31,12,24,40). We ob-
tain GAP(tE) = (4,12,5,11,12,4,5,11,4,12,5,11,12,4,5,11) and
CanonGAP(tE) = (4,5,11,4,12,5,11,12,4,5,11,4,12,5,11,12).
The biological gap is BioGAP(tE) =
(4,4,5,5,4,4,5,5,4,4,5,5,4,4,5,5). Here t is the only strong
trace for the square pyramid that has smallest max bio gap 5, cf.
Tabular 4, where this specific embedding has ID 4.

For a vector W = w1w2 . . .wk, let W R denote the reverse
wk . . .w2w1 of W .

DEFINITION 3.3. Let t be a strong trace on the graph
G, then the canonical representation of t, denoted by
CanonGAP(t), is defined by

CanonGAP(t)= lex min{lex min(GAP(t)), lex min(GAP(tR))},

where lex min represents a function that returns the lexico-
graphical smallest shift of a given vector.

THEOREM 3.2. Let t1 and t2 be strong traces corresponding
to 1-face embeddings Π1 = Π1(G) and Π2 = Π2(G). Then
CanonGAP(t1) = CanonGAP(t2) if and only if Π1 and Π2 are
isomorphic.

Proof. We give here a sketch of the proof; for full details see
the Appendix. Our proof is based on several observations.
First, if a vector W is the vertex gap of an AST t, then
W determines t uniquely up to isomorphism; we call the
embedding corresponding to t the associated embedding of
W . Second, while GAP(t) depends on the starting point of t,

the cyclic shifts of GAP(t) are in 1-to-1 correspondence with
cyclic shifts of t. In particular, there is an unique embedding
associated with all shifts of GAP(t). The final ingredient
is that choosing the minimum among shifts of gaps of t
and tR leads exactly to identification of Π and ΠR in our
enumeration.

THEOREM 3.3. Given a strong trace t corresponding to a
orientable 1-face embedding of a graph G, CanonGAP(t) can
be computed in time O(m).

Proof. By Theorem 3.1, it is possible to compute the GAP(t)
and GAP(tR) in linear time. Additionally it was shown in [34]
that finding the lexicographically smallest shift of a vector
can be done in O(m). It follows directly that CanonGAP(t)
can be computed in O(m).

Theorem 3.3 immediately implies that there is a linear-
time algorithm deciding isomorphism of two embeddings
whose running time does not depend on the size of the
automorphism group of the graph.

THEOREM 3.4. There is an algorithm deciding isomor-
phism of any two 1-face embeddings in time O(m).

4 Algorithms.
The basis for all used algorithms is a branching strategy
for generating strong traces, as given in Algorithm 1. This
general strategy depends on the following three routines,
whose specifications leads to a particular algorithm.

isFeasible(t,v) returns true if appending v to t would lead to
a valid partial strong trace. This routine is the same in
all the used variants of the algorithm.

isCanonical(t,v) returns true if appending v to t might lead
to a canonical strong trace.

isCanonical(t) returns true if t is the canonical representa-
tive of its equivalence class.

We now describe two specifications of isCanonical(t,v)
and isCanonical(t), giving our version of the AEST algo-
rithm from [4] and our algorithm GapEST based on canonical
gap representations, respectively. We will use t ≺ t ′ to denote
that a trace t is lexicographically smaller than t ′.

We start with the description of isCanonical(t,v) in
the AEST algorithm. The algorithm assumes that v0v1 is
always an edge of G and that all strong traces start with this
edge. From each set of pairwise isomorphic strong traces, the
algorithm chooses the canonical strong trace defined as the
strong trace that is lexicographically minimum. To this end,
the algorithm keeps a set SA of automorphisms of the graph,
which is used to cut branches of the search tree that cannot
lead to a lexicographically minimum strong trace. At each
step, all automorphisms in SA fix the current partial trace t.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited158

D
ow

nl
oa

de
d

02
/1

1/
18

 to
 1

30
.2

25
.1

56
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

pBut what about the graph?
What is a vertex?
What is the representation?

[Bašić et al., MATCH, 2017] [Hellmuth et al., ALENEX, 2018]
9/24

Example: Graphs, Part 1
Model: A graph G = (V ,E).

