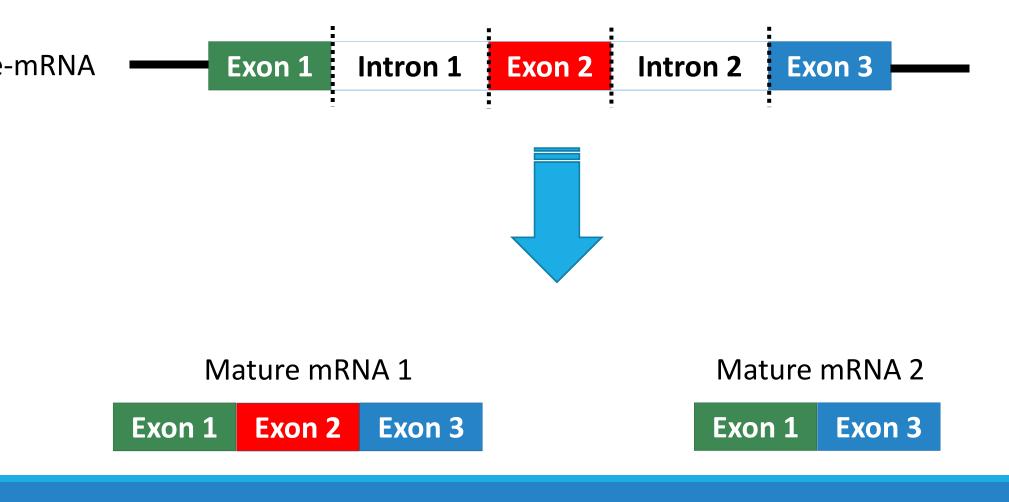
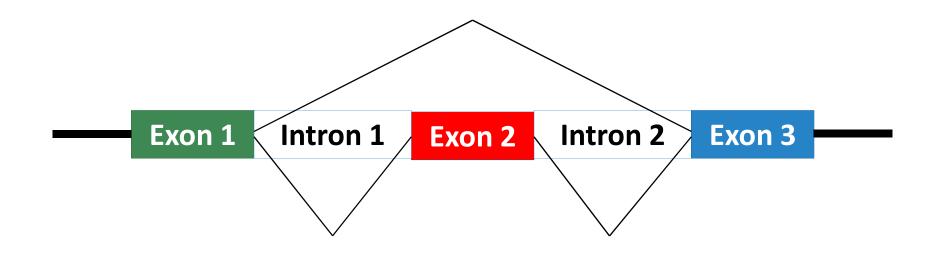


Federal University of Rio de Janeiro

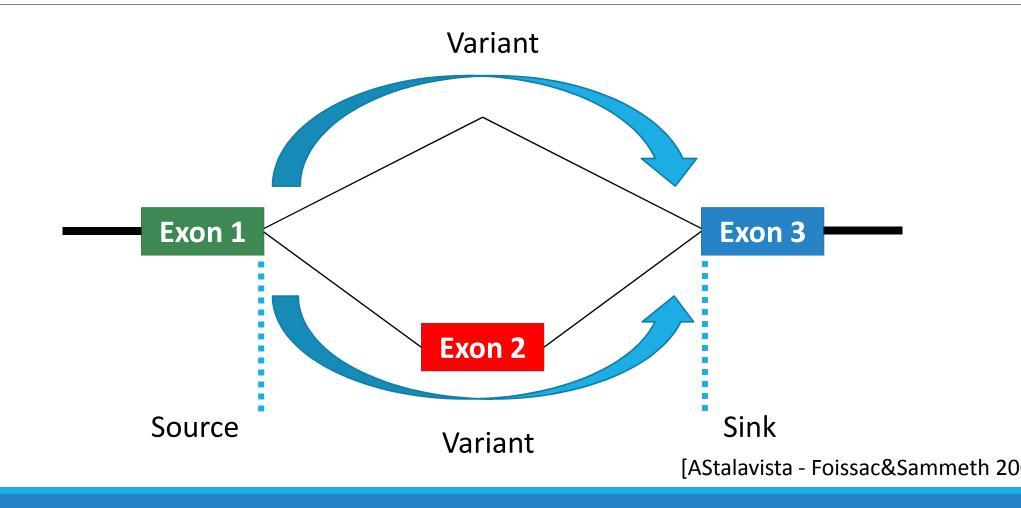
Institute of Biophysics Carlos Chagas Filho Bioinformatics for Transcriptomics and Functional Genomics


tomated Functional Annotation of Pro

Products of Alternatively Spliced Gene

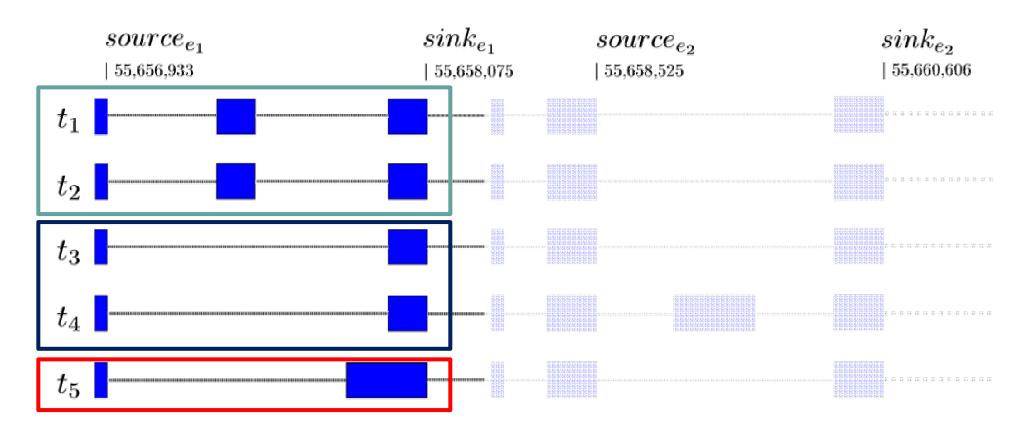

Vitor Coelho & Michael Sammeth

February 2018, Bled Winterseminar


Alternative Splicing (AS)

