

(Orthology-)Relations on rooted Median Graphs

34th Winterseminar

Carmen Bruckmann

Bioinformatics Group, Institute of Computer Science

Leipzig University

Bled, Slovenia — February 12, 2019

Introduction and Motivation [1]

UNIVERSITÄT LEIPZIG

Introduction and Motivation [1]

UNIVERSITÄT LEIPZIG

Introduction and Motivation [1]

Definition $(R_{\bullet} \text{ w.r.t } (T, t))$ $(x, y) \in R_{\bullet} \iff t(lca_T(x, y)) = \bullet$

Definition $(R_{\bullet} \text{ w.r.t } (T, t))$ $(x, y) \in R_{\bullet} \iff t(lca_T(x, y)) = \bullet$

Definition (Orthology relation)

R is a orthology relation \iff there exists (T, t) with $R_{\bullet} = R$

Definition $(R_{\bullet} \text{ w.r.t } (T, t))$ $(x, y) \in R_{\bullet} \iff t(lca_T(x, y)) = \bullet$

Definition (Orthology relation)

R is a orthology relation \iff there exists (T, t) with $R_{\bullet} = R$

Theorem

R is a orthology relation \iff R is "induced P₄-free".

1) Hellmuth M, H.-Rosales M, Huber K, Moulton V,Stadler PF, Orthology Relations, Symbolic Ultrametrics, and Cographs, *Journal of Mathematical Biology*, 2012

Definition
$$(R_{\bullet} \text{ w.r.t } (T, t))$$

 $(x, y) \in R_{\bullet} \iff t(lca_T(x, y)) = \bullet$

Definition (Orthology relation)

R is a orthology relation \iff there exists (T, t) with $R_{\bullet} = R$

Theorem

R is a orthology relation \iff R is "induced P₄-free".

1) Hellmuth M, H.-Rosales M, Huber K, Moulton V,Stadler PF, Orthology Relations, Symbolic Ultrametrics, and Cographs, Journal of Mathematical Biology, 2012

How to deal with induced P_4 ? Idea: Use median graphs

UNIVERSITÄT LEIPZIG

UNIVERSITÄT LEIPZIG

Definition (Median)

 $G = (V, E), \qquad a, b, c \in V$

A vertex is called *median* w.r.t G, denoted by $med_G(a, b, c)$, if it lies on a shortest path $P_{a,b}$, $P_{a,c}$, and $P_{b,c}$.

h

UNIVERSITÄT LEIPZIG

Definition (Median)

 $G = (V, E), \qquad a, b, c \in V$

A vertex is called *median* w.r.t G, denoted by $med_G(a, b, c)$, if it lies on a shortest path $P_{a,b}$, $P_{a,c}$, and $P_{b,c}$.

Definition (Median)

G = (V, E), $a, b, c \in V$

A vertex is called *median* w.r.t G, denoted by $med_G(a, b, c)$, if it lies on a shortest path $P_{a,b}, P_{a,c}$, and $P_{b,c}$.

Definition (Median graph)

G = (V, E) is a median graph $\iff G$ connected and $\forall \{a, b, c\} \subseteq V$, with distinct $a, b, c \quad \exists! med(a, b, c)$

Definition

 $\begin{array}{l} R \text{ is } displayed \text{ by a rooted median graph } (G,t), \text{ if} \\ (x,y) \in R \iff t(med_G(x,y,root)) = \bullet \qquad \qquad x,y \text{ leaves in } G \end{array}$

Definition

 $\begin{array}{l} R \text{ is } displayed \text{ by a rooted median graph } (G,t), \text{ if} \\ (x,y) \in R \iff t(med_G(x,y,root)) = \bullet \qquad \qquad x,y \text{ leaves in } G \end{array}$

Every relation R on n vertices can be displayed by a median graph.

• take an n-dimensional hypercube Q_n with coordinates $\in \{0,1\}^n$

- take an n-dimensional hypercube Q_n with coordinates $\in \{0,1\}^n$
- add leaves l_1, l_2, \ldots, l_n at $(1, 0, 0, \ldots, 0)$, $(0, 1, 0, 0, \ldots, 0)$, $(0, 0, 1, 0, 0, \ldots, 0)$ etc.

- take an n-dimensional hypercube Q_n with coordinates $\in \{0,1\}^n$
- add leaves l_1, l_2, \ldots, l_n at $(1, 0, 0, \ldots, 0)$, $(0, 1, 0, 0, \ldots, 0)$, $(0, 0, 1, 0, 0, \ldots, 0)$ etc.
- choose the root arrho at $(1,1,\ldots,1)$

- take an n-dimensional hypercube Q_n with coordinates $\in \{0,1\}^n$
- add leaves l_1, l_2, \ldots, l_n at $(1, 0, 0, \ldots, 0)$, $(0, 1, 0, 0, \ldots, 0)$, $(0, 0, 1, 0, 0, \ldots, 0)$ etc.
- choose the root ϱ at $(1,1,\ldots,1)$
- ⇒ med(l_i, l_j, ρ) has exactly two '1' and each pair of leaves has its own median with ρ

- take an n-dimensional hypercube Q_n with coordinates $\in \{0,1\}^n$
- add leaves l_1, l_2, \ldots, l_n at $(1, 0, 0, \ldots, 0)$, $(0, 1, 0, 0, \ldots, 0)$, $(0, 0, 1, 0, 0, \ldots, 0)$ etc.
- choose the root arrho at $(1,1,\ldots,1)$
- ⇒ med(l_i, l_j, ρ) has exactly two '1' and each pair of leaves has its own median with ρ ⇒ every relation can be displayed

• Q_n is not a good biological result

- Q_n is not a good biological result
- take a look at subclasses of median graphs such as
 - Buneman graphs
 - cube-free graphs

Thanks to Peter F. Stadler and Marc Hellmuth for their interesting problem and the entertaining discussions,

Thanks to Peter F. Stadler and Marc Hellmuth for their interesting problem and the entertaining discussions,

and

THANK YOU for your attention!