#### REACTION ENUMERATION & CONDENSATION OF DOMAIN-LEVEL STRAND DISPLACEMENT SYSTEMS

### **Stefan Badelt**

### DNA and Natural Algorithms (DNA) Group, Caltech

### Feb 14<sup>th</sup>, 2018 33rd TBI Winterseminar, Bled, Slovenia

Grun, Badelt, Sarma, Shin, Wolfe, and Winfree (manuscript in preparation) http://www.github.com/DNA-and-Natural-Algorithms-Group/peppercornenumerator

# **MOLECULAR PROGRAMMING**

### (in terms of the nuskell compiler project)

nucleic acids are architecture to implement algorithms chemical reaction networks are a programming language formal/experimental verification of correct implementation





## **DNA STRAND DISPLACEMENT**







long (branch-migration) domain: binds irreversibly
short (toehold) domain: binds reversibly







long (branch-migration) domain: binds irreversibly
short (toehold) domain: binds reversibly



formal CRN

$$A \rightleftharpoons B$$

formal species: {A, B}

DSD sytem specification

$$A + F1 \rightleftharpoons F2 + B$$

signal species (low concentation): {A, B} fuel species (high concentration): {F1, F2}

# FROM CRN TO DSD SYSTEMS



Chen et al. (2012), Cardelli (2013), Srinivas (2015), Lakin et al. (2016), ...

Images drawn using VisualDSD, Lakin et al. (2012)

# FROM A DIGITAL CIRCUIT TO DSD



Input for the nuskell compiler: **32** formal reactions.

soloveichik2010.ts: 52 signal species, 92 fuel species, 172 intermediate species, 180 reactions.

verifies as correct according to the pathway decomposition and CRN bisimulation equivalence

Badelt, Johnson, Dong, Shin, Thachuk and Winfree: A general-purpose CRN-to-DSD compiler with formal verification, optimization, and simulation capabilities. LNCS (2017)

### **REACTION TYPES**





### **REACTION TYPES**



allows all secondary structures (pseudoknots excluded) open reactions of domains with length > L are forbidden

open & branch migration reactions are always unimolecular, but may lead to dissociation.

bind reactions are the only valid bimolecular reactions



















# **SEPARATION OF TIMESCALES**

unimolecular reactions are fast bimolecular reactions are slow



at low concentrations:

 $k_{\beta}[A][B] << k_{\alpha}[X]$ 

# **MODEL PARAMETERS**

rate-independent model

open reactions where domain-length > L are negligible unimolecular reactions are fast bimolecular reactions are slow

### rate-dependent model

assume typical rate constant for every reaction: k = rate(rtype, dlength)unimolecular reactions with  $k < k_{slow}$  are negligible unimolecular reactions with  $k < k_{fast}$  are slow unimolecular reactions with  $k \ge k_{fast}$  are fast bimolecular reactions are slow

# **REACTION ENUMERATION**

- every complex has all valid fast reactions enumerated
- transient complexes have no slow reactions enumerated
- resting complexes have all valid slow reactions enumerated
- all initial complexes are included

valid according to enumeration semantics:

- all valid, except open > L
- max-helix semantics: reaction types are greedy
- probability threshold for reactants of bimolecular reactions.
- probability threshold for products of unimolecular reactions.

#### Goal: represent CRN in terms of overall slow reactions



Step 1: Make a graph that contains only fast (1,1) reactions



Step 2: Identify strongly connected components (SCCs)



Step 3: Define transient and resting macrostates



Step 4: Assign fates to complexes (or macrostates)



#### Step 5: Insert slow reactions & derive condensed reactions



#### **DSD CONDENSATION**





#### detailed reactions:

A + F1 -> i1 i1 -> i2 i2 -> B + F2 B + F2 -> i2 i2 -> i1 i1 -> A + F1 A + F2 -> i4 i4 -> A + F2 B + F1 -> i3 i3 -> B + F1

#### condensed reactions:

A + F1 -> B + F2 B + F2 -> A + F1

# **REACTION RATE CONDENSATION**

Consider a condensed reaction:  $P + Q \rightarrow K + L + M$ 

It is composed of all detailed slow reactions:

$$p + q \rightarrow I$$

weighted by the decay probability over all pathways:  $I \rightarrow \cdots \rightarrow k + l + m$ 

where  $p \in P, q \in Q, k \in K, l \in L, m \in M$ and *I* is a multiset of intermediate species

### **REACTION RATE CONDENSATION**



# **REACTION RATE CONDENSATION**

#### general form:

$$k_{\hat{r}} = \sum_{r=(A,B)\in R_{\hat{A}}} k_r \cdot \mathbb{P}[T_{B\to\hat{B}}] \cdot \prod_{a_i\in A} \mathbb{P}[a_i:\hat{A}_i]$$

#### where

 $\mathbb{P}[a_i : \hat{A}_i] = \text{stationary distribution}$  $\mathbb{P}[T_{B \to \hat{B}}] = \text{reaction decay probability}$ 

### **A DNA OSCIALLATOR**



Srinivas, Parkin, Seelig, Winfree, Soloveichik: Enzyme-free nucleic acid dynamical systems. Science (2017)

### **A DNA OSCIALLATOR**



Srinivas, Parkin, Seelig, Winfree, Soloveichik: Enzyme-free nucleic acid dynamical systems. Science (2017)

# **DETAILED VS. CONDENSED SIMULATION**



translation scheme: srinivas2017.ts

# **REACTION ENUMERATOR**

### model limitations

- no multistranded pseudoknots
- assumption of low concentrations
  - assumption of "typical" reaction rate constants

### model parameters

- multiple layers of reaction-semantics
  - reaction types
  - max-helix notion (representation-independent)
  - reaction rate dependent enumeration

### What the domain level can do:

- enumerate intended reaction pathways
- detect unintended reaction pathways
- very fast assessment of overall dynamics
- define a CRN for sequence-level simulations

### What the domain level cannot do:

• include sequence-level variations within the domains

### What the domain level could do:

- detect and quantify particular leak reactions
- provide a coarse-graining for stochastic simulations

# **THANKS TO**







Erik Winfree Casey Grun Karthik Sarma



http://www.github.com/DNA-and-Natural-Algorithms-Group/peppercornenumerator

This research was funded in parts by: The Caltech Biology and Biological Engineering Division Fellowship. The U.S. National Science Foundation NSF Grant CCF-1213127 and NSF Grant CCF-1317694. The Gordon and Betty Moore Foundation's Programmable Molecular Technology Initiative (PMTI).