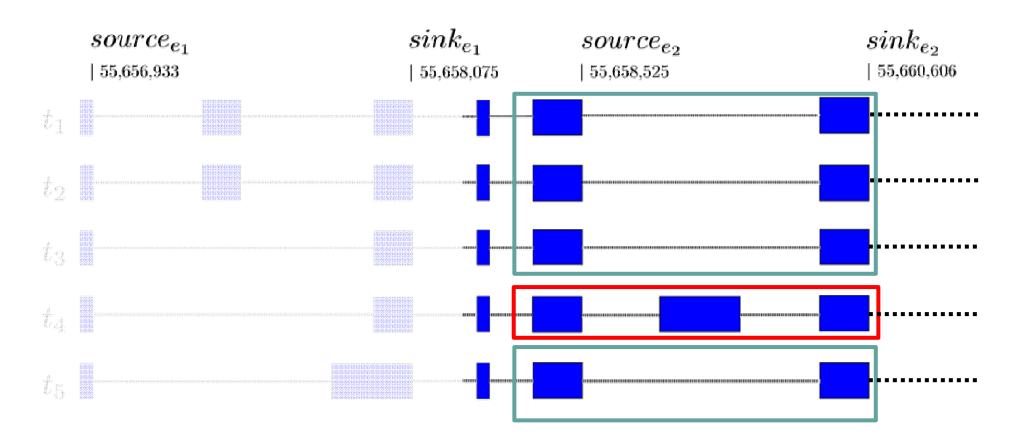
Alternative Splicing Events

Components of an AS Event


Definition of AS event

OAn event e is defined by

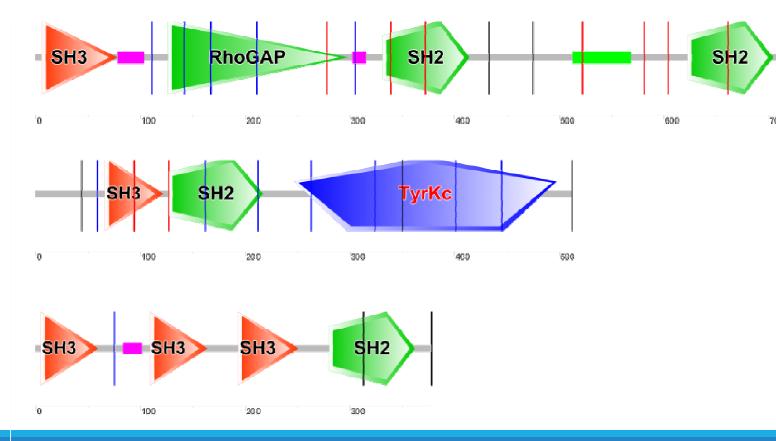
$$\mathbf{e} = (source_e, sink_e, \mathbf{V}_e)$$


- Where:
 - source_e: begin coordinate of event e;
 - sink_e: end coordinate of event e;
 - V_e : set of variants;
 - A variant describes an exon/intron structure between source_e and sink_e – which can contain multiple transcripts

Event 1 in TNNT1

$$\mathbb{V} = \{ \mathbf{V}_1, \mathbf{V}_2, \mathbf{V}_3 \} \rightarrow \begin{array}{l} V_1 = \{ t_1, t_2 \} \\ V_2 = \{ t_3, t_4 \} \\ V_3 = \{ t_5 \} \end{array}$$

Event 2 in TNNT1

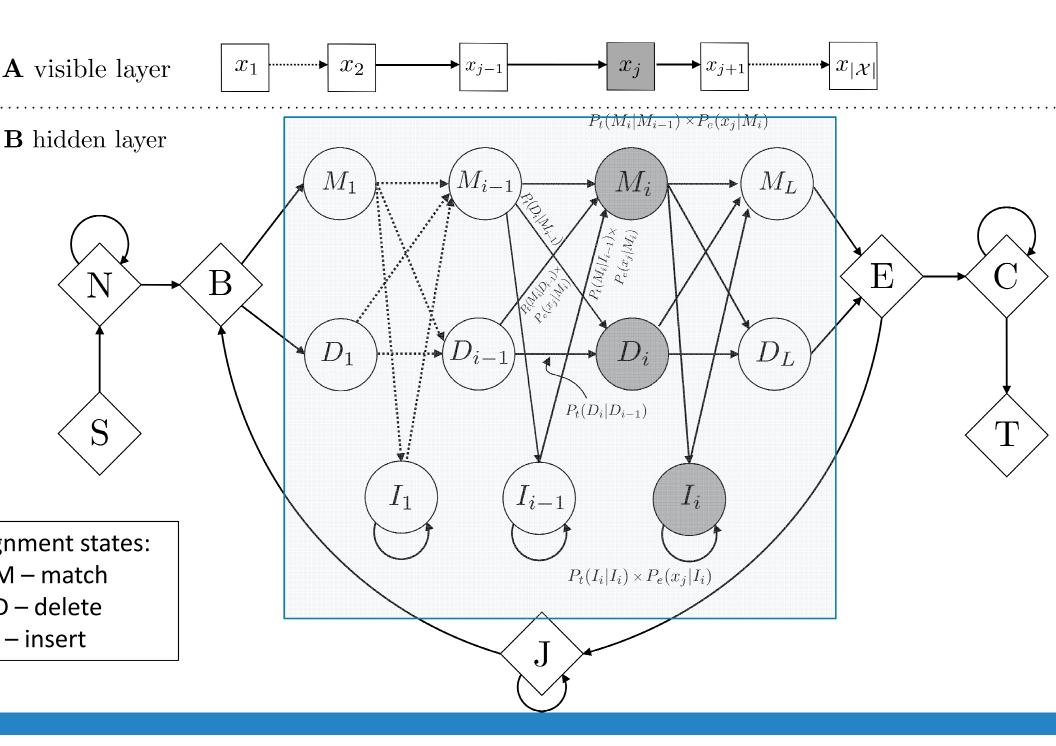

$$\mathbb{V} = \{ \mathbb{V}_1, \mathbb{V}_2 \} \to \begin{array}{l} \mathbb{V}_1 = \{ t_1, t_2, t_3 \} \\ \mathbb{V}_2 = \{ t_4 \} \end{array}$$

Protein Domains and Splicing

Human Protein p85A

Human Protein Lyn

Human Protein Nck1


The Pfam Database

Protein families = database of protein families [Punta et al, 2012]

> Pfam domains are organized in different sub-groups:

Pfam-A: high quality and manually curated protein families *Pfam-B*: automatic predictions

o protein regions sharing sequence similarity of high significance (*"domains"*) are represented by profile HMMs Π , each with a specific length L_{Π} , a prediction threshold θ , and alignment scores (amino acid scores and gap penalties)

Pfam Profile HMM file format

HMMER3/b [3.0 | March 2010]

NAME Antimicrobial11

ACC PF08106.6

DESC Formaecin family

LENG 16

...