Representation: An adjacency list which implicitly assigns
1, 2, . . . , n to V .

Operations: Permute(γ) for any permutation of 1, 2, . . . , n.
r= and

r
<: component-wise and lexicographic comparison

Canonicalization: 〈more on this later〉

10/24

Graph Representation and Graph Permutation
G = (V ,E) V = {1, 2, . . . , n}

Isomorphic graphs, different representations:
1

4
3

2

G1

2

1
3

4

G

1

4
2

3

G2

Adjacency list representation (with sorted neighbour lists):
1 : 4
2 : 3, 4
3 : 2, 4
4 : 1, 2, 3

1 : 2, 3, 4
2 : 1
3 : 1, 4
4 : 1, 3

1 : 4
2 : 3, 4
3 : 2, 4
4 : 1, 2, 3

11/24

Graph Representation and Graph Permutation
G = (V ,E) V = {1, 2, . . . , n}

Isomorphic graphs, different representations:
1

4
3

2

G1

2

1
3

4

Gπ1
1

r= G r= Gπ2
2

1

4
2

3

G2

π1 = (1 2 4)(3) π2 = (1 2 3 4)

Adjacency list representation (with sorted neighbour lists):
1 : 4
2 : 3, 4
3 : 2, 4
4 : 1, 2, 3

1 : 2, 3, 4
2 : 1
3 : 1, 4
4 : 1, 3

1 : 4
2 : 3, 4
3 : 2, 4
4 : 1, 2, 3

11/24

Example: Anti-Parallel Strong Traces, Take 2
Model: A graph G (representing a polygon), with a closed walk
visiting all edges twice and 〈more constraints〉.

Representation: An adjacency list, and a sequence of integers
t = (vi1 , vi2 , . . . , vi2m).

Operations:
I Reverse(t)
I Rotate(i , t)
I Permute(γ, t) for any automorphism γ of G .
I Permute(γ, t,G) for any permutation γ of V .

r= and
r
<: component-wise and lexicographic comparison

Canonicalization: take the
r
<-smallest

[Bašić et al., MATCH, 2017]
12/24

Example: Anti-Parallel Strong Traces, Take 3
Model: A graph G (representing a polygon), with a closed walk
visiting all edges twice and 〈more constraints〉.

Representation: An adjacency list, and a sequence of integers
representing a gap vector g = (a1, a2, . . . a2m).

2

13

4

0

Figure 1: Shown is a square pyramid with vertex strong
trace t = (0,2,1,4,2,0,3,4,1,3,0,4,3,1,2,4). Here,
GAP(t) = (5,3,6,4,10,5,3,4,5,3,6,4,10,5,3,4). The gap
representation of the reversed walk t−1 is GAP(t−1) =
(4,10,5,3,4,5,3,6,4,10,5,3,4,5,3,6). Note, GAP(t−1) is not the
reversal of GAP(t). The canonical representation is then obtained by
taking the lexicographic minimum of GAP(t) and GAP(t−1). Thus,
we get CanonGAP(t) = (3,4,5,3,6,4,10,5,3,4,5,3,6,4,10,5)
which corresponds to a cyclic shift of GAP(t−1). The edge
strong trace (an edge {i, j} is just written as i j or ji) is tE =
(02,21,14,42,20,03,34,41,13,30,04,43,31,12,24,40). We ob-
tain GAP(tE) = (4,12,5,11,12,4,5,11,4,12,5,11,12,4,5,11) and
CanonGAP(tE) = (4,5,11,4,12,5,11,12,4,5,11,4,12,5,11,12).
The biological gap is BioGAP(tE) =
(4,4,5,5,4,4,5,5,4,4,5,5,4,4,5,5). Here t is the only strong
trace for the square pyramid that has smallest max bio gap 5, cf.
Tabular 4, where this specific embedding has ID 4.

For a vector W = w1w2 . . .wk, let W R denote the reverse
wk . . .w2w1 of W .

DEFINITION 3.3. Let t be a strong trace on the graph
G, then the canonical representation of t, denoted by
CanonGAP(t), is defined by

CanonGAP(t)= lex min{lex min(GAP(t)), lex min(GAP(tR))},

where lex min represents a function that returns the lexico-
graphical smallest shift of a given vector.

