RNA virus full genome sequencing and haplotype reconstruction

Sebastian Krautwurst

February 13, 2018
$33^{\text {rd }}$ TBI Winterseminar in Bled

FRIEDRICH-SCHILLER-
UNIVERSITAT
JENA

Background

Viral haplotypes

- One species = one genome?

Viral haplotypes

- One species = one genome?

Viral haplotypes

- One species = one genome?

Viral haplotypes

- One species = one genome?
- RNA viruses: error-prone replication

Viral haplotypes

- One species = one genome?
- RNA viruses: error-prone replication
- Mutation, recombination, segment reassortment

Viral haplotypes

- One species = one genome?
- RNA viruses: error-prone replication
- Mutation, recombination, segment reassortment
- Diverse spectrum of genomes \Rightarrow Quasispecies reconstruction

NANOPORE SEQUENCING

- ONT MinION

NANOPORE SEQUENCING

- ONT MinION

Nanopore sequencing

- ONT MinION
- 10-20 Gb per flow cell

NANOPORE SEQUENCING

- ONT MinION
- 10-20 Gb per flow cell
- Very long reads possible up to 1 Mb

Nanopore sequencing

- ONT MinION
- 10-20 Gb per flow cell
- Very long reads possible up to 1 Mb
- Noisy - 15% indels

Nanopore sequencing

- ONT MinION
- 10-20 Gb per flow cell
- Very long reads possible up to 1 Mb
- Noisy - 15% indels
- Direct RNA sequencing protocol kit

De Bruidn graph

- Constructed from overlapping k-mers

De Bruidn graph

- Constructed from overlapping k-mers
- Captures variants

De Bruidn graph

- Constructed from overlapping k-mers
- Captures variants
- Assembly: consensus

De Bruidn graph

- Constructed from overlapping k-mers
- Captures variants
- Assembly: consensus
- Tip- and bulge removal

De Bruidn graph

- Constructed from overlapping k-mers
- Captures variants
- Assembly: consensus
- Tip- and bulge removal
- Collapse unambiguous chains

Assembly by de Bruijn graph

- Established de novo assembly method (Velvet, SPAdes)

Assembly by de Bruijn graph

- Established de novo assembly method (Velvet, SPAdes)
- Goal: Enhance with focus on quasispecies reconstruction

Assembly by de Bruijn graph

- Established de novo assembly method (Velvet, SPAdes)
- Goal: Enhance with focus on quasispecies reconstruction
- Separate haplotypes by graph manipulation, long read information

Assembly by de Bruijn graph

- Established de novo assembly method (Velvet, SPAdes)
- Goal: Enhance with focus on quasispecies reconstruction
- Separate haplotypes by graph manipulation, long read information
- Assemble haplotype consensus sequences

Results so far

REAL CORONAVIRUS READ DATA

- HCoV 229E in human cell culture

en.wikipedia.org/wiki/Coronavirus\#/media/
File:Coronaviruses_004_lores.jpg

REAL CORONAVIRUS READ DATA

- HCoV 229E in human cell culture
- Direct RNA protocol kit on MinION

en.wikipedia.org/wiki/Coronavirus\#/media/
File:Coronaviruses_004_lores.jpg

REAL CORONAVIRUS READ DATA

- HCoV 229E in human cell culture
- Direct RNA protocol kit on MinION
- 293406 reads, 27% virus, rest human

en.wikipedia.org/wiki/Coronavirus\#/media/
File:Coronaviruses_004_lores.jpg

REAL CORONAVIRUS READ DATA

- HCoV 229E in human cell culture
- Direct RNA protocol kit on MinION
- 293406 reads, 27% virus, rest human
- Median read length 2.5 kb

en.wikipedia.org/wiki/Coronavirus\#/media/
File:Coronaviruses_004_lores.jpg

REAL CORONAVIRUS READ DATA

- HCoV 229E in human cell culture
- Direct RNA protocol kit on MinION
- 293406 reads, 27% virus, rest human
- Median read length 2.5 kb
- Longest read: 26 kb (genome 27.3 kb)