GA 25.00 25.00;

HMM	А	С	D	S	Т	V	W	Y	
	m->m	m->i	m->d	i->m	i->i	d->m	d->d		
COMPO	3.68653	5.37452	4.20831	3.83085	2.62022	2.91489	5.77804	3.54633	
	2.68618	4.42225	2.77519	2.37887	2.77519	2.98518	4.58477	3.61503	
	0.01467	4.62483	5.34718	0.61958	0.77255	0.00000	*		
1	3.84125	5.47999	4.65486	4.04240	4.37307	4.91201	6.51694	5.82696	1
	2.68618	4.42225	2.77519	2.37887	2.77519	2.98518	4.58477	3.61503	
	0.01467	4.62483	5.34718	0.61958	0.77255	0.48576	0.95510		
2	4.09153	5.75008	4.67229	4.17197	4.33362	4.67489	6.11461	5.14175	2
	2.68618	4.42225	2.77519	2.37887	2.77519	2.98518	4.58477	3.61503	
	0.01467	4.62483	5.34718	0.61958	0.77255	0.48576	0.95510		
 15	4.09153	5.75008	4.67229	4.17197	4.33362	4.67489	6.11461	5.14175	15
	2.68618	4.42225	2.77519	2.37887	2.77519	2.98518	4.58477	3.61503	
	0.01467	4.62483	5.34718	0.61958	0.77255	0.48576	0.95510		
16	4.12723	5.39816	5.40081	4.69892	4.40337	3.12238	5.70016	4.58094	16
	2.68618	4.42225	2.77519	2.37887	2.77519	2.98518	4.58477	3.61503	
	0.00990	4.62006	*	0.61958	0.77255	0.00000	*		

Viterbi algorithm

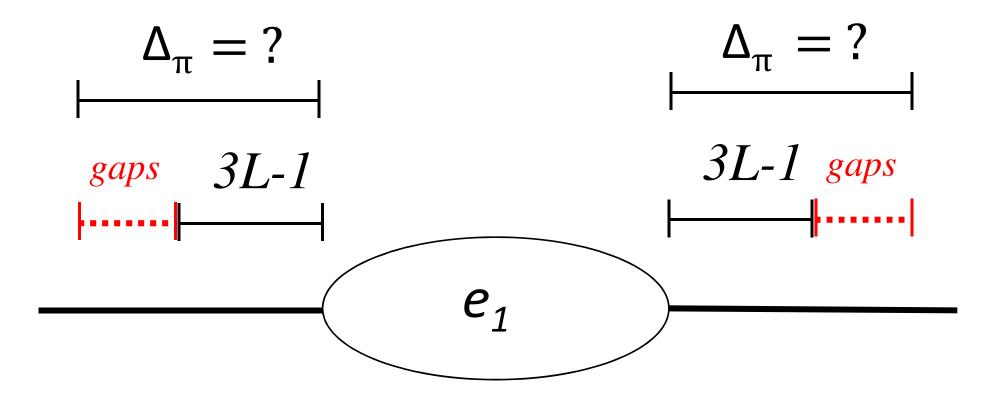
- Dynamic Programming
 - recursive algorithm
 - divides exponential problem into polynomial sub-problems
- Calculate best alignment score between prefixes:
 - Profile HMM π[1; i] and query sequence X[1; j]

 path of best alignment is stored by pointers to the cell that led to highest score

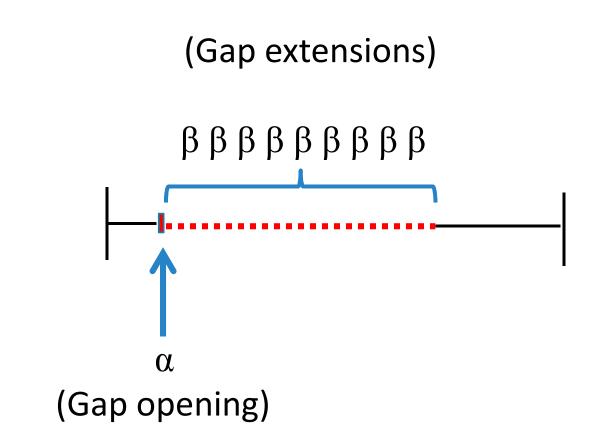
Viterbi algorithm

$$r_{i,j}^{M} = \log_2 \left(\frac{P_c(x_j | M_i)}{P_0(x_j)} \right) + \max \begin{cases} r_{i-1,j-1}^{M} + \log_2(P_t(M_i | M_{i-1})) \\ r_{i-1,j-1}^{I} + \log_2(P_t(M_i | I_{i-1})) \\ r_{i-1,j-1}^{D} + \log_2(P_t(M_i | D_{i-1})) \end{cases}$$

$$r_{i,j}^{I} = \log_2\left(\frac{P_e(x_j|I_i)}{P_0(x_j)}\right) + \max\begin{cases} r_{i,j-1}^{M} + \log_2(P_t(I_i|M_i)) \\ r_{i,j-1}^{I} + \log_2(P_t(I_i|I_i)) \end{cases}$$


$$r_{i,j}^{D} = \max \begin{cases} r_{i,j-1}^{M} + \log_2(P_t(D_i|M_{i-1})) \\ r_{i,j-1}^{D} + \log_2(P_t(D_i|D_{i-1})) \end{cases}$$

vcoelho2 está errado as probabilidades de emissao... estao como probabilidades de transicao vitorlc; 22/2/2015

