UNIVERSITÅT LEIPZIG

(Orthology-)Relations on rooted Median Graphs

34 ${ }^{\text {th }}$ Winterseminar

Carmen Bruckmann

Bioinformatics Group, Institute of Computer Science

> Leipzig University

$$
\text { Bled, Slovenia — February 12, } 2019
$$

Introduction and Motivation [1]

Introduction and Motivation [1]

Introduction and Motivation [1]

Definition (R_{\bullet} w.r.t (T, t))

$$
(x, y) \in R_{\bullet} \Longleftrightarrow t(\operatorname{Ica} T(x, y))=\bullet
$$

Introduction and Motivation [1]

Definition (R • w.r.t (T, t))

$$
(x, y) \in R_{\bullet} \Longleftrightarrow t(\operatorname{Ica} T(x, y))=\bullet
$$

Introduction and Motivation [1]

UNIVERSITAT LEIPZIG

Definition ($R \bullet$ w.r.t (T, t))

$$
(x, y) \in R_{\bullet} \Longleftrightarrow t\left(\operatorname{lca}_{T}(x, y)\right)=\bullet
$$

Definition (Orthology relation)
R is a orthology relation \Longleftrightarrow there exists (T, t) with $R_{\bullet}=R$

Introduction and Motivation [1]

UNIVERSITAT LEIPZIG

Definition (R_{\bullet} w.r.t (T, t))

$$
(x, y) \in R_{\bullet} \Longleftrightarrow t\left(\operatorname{lca}_{T}(x, y)\right)=\bullet
$$

Definition (Orthology relation)

R is a orthology relation \Longleftrightarrow there exists (T, t) with $R_{\bullet}=R$

Theorem

R is a orthology relation $\Longleftrightarrow R$ is "induced P_{4}-free".

1) Hellmuth M, H.-Rosales M, Huber K, Moulton V,Stadler PF, Orthology Relations, Symbolic Ultrametrics, and Cographs, Journal of Mathematical Biology, 2012

Introduction and Motivation [1]

Definition (R_{\bullet} w.r.t (T, t))

$$
(x, y) \in R_{\bullet} \Longleftrightarrow t(\operatorname{lca} T(x, y))=\bullet
$$

Definition (Orthology relation)

R is a orthology relation \Longleftrightarrow there exists (T, t) with $R_{\bullet}=R$

Theorem

R is a orthology relation $\Longleftrightarrow R$ is "induced P_{4}-free".
$\ldots P_{4}$

1) Hellmuth M, H.-Rosales M, Huber K, Moulton V,Stadler PF, Orthology Relations, Symbolic Ultrametrics, and Cographs, Journal of Mathematical Biology, 2012

Relations on rooted median graphs

How to deal with induced P_{4} ? Idea: Use median graphs

Relations on rooted median graphs

Relations on rooted median graphs

Relations on rooted median graphs

Definition (Median)

$$
G=(V, E), \quad a, b, c \in V
$$

A vertex is called median w.r.t G, denoted by $\operatorname{med}_{G}(a, b, c)$, if it lies on a shortest path $P_{a, b}, P_{a, c}$, and $P_{b, c}$.

Relations on rooted median graphs

UNIVERSITAT LEIPZIG

Definition (Median)

$$
G=(V, E), \quad a, b, c \in V
$$

A vertex is called median w.r.t G, denoted by $\operatorname{med}_{G}(a, b, c)$, if it lies on a shortest path $P_{a, b}, P_{a, c}$, and $P_{b, c}$.

Relations on rooted median graphs

UNIVERSITAT LEIPZIG

Definition (Median)

$$
G=(V, E), \quad a, b, c \in V
$$

A vertex is called median w.r.t G, denoted by $\operatorname{med}_{G}(a, b, c)$, if it lies on a shortest path $P_{a, b}, P_{a, c}$, and $P_{b, c}$.

Relations on rooted median graphs

Definition (Median graph)

$G=(V, E)$ is a median graph $\Longleftrightarrow G$ connected and $\forall\{a, b, c\} \subseteq V$, with distinct $a, b, c \quad \exists!\operatorname{med}(a, b, c)$

Relations on rooted median graphs

UNIVERSITAT LEIPZIG

Definition

R is displayed by a rooted median graph (G, t), if $(x, y) \in R \Longleftrightarrow t\left(\operatorname{med}_{G}(x, y\right.$, root $\left.)\right)=\bullet \quad x, y$ leaves in G

Relations on rooted median graphs

UNIVERSITAT LEIPZIG

$R=P_{4}$

Definition

R is displayed by a rooted median graph (G, t), if $(x, y) \in R \Longleftrightarrow t\left(\operatorname{med}_{G}(x, y\right.$, root $\left.)\right)=\bullet \quad x, y$ leaves in G

UNIVERSITAT LEIPZIG

Every relation R on n vertices can be displayed by a median graph.

UNIVERSITAT LEIPZIG

Every relation R on n vertices can be displayed by a median graph.

- take an n-dimensional hypercube Q_{n} with coordinates $\in\{0,1\}^{n}$

Every relation R on n vertices can be displayed by a median graph.

- take an n-dimensional hypercube Q_{n} with coordinates $\in\{0,1\}^{n}$
- add leaves $I_{1}, I_{2}, \ldots, I_{n}$ at $(1,0,0, \ldots, 0),(0,1,0,0, \ldots, 0)$, $(0,0,1,0,0, \ldots, 0)$ etc.

Every relation R on n vertices can be displayed by a median graph.

- take an n-dimensional hypercube Q_{n} with coordinates $\in\{0,1\}^{n}$
- add leaves $I_{1}, I_{2}, \ldots, I_{n}$ at $(1,0,0, \ldots, 0),(0,1,0,0, \ldots, 0)$, $(0,0,1,0,0, \ldots, 0)$ etc.
- choose the root ϱ at $(1,1, \ldots, 1)$

Every relation R on n vertices can be displayed by a median graph.

- take an n-dimensional hypercube Q_{n} with coordinates $\in\{0,1\}^{n}$
- add leaves $I_{1}, I_{2}, \ldots, I_{n}$ at $(1,0,0, \ldots, 0),(0,1,0,0, \ldots, 0)$, $(0,0,1,0,0, \ldots, 0)$ etc.
- choose the root ϱ at $(1,1, \ldots, 1)$
- $\Rightarrow \operatorname{med}\left(I_{i}, l_{j}, \varrho\right)$ has exactly two '1' and each pair of leaves has its own median with ϱ

Every relation R on n vertices can be displayed by a median graph.

- take an n-dimensional hypercube Q_{n} with coordinates $\in\{0,1\}^{n}$
- add leaves $I_{1}, I_{2}, \ldots, I_{n}$ at $(1,0,0, \ldots, 0),(0,1,0,0, \ldots, 0)$, $(0,0,1,0,0, \ldots, 0)$ etc.
- choose the root ϱ at $(1,1, \ldots, 1)$
- $\Rightarrow \operatorname{med}\left(I_{i}, l_{j}, \varrho\right)$ has exactly two '1'
and each pair of leaves has its own median with ϱ
\Rightarrow every relation can be displayed

Outlook

- Q_{n} is not a good biological result

Outlook

- Q_{n} is not a good biological result
- take a look at subclasses of median graphs such as
- Buneman graphs
- cube-free graphs

Acknowledgments

Thanks to Peter F. Stadler and Marc Hellmuth for their interesting problem and the entertaining discussions,

Acknowledgments

Thanks to Peter F. Stadler and Marc Hellmuth for their interesting problem and the entertaining discussions,
and

THANK YOU
 for your attention!

