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Orthology Analysis

Orthology analysis is an important part of data analysis in many
areas such as comparative genomics and molecular phylogenetics.

Two fundamentally different ways of orthology estimation:
1. Indirect approach: Infer orthology relation from a
gene-tree/species-tree pair
2. Direct approach: Estimate orthology relation directly from data
→ Best Match Heuristics
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Best Match Heuristics

Assumption:
”The most closely related relative of a gene is the one that is most
similar” (in terms of sequence distances)
→ Molecular clock hypothesis (Zuckerkandl and Pauling)
→ Often violated, still best match heuristics perform quite well on
real data

Software tools like ProteinOrtho give an approximate orthology
graph
Workflow: Sequence data → Proteinortho → Cograph-editing
→ Orthology relation and representing tree

Idea: Deeper understanding of Best Match Graphs to make the
process more efficient
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Best Match Graphs I

Evolutionary relatedness as phylogenetic property:

Definition

The leaf y is a best match of the leaf x in T if
lca(x , y) � lca(x , y ′) for all leaves y ′ from species σ(y ′) = σ(y).
We write x → y .

σ = colors (= species)
lca = last common ancestor
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Best Match Graphs II
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Definition

Given a tree T and a leaf-coloring σ, the colored best match graph
G (T , σ) has vertex set L and arcs xy ∈ E (G ) if x 6= y and x → y .
Each vertex x ∈ L obtains the color σ(x).
The rooted tree T explains the vertex-colored graph (G , σ) if
(G , σ) is the cBMG obtained from T .

σ = colors (= species)

→ Which directed graphs are Best Match Graphs?
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Neighborhoods

In a colored di-graph, we define:

OUT-Neighborhood (”out-going edges”): N(x) = {z | xz ∈ E (G )}
IN-Neighborhood (”in-coming edges”): N−(x) = {z | zx ∈ E (G )}

a

b

c

x

y

Example:

N(a) = N(b) = {y}
N−(a) = N−(b) = {x , y}
N(c) = {x , y}

N−(c) = ∅
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Thinness classes

Definition

Two vertices x , y ∈ L are in relation ∼• if N(x) = N(y) and
N−(x) = N−(y).

a

b

c

x

y

α = {a, b}, β = {c}, γ = {x}, δ = {y}

Observation: all vertices in a class are of the same color

Monotonicity: N(α) ⊆ N(β)⇒ N(N(α)) ⊆ N(N(β)))
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The case of two colors

Assumption: There is a tree that explains (G , σ).

Some nice properties:

(N0) β ⊆ N(α) or β ∩ N(α) = ∅

(N2) N(N(N(α))) ⊆ N(α)

Idea of hierarchy: for any class, one collects
everything that is ”below” this class and this
gives the tree (→ Hierarchy H)

Intuition: The reachable set of α is

R(α) = α ∪ N(α) ∪ N(N(α))

→ But when does such a tree exist for a
2-colored digraph?
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The case of two colors: Characterization of a 2-cBMG

Augenkrätze-Theorem

Let (G , σ) be a 2-colored digraph. Then there exists a tree T
explaining G if and only if G satisfies properties (N0), (N1), (N2),
and (N3).

(N0) β ⊆ N(α) or β ∩ N(α) = ∅
(N1) α ∩ N(β) = β ∩ N(α) = ∅ implies

N(α) ∩ N(N(β)) = N(β) ∩ N(N(α)) = ∅.
(N2) N(N(N(α))) ⊆ N(α)

(N3) If α 6= β with α ∩ N(N(β)) = β ∩ N(N(α)) = ∅, then
N(α) ∩ N(β) 6= ∅ if and only if N(α) ⊆ N(β) or
N(β) ⊆ N(α), and N−(α) = N−(β).

→ Before we extend these results to n colors, we need a little
recap:
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Some basics: Rooted Trees and Triples

Rooted Tree T :

a cb ed

acyclic, connected graph

Triples:

T displays a triple ab|c if the path
from c to the root is not
intersected by the path from a to b.

R(T ) = {ab|c , ab|d , ab|e}

A set of triples R is said to be
consistent if there is a tree T with
R ⊆ R(T ).

Consistency-check via
BUILD-algorithm in polynomial
time. In case of consistency, it
returns a tree T with R ⊆ R(T ).
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Generalization to n colors

All information that is needed, is contained in the 2-cBMG’s:

Theorem

A colored digraph (G , σ) is a n-cBMG if and only if all induced
subgraphs on two colors are 2-cBMG’s and the union of the triples
obtained from their least resolved trees forms a consistent set.

a)

x

A B C

x

b) c)

a) Evolutionary scenario b) Induced subgraphs on two colors and least resolved trees. c) Least resolved tree for G
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Algorithm for the tree-reconstruction of a n-cBMG

a)

x

A B C

x

b) c)

For every induced subgraph on two colors: check (N0)-(N3)
→ if positive:

build the least-resolved tree using the hierarchy H
collect all triples from this tree

Use the set of all triples as input for BUILD: consistency check
and tree construction

→ The resulting tree is the least-resolved tree that explains the
given graph
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Summary & Outlook

What we did so far:

Characterization of two-colored Best Match Graphs by
properties (N0)-(N3) and extension to n colors

Algorithm for the tree reconstruction of colored BMGs

Next steps:

What about reciprocal n-cBMG’s?

What can we say about Cographs?

Optimization of data analysis in the context of Proteinortho
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Appendix
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R(α) = N(α) ∪ N(N(α))

Q(α) = {β | N−(β) = N−(α) and N(β) ⊆ N(α)}

R ′(α) = R(α) ∪ Q(α)

H := {R ′(α) | α ∈ N}
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