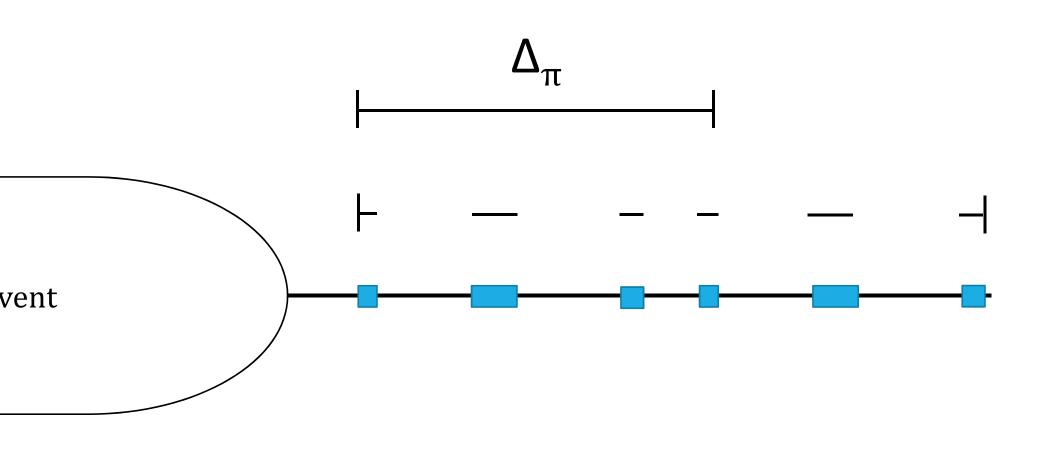

Aim: Predict Domain Alterations by AS

00 I AMD11	865,000 I UCSC Gen	870,000 es (RefSeq. GenBan∢, CCDS	Riam, tENAs & C	omparative Genomics) SAMD11	*****	-
SAMD1 SAMD1	·····	***************************************	· · · · · · · · · · · · · · · · · · ·	**************************************	· > > > > > > > > > > > > > > > > > > >	
SAMDI1			+++++	****	*****	
SAMD11	•••••••••••••••••••••••••••••••••••••••	1	++++++++++++++++++++++++++++++++++++++	************		
SAMD11	***********************	\ } ;} ; ; ; ; ; ; ; ; ; ; ; ; 	****	****		**
SAMD11	، ، ، ، ، ، ، ، ، ، ، ، ، ، , ، , ، ,	\ <mark>********************</mark> ****************	****	************	*****	
SAMD11	1 2 22 2 2 2 2 2 2 2 2 	******	*****	***********		∎÷∎÷
SAMD11	****************		*******	***********	*****	
SAMD11	\ ````````````````````````````````````	 	*****	***********		***
SAMD11 SAMD11	• • • • • • • • • • • • • • • • • • • •	\	+	*****	****	
SAMD11	1 2 23 24 24 24 24 24 24 2	\	*****	*******	→>+>======	₩
SAMD11	1 2 22 22 22 22 22 22 22 	*********************	· ····	*************************************	·	₩
SAMD11	> > > > > > > > > > > 	* * * * * * * * * * * * * * * * * * * 	*****=**** *******	◇◇◇◇◇◇◇◇◇◇◇◇	***** <u>********************************</u>	**
SAMD11	1 2 22 2 2 2 2 2 2 2 2 	* * * * * * * * * * * * * * * * * * * 	***** *** ********	*************************************	◇〉◇↓◇▋◇♪◇〉◇】◇】	∎≻∎→
SAMD11	1 2 23 24 24 24 24 24 24 2	\~ > > > + = + = + = + = + = + = + = + = +	*****	, , , , , , , , , , , , , , , , , , , 	· • • • • • • • • • • • • • • • • • • •	₩ ≯ ₩ →
SAMD11	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	************************	*****	*************************************		***
SAMD11	*********************	*********************	*****	*************************************		∎≻∎→
SAMD11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	\ 	*****	*************************************	**************************************	∎÷∎÷
SAMD11	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	`````````````````````````````````````	*****	*************************************		∎≻∎→
SAMD11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***** * *********	*************************************		<u>∎≻</u> ∎→
SAMD11	\ }}}}<mark>}}</mark>	**************************	*******	*************************************		<u>₽</u> ≻₽→
SAMD11	\`+>\\`+``\`+``+``+``<u>+</u>``+`+`*`	*************************************	·**·*>≥≣ ***>***	**************************************	***** **********	<u>*</u> **
SAMD11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	* ** * * * * * * * * * * * * * * * * *	*****	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	******	∎≻∎→
SAMD11	• • • • • • • • • • • • • • • • • • • •	\	**********	╸┑╸╞╶╡╸╒╘╞╶╡<u></u>╝┊ ╄╶┿ <mark>╝</mark> ╞ <mark>╴╡</mark> ╸╡	******	▝▋≻▐▌→
SAMD11	* ************************************	, 	***********	*************************************	******	****
SAMDI 1	╸╸╡╺╺╞╺╺╡╸╸╡╸╸╡╸╸╡╸╸╞╴╋ ╸╸ <mark>╸╴╡╺┠</mark> ╸╸╞╶╴┥	\	• ••••••••••••••••	╸╡╸╕╕╕╕╕╕╕╕╡╝ ╋ ╝╝ ╋	***********************	+++++++++++++++++++++++++++++++++++++++
SAMD11 ■→→→→→→→→	1 2 2 2 2 2 2 2 2 2 2 	, , , , , , , , , , , , , , , , , , , 	*****	*************************************	a a a a a a a a a a a a a a a a a a a 	<u></u>
SAMD11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , , 	*****	*************************************	**************************************	맞나는 너
SAMD11	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	* ** * 	***********	◇◇◇◇◇◇◇◇◇◇◇◆<mark>●</mark>◆◇◇◇◇◇ ◇	***** *******************************	∎≻∎→
SAMD11 SAMD11	1 2 22 22 22 22 23 22 22 	\+ + + + + + + + + + + + + + + + + + + 	· ◇◇·◇◇<mark></mark> ◇◇·◇◇◆◇◇ ◇	*************************************	◇〉◇↓◇▋◇◇〉◇↓◇◇◇】	₩H→