THEOREM 3.2. Let t1 and t2 be strong traces corresponding
to 1-face embeddings Π1 = Π1(G) and Π2 = Π2(G). Then
CanonGAP(t1) = CanonGAP(t2) if and only if Π1 and Π2 are
isomorphic.

Proof. We give here a sketch of the proof; for full details see
the Appendix. Our proof is based on several observations.
First, if a vector W is the vertex gap of an AST t, then
W determines t uniquely up to isomorphism; we call the
embedding corresponding to t the associated embedding of
W . Second, while GAP(t) depends on the starting point of t,

the cyclic shifts of GAP(t) are in 1-to-1 correspondence with
cyclic shifts of t. In particular, there is an unique embedding
associated with all shifts of GAP(t). The final ingredient
is that choosing the minimum among shifts of gaps of t
and tR leads exactly to identification of Π and ΠR in our
enumeration.

THEOREM 3.3. Given a strong trace t corresponding to a
orientable 1-face embedding of a graph G, CanonGAP(t) can
be computed in time O(m).

Proof. By Theorem 3.1, it is possible to compute the GAP(t)
and GAP(tR) in linear time. Additionally it was shown in [34]
that finding the lexicographically smallest shift of a vector
can be done in O(m). It follows directly that CanonGAP(t)
can be computed in O(m).

Theorem 3.3 immediately implies that there is a linear-
time algorithm deciding isomorphism of two embeddings
whose running time does not depend on the size of the
automorphism group of the graph.

THEOREM 3.4. There is an algorithm deciding isomor-
phism of any two 1-face embeddings in time O(m).

4 Algorithms.
The basis for all used algorithms is a branching strategy
for generating strong traces, as given in Algorithm 1. This
general strategy depends on the following three routines,
whose specifications leads to a particular algorithm.

isFeasible(t,v) returns true if appending v to t would lead to
a valid partial strong trace. This routine is the same in
all the used variants of the algorithm.

isCanonical(t,v) returns true if appending v to t might lead
to a canonical strong trace.

isCanonical(t) returns true if t is the canonical representa-
tive of its equivalence class.

We now describe two specifications of isCanonical(t,v)
and isCanonical(t), giving our version of the AEST algo-
rithm from [4] and our algorithm GapEST based on canonical
gap representations, respectively. We will use t ≺ t ′ to denote
that a trace t is lexicographically smaller than t ′.

We start with the description of isCanonical(t,v) in
the AEST algorithm. The algorithm assumes that v0v1 is
always an edge of G and that all strong traces start with this
edge. From each set of pairwise isomorphic strong traces, the
algorithm chooses the canonical strong trace defined as the
strong trace that is lexicographically minimum. To this end,
the algorithm keeps a set SA of automorphisms of the graph,
which is used to cut branches of the search tree that cannot
lead to a lexicographically minimum strong trace. At each
step, all automorphisms in SA fix the current partial trace t.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited158

D
ow

nl
oa

de
d

02
/1

1/
18

 to
 1

30
.2

25
.1

56
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

t = (0, 2, 1, 4, 2, 0, 3, 4, 1, 3, 0, 4, 3, 1, 2, 4)
g = (5, 3, 6, 4, 10, 5, 3, 4, 5, 3, 6, 4, 10, 5, 3, 4)

[Hellmuth et al., ALENEX, 2018]
13/24

Example: Anti-Parallel Strong Traces, Take 3
Model: A graph G (representing a polygon), with a closed walk
visiting all edges twice and 〈more constraints〉.

Representation: An adjacency list, and a sequence of integers
representing a gap vector g = (a1, a2, . . . a2m).

Operations:
I Rotate(i , g)
I MakeGap ◦Reverse ◦MakeTrace

r= and
r
<: component-wise and lexicographic comparison

Canonicalization: find the
r
<-smallest rotation of g and its reverse.

[Hellmuth et al., ALENEX, 2018]
13/24

Example: Graphs, Continued
Model: A graph G = (V ,E).

Representation: An adjacency list which implicitly assigns
1, 2, . . . , n to V .

Operations: Permute(γ) for any permutation of 1, 2, . . . , n.
r= and

r
<: component-wise and lexicographic comparison

Computational Complexity: exp
(
O

(√
n log n

))
Brute-Force Algorithm:
1. Construct Gγ for all permutations γ ∈ Sn.
2. Select the “best” one (for example the

r
<-smallest).