en.wikipedia.org/wiki/Coronavirus\#/media/
File:Coronaviruses_004_lores.jpg

REAL CORONAVIRUS READ DATA

- HCoV 229E in human cell culture
- Direct RNA protocol kit on MinION
- 293406 reads, 27% virus, rest human
- Median read length 2.5 kb
- Longest read: 26 kb (genome 27.3 kb)
- Error rate 15% - mainly indels

en.wikipedia.org/wiki/Coronavirus\#/media/
File:Coronaviruses_004_lores.jpg

SUBGRAPH CONSENSUS

- Needed: subgraph separation

SUBGRAPH CONSENSUS

- Needed: subgraph separation

SUBGRAPH CONSENSUS

- Needed: subgraph separation
- Implemented with min-cut

SUBGRAPH CONSENSUS

- Needed: subgraph separation
- Implemented with min-cut
- Separates clusters that are minimally connected

SUBGRAPH CONSENSUS

- Needed: subgraph separation
- Implemented with min-cut
- Separates clusters that are minimally connected
- Subgraph consensus is implemented

Yeast enolase is included in the direct RNA kit as a positive control

corona - sequenced data - 73533 reads $-\mathbf{k}=40$

Sequencing Errors

- Mostly insertions and deletions

Sequencing Errors

- Mostly insertions and deletions
- Of those: 70-80\% deletions

Sequencing Errors

- Mostly insertions and deletions
- Of those: 70-80\% deletions
- Deletions happen systematically at homopolymers
$00-1$

Long Read Error Correction

- Self-correction:

Systematic errors are problematic

Long Read Error Correction

- Self-correction:

Systematic errors are problematic

- Hybrid correction with i.e. Illumina data: Alignment to noisy long reads difficult

Long Read Error Correction

- Self-correction:

Systematic errors are problematic

- Hybrid correction with i.e. Illumina data:

Alignment to noisy long reads difficult

- HG-CoLor by P. Morisse et al.

Long Read Error Correction

- Self-correction:

Systematic errors are problematic

- Hybrid correction with i.e. Illumina data:

Alignment to noisy long reads difficult

- HG-CoLor by P. Morisse et al.
- Longest read (25932 nt) Identity to reference: $84 \% \rightarrow 99 \%$ Gap of $407 \mathrm{nt}, 90$ min runtime

Reference-based Indel Correction

- Reference from nanopolish by J. Simpson - RNA NYI

Reference-based Indel Correction

- Reference from nanopolish by J. Simpson - RNA NYI
- Align long reads to reference

Reference-based Indel Correction

- Reference from nanopolish by J. Simpson - RNA NYI
- Align long reads to reference
- Parse CIGAR string to remove insertions, fill deletions

corona - indels corrected - 10\% best nucleotides - k=30

Subgenomic types

ANNOTATION BASED CLASSIFICATION

Unassigned: 44822
Total: 28711

Coverage for subgenomic types
■4a
4bM N

Conclusions

- Viral full genome sequencing

Conclusions

- Viral full genome sequencing
- Structure is visible in graph

Conclusions

- Viral full genome sequencing
- Structure is visible in graph
- Importance of k

Conclusions

- Viral full genome sequencing
- Structure is visible in graph
- Importance of k
- Indel correction required

Conclusions

- Viral full genome sequencing
- Structure is visible in graph
- Importance of k
- Indel correction required
- Coronavirus is ...complicated

Outlook

Next steps

- Test on new data (more HCoV, plum pox virus)

Next steps

- Test on new data (more HCoV, plum pox virus)
- Improve error correction

Next steps

- Test on new data (more HCoV, plum pox virus)
- Improve error correction
- Find robust way to extract haplotypes

Next steps

- Test on new data (more HCoV, plum pox virus)
- Improve error correction
- Find robust way to extract haplotypes
- Utilize long read information

Andreas Goral

Adrian Viehweger Celia Diezel

Manja Marz
Ramakanth Madhugiri John Ziebuhr

All of my group!
Thank you!