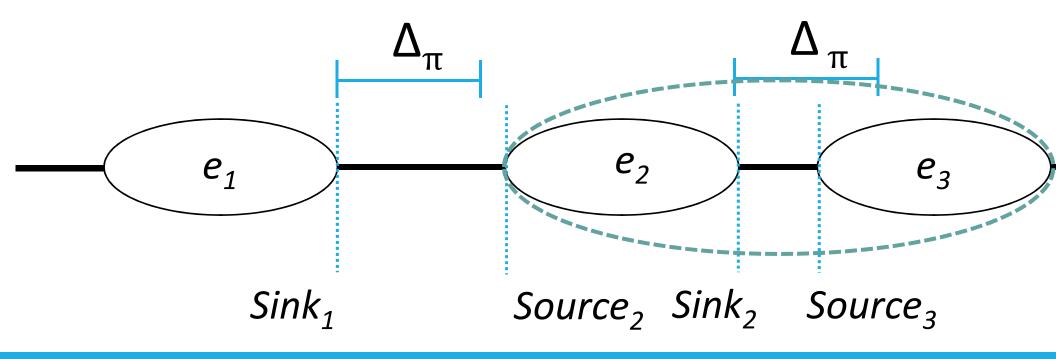
Where to scan for AS domains?

How long has to be Δ_{Π} ?

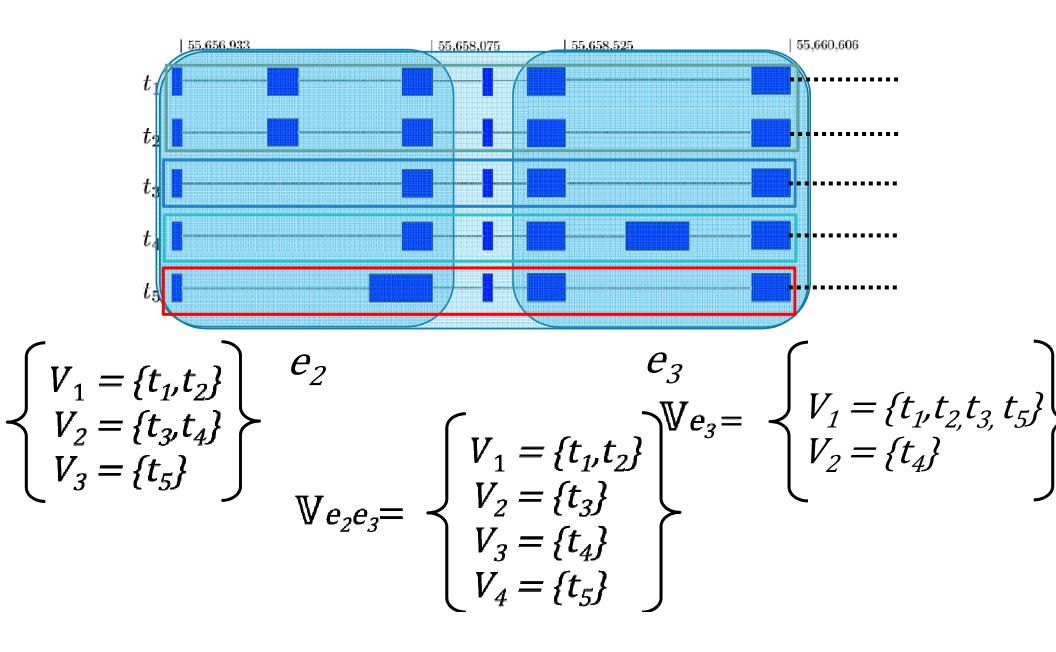
What is the minimum required Δ_{Π} ?

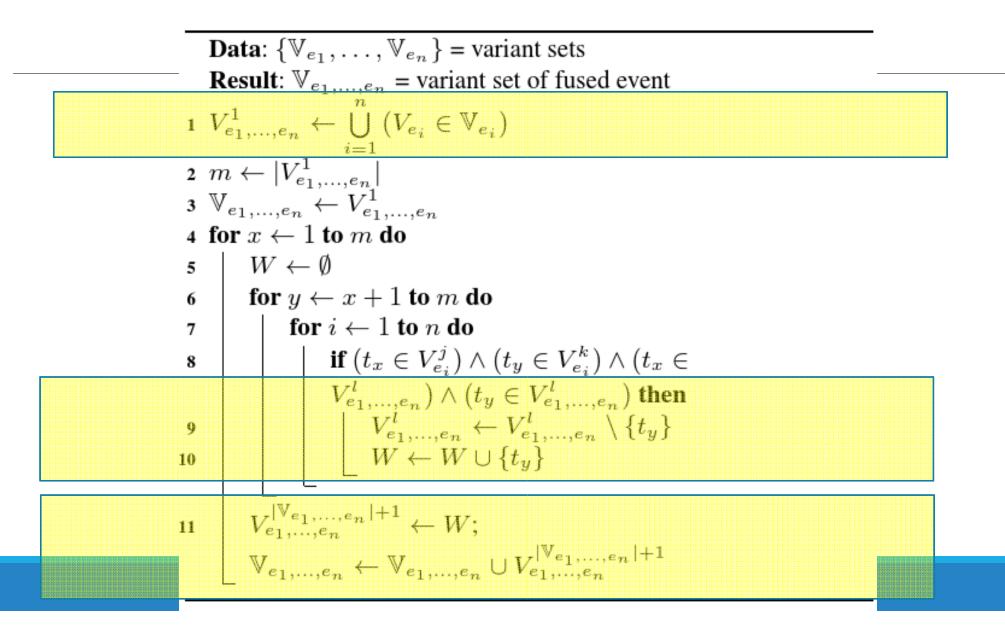

$$\Delta_{\pi} = \left\lceil \frac{(L_{\pi} \times 3) - 1}{3} + \frac{\omega_{\pi}(0) - \theta_{\pi} - \alpha_{\pi}}{\beta_{\pi}} \right\rceil \times 3$$

