Versatile fixed-parameter tractable sampling for multi-target RNA design

Sebastian Will

Bled 2018

TBI · University of Vienna

Fixed-Parameter Tractable Sampling for RNA Design with Multiple Target Structures

Stefan Hammer^{1,2,3}, Yann Ponty^{4,5,\star}, Wei Wang^{4,5}, and Sebastian Will^2

¹ University Leipzig, Department of Computer Science and Interdisciplinary Center

Multi-target design of RNA sequences

Multi-target design of RNA sequences

Multiple structures (=*multiple design targets*)

abcdefghijklmnopqrstuv
((((((.)).(((..))).))).
((.))((...))..(((..)))
....((((((..)))...))...

Multi-target design of RNA sequences

Multiple structures (=multiple design targets)

abcdefghijklmnopqrstuv
((((((.)).(((..))).))).
((.))((...))..(((..)))
....((((((..)))...))...

Task: generate sequences with specific properties

- low/specific energy for multiple structures
- specific CG content
- specific energy differences
- specific sequence/structure motifs (enforce/forbid)

Approach: (defined) sampling

Uniform sampling: multiple structures

Uniform sampling: multiple structures

2 3 4 5 1 (• ٠) (() Α U U Α Α AGUU Α AGAUU AGGUU **GAAU**C GAAUU G A G U C GAGUU G G A U C GGAUU G G G C C G G G C U GG G U C G G G U U

:

- For uniform: choose first position
 A: C: G: U = 4: 4: 10: 10
 Then, e.g. after G, choose second
 A: G = 4: 6, ...
- $\bullet \ \to \text{counting}$
- (Why) is this hard?

Uniform sampling: multiple structures

3 1 2 4 5 (. . . (((. . A A A U U AAGUU AGAU U AGGUU G A A U C GAAUU G A G U C GAGUU G G A U C GGA U U G G G C C G G G C U GGGUC G G G U U ٠

:

- For uniform: choose first position
 A: C: G: U = 4: 4: 10: 10
 Then, e.g. after G, choose second
 A: G = 4: 6, ...
- $\bullet \ \to \text{counting}$
- (Why) is this hard?

Theorem: Counting of sequences for multiple targets is **#**P-hard.

Proof: equiv. to counting independent sets

 $1. \ \ \text{dependency graph is bipartite}$

 $\{A, G\}$ vs. $\{C, U\}$

- 2. A and C cannot pair: independent
- 3. Selecting all As and Cs, i.e. independent sets, determines a design (and vice versa)

Systematic efficient counting (and sampling)

Recipe:

- 1. Decompose dependency graph
- 2. Apply dynamic programming
- 3. Sample

target structures

dependency graph

Systematic efficient counting (and sampling)

Recipe:

- 1. Decompose dependency graph
- 2. Apply dynamic programming
- 3. Sample

1 2 3 4 5 (. .) . . (()) ((.))

target structures

dependency graph

tree decomposition

Theorem: Counting and sampling efficient for fixed tree width.

(So far) Blueprint / RNAdesign *similar*, but *ear decomposition*

[Blueprint] Hammer, Tschiatschek, Flamm, Hofacker, Findeiß. *Bioinformatics*, 2017. [RNAdesign] Hoener, Hammer, Abfalter, Hofacker, Flamm, Stadler, *Biopolymers*, 2013.

From uniform sampling to Boltzmann sampling

- counts for all subtrees → uniform sampling
- Analogously: partition functions —> Boltzmann sampling

Boltzmann sampling: $P(S) \sim \exp(-\beta E(S))$.

From uniform sampling to Boltzmann sampling

- counts for all subtrees → uniform sampling
- Analogously: partition functions —> Boltzmann sampling

Boltzmann sampling: $P(S) \sim \exp(-\beta E(S))$.

- Energy = (weighted) sum of energies for single structures
- energy models
 - Base pair model "like counting"
 - Nearest neighbor model (Turner model) requires multi-ary dependencies: constraint framework*
 - Stacking model

"in-between", score stacks (4-cliques of dependencies)

Example dependency graphs

Example tree decompositions

Targeting specific properties: multi-dimensional Boltzmann sampling

Weight and combine single structure energies and features ("GC content")

A Learn weights by adaptive scheme

 \rightarrow target specific energies and GC content

B Sampling: targets Turner energies by linear fitting of energies

Boltzmann vs. uniform sampling for multi-target RNA design

	Dataset	Redprint	Uniform	Improvement
Seeds	2str	21.67 (±4.38)	37.74 (±6.45)	73%
	3str	$18.09 (\pm 3.98)$	30.49 (±5.41)	71%
	4str	19.94 (±3.84)	32.29 (±5.24)	63%
Optimized	2str	5.84 (±1.31)	7.95 (±1.76)	28%
	3str	$5.08~(\pm 1.10)$	7.04 (±1.52)	31%
	4str	$8.77(\pm 1.48)$	13.13 (±2.13)	37%

Multi-target design objective [Blueprint] on the Modena benchmark

Modena benchmark: Taneda. BMC Bioinformatics, 2015.

2 str = "rnatabupath"

Thank you!

(workflow shown for base pair energy model; for more sophisticated models and applications, we introduced n-ary dependencies in a flexible constraint framework)

Uniform sampling: one single structure

- draw unpaired bases uniformly
- choose 1st end of each base pair, s.t. A : C : G : U = 1 : 1 : 2 : 2
- select 2nd end accordingly (if first is **G** or **U**: choose)

Tree widths over benchmark sets