[Babai and Luks, STOC, 1983]
[Babai, Handbook of Combinatorics, 1996]

14/24

Existing Tools for Canonicalization in Practice
Published Tools: nauty, Traces, Bliss (and Saucy and Conauto)

I All based on the idea of individualization-refinement.
I Different sets of heuristics and variations.
I Many more algorithm variations are possible.
I Which is the best? for a specific class of graphs?
I What if the graph has vertex and edge labels?
I What if those labels are “complicated”? (e.g., stereo-info)

GraphCanon: [Andersen and Merkle, ALENEX, 2018]
I A generic C++ library for canonization algorithms.
I Algorithm variations implementable as individual plugins.
I Allows direct comparison of algorithm variations.
I Lower barrier of entry for implementing new ideas.
I Generality wrt. vertex/edge attributes.

[McKay, Congressus Numerantium, 1981] [McKay and Piperno, J. Symb. Comp.,
2014] [Junttila and Kaski, ALENEX, 2007] [Darga et al., DAC, 2008] [López-Presa
and Fernández Anta, SEA, 2009]

15/24

Existing Tools for Canonicalization in Practice
Published Tools: nauty, Traces, Bliss (and Saucy and Conauto)

I All based on the idea of individualization-refinement.
I Different sets of heuristics and variations.
I Many more algorithm variations are possible.
I Which is the best? for a specific class of graphs?
I What if the graph has vertex and edge labels?
I What if those labels are “complicated”? (e.g., stereo-info)

GraphCanon: [Andersen and Merkle, ALENEX, 2018]
I A generic C++ library for canonization algorithms.
I Algorithm variations implementable as individual plugins.
I Allows direct comparison of algorithm variations.
I Lower barrier of entry for implementing new ideas.
I Generality wrt. vertex/edge attributes.

[McKay, Congressus Numerantium, 1981] [McKay and Piperno, J. Symb. Comp.,
2014] [Junttila and Kaski, ALENEX, 2007] [Darga et al., DAC, 2008] [López-Presa
and Fernández Anta, SEA, 2009]

15/24

Individualization-Refinement Paradigm
Initially: all vertices are unordered (same colour).

1
2
3
4
5
6
7
8
9
10

1

2

3

4

5

6

7

8

9

10

[1 2 3 4 5 6 7 8 9 10]

1

2

3

4

5

6

7

8

9

10

[1 2 | 3 4 5 6 7 8 9 10]

1

2
7

8

9

10
3

4

5

6

[1 2 | 7 8 9 10 | 3 4 5 6]

16/24

Individualization-Refinement Paradigm
Refine the ordering by propagation of “cheap” local information.
Example: sort and partition by degree (1D Weisfeiler-Leman).

1
2
3
4
5
6
7
8
9
10

1

2

3

4

5

6

7

8

9

10

[1 2 3 4 5 6 7 8 9 10]

1

2

3

4

5

6

7

8

9

10

[1 2 | 3 4 5 6 7 8 9 10]

1

2
7

8

9

10
3

4

5

6

[1 2 | 7 8 9 10 | 3 4 5 6]

16/24

Individualization-Refinement Paradigm
Refine the ordering by propagation of “cheap” local information.
Example: sort and partition by degree (1D Weisfeiler-Leman).

1
2
3
4
5
6
7
8
9
10

1

2

3

4

5

6

7

8

9

10

[1 2 3 4 5 6 7 8 9 10]

1

2

3

4

5

6

7

8

9

10

[1 2 | 3 4 5 6 7 8 9 10]

1

2
7

8

9

10
3

4

5

6

[1 2 | 7 8 9 10 | 3 4 5 6]

16/24

Individualization-Refinement Paradigm
Let this be the root of a search tree, and select a colour.
For each vertex of that colour;

create a child with this vertex given a unique new colour.