L: *length* of profile HMM π


 $\omega_{\pi}(1)$: *optimal alignment* score for π (optimal *suffix alignment* starting at position

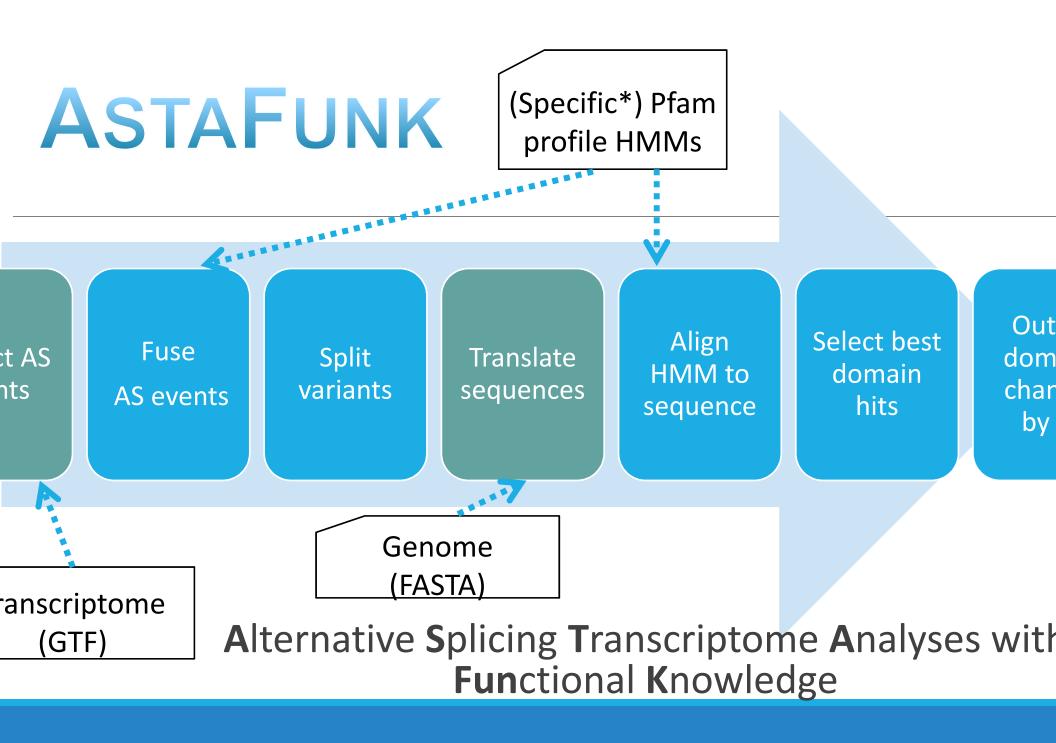
- θ_{π} : Domain *gathering threshold* (Pfam determined) for relevant domain score
- α_{π} : absolute value of max. bit score to *open an insertion* ("gap", state I of the mod
- β_{π} : absolute value of max. bit score to *extend an insertion*


Extension of AS Event


Fusing Events

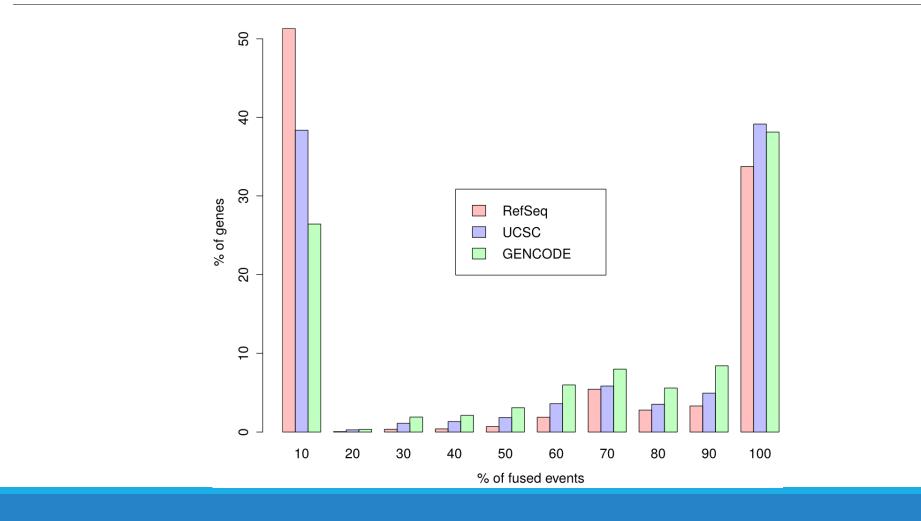
Splitting Variants

Algorithm: Split Variants

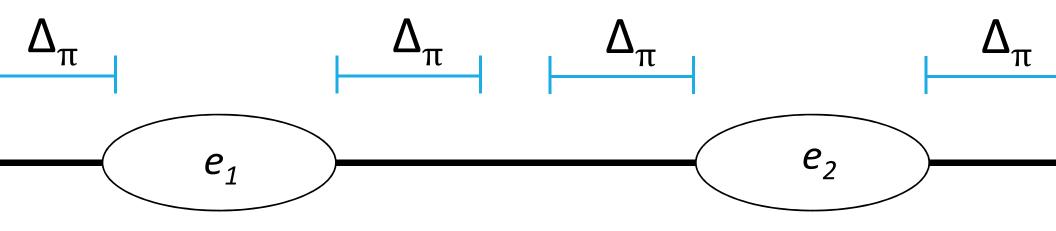

Optimization: Branch-and-bound Condition for the Viterbi Algorithm

o improve alignment performance for finding entire domains (no partial hits).
reduce cells of DP matrix to calculate pruning sub-solutions that can no longer produce a relevant alignment (score ≥ θ_π).

