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Combinatorial Species [Joyal, 1981]

A species s consists of a structure F , a set U of labels and a mapping λ : U → F .
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Basic Species

Zero

One

Singleton

Set

List

Cycle
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Sum and Product of Species

Sum

Product

Examples

List: L = 1 + X • L = 1 + L+

Elements: ε = X • E = E+

Ordered pairs: X 2 = X • X = L2
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Composition of Species

F ◦ G

C ◦ L 6= L ◦ C
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Composition of Species

Permutations S = E ◦ C
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Definitions

Species

A species s consists of a structure F , a set U of labels and a mapping λ : U → F .

Species of ordered trees T = 1 + X • (L ◦ T )
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Definitions

Species

A species s consists of a structure F , a set U of labels and a mapping λ : U → F .

Weighted Species

For a given species s, add a weight function w : U → A with A being a
(polynomial) ring A.

Weight function: l(t) = number of leaves of t

By taking the maximum as ring operation, we can filter structures!
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Overview

Concept of combinatorial species in the 80’s by [Joyal, 1981]

Only english (almost) complete literature by [Bergeron et al., 1998]

Subject revisited in 2010 by [Yorgey, 2010, Yorgey, 2014]

Recursion schemes and weighting concepts can help to describes algorithms

Many extension such as differentiation, more operators, weights, multisort
species, species on total orders, virtual species...

Thank you for your attention!

Bergeron, F., Labelle, G., & Leroux, P. (1998).

Combinatorial species and tree-like structures, volume 67.
Cambridge University Press.

Joyal, A. (1981).

Une théorie combinatoire des séries formelles.
Advances in mathematics, 42(1), 1–82.

Yorgey, B. A. (2010).

Species and functors and types, oh my!
In ACM Sigplan Notices, volume 45 (pp. 147–158).: ACM.

Yorgey, B. A. (2014).

Combinatorial species and labelled structures.
University of Pennsylvania.
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Differentiation of Species

Examples

Zero: 0′ = 0
One: 1′ = 0

Singleton: X ′ = 1
Set: E ′ = E
List: L′ ' L2

Cycle: C ′ ' L
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Definitions

Species

A species s consists of a structure F , a set U of labels and a mapping λ : U → F .

Species of ordered trees T = 1 + X • (L ◦ T )

Enumeration

T = X︸︷︷︸
1 n.,1 s.

+ X 2︸︷︷︸
2 n.,1 s.

+ (X 3 + XL2)︸ ︷︷ ︸
3 nodes,2 structures

+ (3X 4 + X 2L2 + XL3)︸ ︷︷ ︸
4 nodes,5 structures

. . .
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