1
2
3
4
5
6
7
8
9
10

1

2
7

8

9

10
3

4

5

6

[1 2 | 7 8 9 10 | 3 4 5 6]

1

2
7

8

9

10
3

4

5

6

[1 | 2 | 7 8 9 10 | 3 4 5 6]

2

1

7

8

9

10
3

4

5

6

[2 | 1 | 7 8 9 10 | 3 4 5 6]

17/24

Individualization-Refinement Paradigm

1

2
7

8

9

10

5

6
3

4

π(1) = [1 | 2 | 7 8 9 10 | 5 6 | 3 4]

1

2
7

8

9

10
3

4

5

6

π() = [1 2 | 7 8 9 10 | 3 4 5 6]

2

1

7

8

9

10
3

4

5

6

π(2) = [2 | 1 | 7 8 9 10 | 3 4 | 5 6]

1

2
7

10

8

9

6

5

4

3

π(1,7) = [1 | 2 | 7 | 10 | 8 | 9 | 6 | 5 | 4 | 3]

1

7 8 9 10

2

7 8 9 10

2

1

7

10

8

9

4

3
6

5

π(2,7) = [2 | 1 | 7 | 10 | 8 | 9 | 4 | 3 | 6 | 5]

1

2

8

9

7

10

5

6
3

4

π(1,8) = [1 | 2 | 8 | 9 | 7 | 10 | 5 | 6 | 3 | 4]

1
2
3
4
5
6
7
8
9
10

Colour order

1

2
9

8

10

7

6

5

3

4

π(1,9) = [1 | 2 | 9 | 8 | 10 | 7 | 6 | 5 | 3 | 4]

18/24

Algorithm Variation
Categories

I Tree traversal
I Target cell selection
I Refinement
I Pruning with automorphisms
I Detection of implicit automorphisms
I Node invariants

GraphCanon: A common extension infrastructure.
Each variation implemented as a visitor:

I A set of callback methods for events of interest.
I Additional data structures instantiated

I per search tree
I per tree node

19/24

Benchmarks
44 graph collections, with 4,715 graphs in total.
Time limit: 1000 s
Memory limit: 8 GB
Repetitions: 5

Algorithm configurations: {BFSExp,DFS} × {F,FL,FLM}

Compute nodes with two Intel E5-2680v3 CPUs (24 cores)
Compute node hours: approx. 12,000

BFSExp with FLM is often best.

CFI-Rigid: [Neuen and Schweitzer, ESA, 2017]
nauty, Traces: [http://pallini.di.uniroma1.it/Graphs.html]
Bliss: [http://www.tcs.hut.fi/Software/bliss/benchmarks/index.shtml]
Conauto: [https://sites.google.com/site/giconauto/home/benchmarks]
Saucy: [http://vlsicad.eecs.umich.edu/BK/SAUCY/]

20/24

Tree Traversal and Target Cell Selector

0 100
200

300
400

500
600

700
800

900
1,000

1,100

1,200

1,300

10−2

10−1

100

101

102

103

104
OOM
OOT

n

T
im

e
(s
)

nauty (d) nauty (s)

Traces Bliss

BFSExp-F BFSExp-FL

BFSExp-FLM DFS-F

DFS-FL DFS-FLM

mz-aug2, Augmented Miyazaki Graphs 2
0 100

200
300

400
500

600
700

800
900

1,000

1,100

1,200

1,300

10−2

10−1

100

101

102

103

104
OOM
OOT

n

T
im

e
(s
)

nauty (d) nauty (s)

Traces Bliss

BFSExp-F BFSExp-FL

BFSExp-FLM DFS-F

DFS-FL DFS-FLM

Similar characteristics observed for other Miyazaki graphs.

21/24

Tree Traversal and Target Cell Selector

0 100
200

300
400

500
600

700
800

900
1,000

10−2

10−1

100

101

102

103

104
OOM
OOT

n

T
im

e
(s
)

nauty (d) nauty (s)

Traces Bliss

BFSExp-F BFSExp-FL

BFSExp-FLM DFS-F

DFS-FL DFS-FLM

usr, Union of Strongly Regular Graphs
0 100

200
300

400
500

600
700

800
900

1,000

1,100

1,200

1,300

10−2

10−1

100

101

102

103

104
OOM
OOT

n

T
im

e
(s
)

nauty (d) nauty (s)

Traces Bliss

BFSExp-F BFSExp-FL

BFSExp-FLM DFS-F

DFS-FL DFS-FLM

22/24

CFI-Rigid
I 6 collections
I Designed to be the hard benchmarks.
I Expected to have very little symmetry.