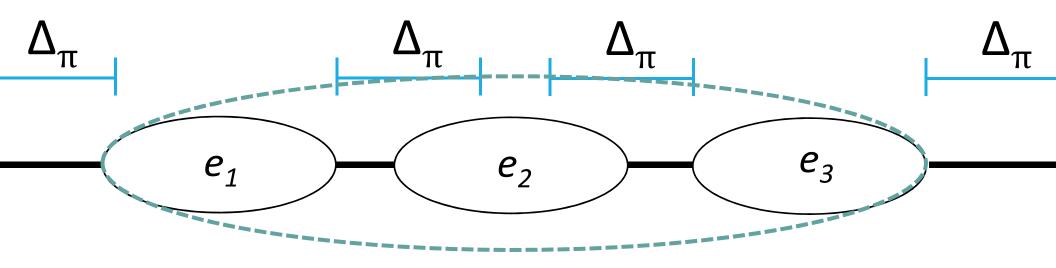
o condition for the feasibility of a sub-solution


$$r_{i,j}^Z + \omega(i) - \log_2(|X|) \ge \theta_{\pi}$$

omega = optimal suffix alignment [i..|X|]log₂(|X|) = score normalization factor

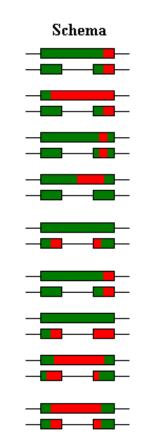


Flybase (dm3)	Wormbase (ce6)	RefSeq (hg19)	UCSC (hg19)	GEN (h
3,541	4,124	10,710	15,091	
503	795	1,523	1,899	
3,038	3,329	9,187	13,192	
9,779	11,836	33,290	61,525	1
777	1,497	1,956	3,078	
2.3	2.7	2.9	4.7	
12.9	35.9	688.5	716.0	
4.02	7.9	29.9	37.6	
68.84%	78%	95.7%	94.7%	
	(dm3) 3,541 503 3,038 9,779 777 2.3 12.9 4.02	(dm3)(ce6)3,5414,1245037953,0383,3299,77911,8367771,4972.32.712.935.94.027.9	(dm3)(ce6)(hg19)3,5414,12410,7105037951,5235037951,5233,0383,3299,1879,77911,83633,2909,7791,4971,9562.32.72.912.935.9688.54.027.929.9	(dm3)(ce6)(hg19)(hg19)3,5414,12410,71015,0915037951,5231,8993,0383,3299,18713,1929,77911,83633,29061,52577771,4971,9563,0782.32.72.94,712.935.9688.5716.04.027.929.937.6


AS Density as a determinant of Fused Events (overhead)

Runtime as a Function of the Density/Fusion of AS Events

Runtime as a Function of the Density of AS Events

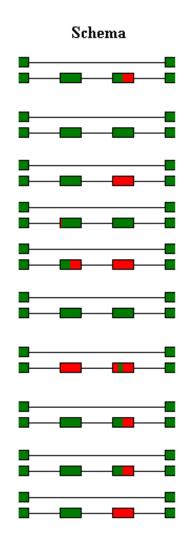


Examples

Pattern 0_1d2a

Dimension:

Locus	Domain	Scores
<u>chr3L:1347754</u> ∢		72.51 72.16
<u>chr3R:2260306</u> ∢ ▶		116.92 117.47
<u>chrX:2344559-</u> ∢ ▶		43.84 43.84
<u>chr3L:9728149</u>	PF08445.9	22.50 N/A
<u>chr3R:3002284</u>	PF00615.18	N/A 68.82
<u>chrX:7933774-</u> ∢		164.54 164.54
<u>chrX:1471348-</u>	PF13903.5	N/A 76.91
<u>chr2R:2242625</u> ∢ ■ ●	PF01529.19	76.68 64.88
<u>chr3L:1608067</u>	PF16870.4	148.32 183.83



AS code	Variants
0	FBtr0075808/FBtr0113425
1^2-	FBtr0075806/FBtr0075807
0	FBtr0113396/FBtr0334559/FBt
1^2-	FBtr0113395/FBtr0302187
0	FBtr0070405
1^2-	FBtr0333730
0	FBtr0089411
1^2-	FBtr0089410/FBtr0114566
0	FBtr0300600
1^2-	FBtr0085553/FBtr0085554/FBt
0	FBtr0071095
1^2-	FBtr0071094
0	FBtr0100198
1^2-	FBtr0070255/FBtr0070256
0	FBtr0071841
1^2-	FBtr0071840
0	FBtr0091793/FBtr0091795/FBt
1^2-	FBtr0091792/FBtr0091794/FBt

Pattern 0_1a2d3a4d

Dimension:

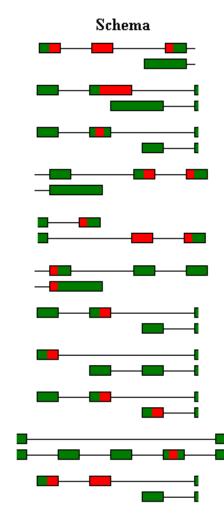
Locus	Domain	Scores
<u>chr3R:1528137</u> ∢ ▶		N/A 331.06
<u>chr3R:1528137</u>	- <u>N/A</u>	N/A N/A
<u>chr3L:2131877</u>	[∠] <u>PF00071.21</u>	N/A 193.43
<u>chr2R:1852297</u>		N/A 595.43
<u>chr3L:2131877</u>	2 <u>PF00025.20</u>	N/A 36.67
<u>chr3R:1528137</u> ∢	- <u>N/A</u>	N/A N/A
<u>chr3R:1528137</u>	- <u>PF12718.6</u>	N/A 54.11
<u>chr2L:1498395</u> ∢		N/A 204.73
<u>chrX:17175347</u>		N/A 28.60
<u>chr3L:2131877</u>	2 <u>PF08477.12</u>	N/A 107.58

AS code	Variants
0	FBtr0089957/FBtr0089959/FBt-
1-2^3-4^	FBtr0089965
0	FBtr0089957/FBtr0089959/FBt
1-2^3-4^	FBtr0089965
0	FBtr0112677/FBtr0345428
1-2^3-4^	FBtr0112678/FBtr0331794
0	FBtr0304867
1-2^3-4^	FBtr0304865
0	FBtr0112677/FBtr0345428
1-2^3-4^	FBtr0112678/FBtr0331794
0	FBtr0089957/FBtr0089959/FBt
1-2^3-4^	FBtr0089965
0	FBtr0089957/FBtr0089959/FBt
1-2^3-4^	FBtr0089965
0	FBtr0332521
1-2^3-4^	FBtr0080676/FBtr0111014/FBt
0	FBtr0074388/FBtr0343763
1-2^3-4^	FBtr0111000/FBtr0343764
0	FBtr0112677/FBtr0345428
1-2^3-4^	FBtr0112678/FBtr0331794

Pattern 1a2e_3a4e

Dimension:

Locus	Domain	Scores
<u>chr2L:5762553</u>		39.92 31.03
chr3R:6088799		N/A 31.75
<u>chr3R:2241454</u>		91.15 N/A
<u>chr3L:2453791</u>	PF00333.19	N/A 58.84
chr3R:1975425	PF02932.15	84.76 77.53
<u>chr3R:2245832</u>	<u>* PF04500.15</u>	44.91 76.18
chr3R:1322295		N/A 520.36
<u>chr3R:9726020</u>		96.10 N/A
chr2R:9400531		105.50 78.20
<u>chr3L:2453791</u>] <u>PF03719.14</u>	N/A 75.70


Schema	
	-
-	
-	
-	
8	-

AS code	Variants
1-2]	FBtr0079163
3-4]	FBtr0079164 -
1-2]	FBtr0078619
3-4]	FBtr0112922
1-2]	FBtr0299516
3-4]	FBtr0299515
1-2]	FBtr0111144
3-4]	FBtr0111146/FBtr0111147
1-2]	FBtr0335417/FBtr0335418/FBtr03
3-4]	FBtr0335416/FBtr0335419/FBtr03
1-2]	FBtr0112608
3-4]	FBtr0112609
1-2]	FBtr0082780
3-4]	FBtr0335223
1-2]	FBtr0329937
3-4]	FBtr0304869
1-2]	FBtr0306111
3-4]	FBtr0088552
1-2]	FBtr0111144
3-4]	FBtr0111146/FBtr0111147

Pattern degree-6_dimension-2

Dimension:

Locus	Domain	Scores
<u>chr3L:1686062</u> ∢		95.41 N/A
<u>chr2L:3713360</u> -		31.28 N/A
<u>chr2L:297880-3</u> ∢ ▶		69.97 N/A
chr3R:1916009	PF01189.16	103.56 N/A
<u>chrX:3877628-1</u>	PF00854.20	308.74 312.10
<u>chr3L:1887004</u>		56.20 56.20
chr2L:297880-3		164.68 N/A
<u>chr3L:6704860</u>		100.45 N/A
chr3L:11623548		175.20 178.48
<u>chr3R:1825352</u>		N/A 32.17
<u>chr3R:9365398</u> ∢ ▶	PF00291.24	268.32 N/A

AS code	Variants
1[2^3-4^6-	FBtr0075336
5[FBtr0332702
1[2^3-5^	FBtr0077537
4[6^	FBtr0077538
1[2^3-4^	FBtr0331205/FBtr0331208
5[6^	FBtr0331207
1^3-4^5-6]	FBtr0299957
2]	FBtr0299958
1-2]	FBtr0070609/FBtr0070610/FBtr
3-4^5-6]	FBtr0070608
1^3-4^5-6]	FBtr0075080
2]	FBtr0112917
1[2^3-4^	FBtr0331205/FBtr0331208
5[6^	FBtr0331207
1[2^	FBtr0076942
3[4^5-6^	FBtr0333072
1[2^3-4^	FBtr0076138/FBtr0331546
5[6^	FBtr0076139
0	FBtr0310379
1-2^3-4^5-6^	FBtr0310384
1[2^3-4^	FBtr0082026
5[6^	FBtr0082027

Pattern degree-6_dimension-3

Dimension:

Locus	Domain	Scores	Schema	AS code	Variants
<u>chr3L:21276</u>	<u>PF00501.27</u>	297.96 297.96 N/A		1[3^ 2[3^ 4[5^	FBtr0078413 FBtr0333126 - FBtr0078414
<u>chrX:76994</u> : ∢	<u>5-77</u> <u>PF01392.21</u>	92.34 92.34 45.05		1[3^ 2[3^ 4[5^	FBtr0345511 FBtr0070138 FBtr0112928
<u>chrX:40813</u>	<u>→</u> <u>PF01530.17</u>	N/A 52.38 52.50		0 1-2^3-4^ 3-4^	FBtr0310491/FBtr0310494/FBtı FBtr0310493 FBtr0310492/FBtr0310495
<u>chr2L:12434</u>	PF07145.14	26.32 26.32 N/A		1[3^ 2[3^ 4[5^	FBtr0080369/FBtr0333089 FBtr0344859 FBtr0333090
<u>chr2L:22240</u>	PF01656.22	34.77 34.77 N/A		1-4] 1-5] 2-3]	FBtr0299875 FBtr0334168 FBtr0334169
<u>chr2R:1010</u>	PF00365.19	368.27 377.77 375.62		1-2^ 3-4^ 5-6^	FBtr0304925/FBtr0333067 FBtr0088420/FBtr0088422 FBtr0088421
<u>chr3R:7861</u>	<u>PF15501.5</u>	N/A 244.27 132.95		0 1-2^ 1-2^3-4^	FBtr0333828 FBtr0333827 FBtr0081770/FBtr0113202/FBtr
<u>chr3L:17539</u>	PF00168.29	80.92 79.84 80.15		1^4- 2^3- 2^4-	FBtr0299642/FBtr0331844 FBtr0331843 FBtr0299645/FBtr0299646/FBtr

ASTAFUNK

http://astafunk.sammeth.net

Vitor Lima Coelho & Michael Sammeth

micha@sammeth.net

vitorcoelho@biof.ufrj.br