Algorithm configurations:
{BFSExp,DFS} × {F,FL,FLM} × 2{PL,Q,T}

Col. Group Reduction Best Algorithm Invariants Matter FLM Sep. Max. Solved n

d3 D3 — BFSExp-FLM yes (any) yes 3,600
z3 Z3 — BFSExp-FLM yes (any) yes 3,780
z2 Z2 — Bliss, nauty (s) yes (any) no 2,992
r2 Z2 R∗ Bliss, nauty (s) no no 1,584
s2 Z2 B∗ FLM, Bliss, nauty (s) yes (PL or Q) no 2,496
t2 Z2 R∗ ◦ B∗ FLM, Bliss, nauty (s) yes (PL or Q) yes 1,056

23/24

CFI-Rigid

0 500
1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

10−2

10−1

100

101

102

103

104
OOM
OOT

n

T
im

e
(s
)

nauty (d) nauty (s)

Traces Bliss

BFSExp-F BFSExp-FL

BFSExp-FLM DFS-F

DFS-FL DFS-FLM

cfi-rigid-d3
0 100

200
300

400
500

600
700

800
900

1,000

1,100

1,200

1,300

10−2

10−1

100

101

102

103

104
OOM
OOT

n

T
im

e
(s
)

nauty (d) nauty (s)

Traces Bliss

BFSExp-F BFSExp-FL

BFSExp-FLM DFS-F

DFS-FL DFS-FLM

23/24

Summary
I Canonicalization is a general principle.
I The concepts can be applied to any data structure.
I Brute-force: make it a graph.

GraphCanon:
I Generic algorithm framework.
I (Relatively) easy to develop new variations.
I Allows direct comparison of algorithmic ideas.
I Competitive with established tools.
I https://github.com/jakobandersen/graph_canon
I Very easy to extract data for visualization:

https://jakobandersen.github.io/graph_canon_vis/

MØD v0.7 (to be released soonTM):
I Integrates GraphCanon .
I Finally, true canonical SMILES strings!
I The automorphism group of molecules is now available.

(important for atom tracing)

24/24

https://github.com/jakobandersen/graph_canon
https://jakobandersen.github.io/graph_canon_vis/

Algorithm Variation
Tree Traversal:

I nauty, Bliss: depth-first (DFS)
I Traces: breadth-first with experimental paths (BFSExp)
I GraphCanon:

I Arbitrary traversals are possible.
I Garbage collected search tree via reference counting.
I Extensions must keep owning references to tree nodes.
I Implemented: DFS, BFSExp, and a new hybrid (BFSExpM).

Target Cell Selector:
I Many have been developed.
I Currently implemented:

I first (F)
I first largest (FL)
I first largest with maximum number of non-uniformly joined

neighbour cells (FLM)

25/24

Algorithm Variation
Node Invariants:

I Totally ordered isomorphism-invariant information.
I Invariants can be implemented independently.
I A special visitor coordinates invariants.
I Implemented:

I cell splitting positions (T), from Traces
I quotient graph values (Q), from nauty, Traces, Bliss

(but not hashed)
I partial leaf (PL), from Bliss (but not hashed)

Construct parts of the permuted graph earlier in the tree.

Refinement functions implemented:
I 1D Weisfeiler-Leman, generalized to exploit edge attributes.
I A function to handle degree-1 vertices.

C C

O
H

H

H
H

H

H

26/24

Algorithm Variation
Detection of implicit automorphisms:

I Sometimes we can detect/guess automorphisms at internal
tree nodes.

I nauty: several special cases of ordered partitions.
I Saucy: heuristics for guessing sparse automorphisms.
I Traces: reportedly a generalization of the Saucy heuristics.
I Implemented:

I Partitions where all cells have size 1 or 2.
I The degree-1 vertex refinement function.

Pruning with automorphisms:
Calculation of orbits in stabilizers of the found automorphisms.
Stabilizer calculation:

I nauty (early versions) and Bliss: conservative (implemented)
I Traces and nauty (recent versions): randomized Schreier-Sims

The implemented visitor for automorphism pruning is generic with
respect to stabilizer implementation.

27/24

