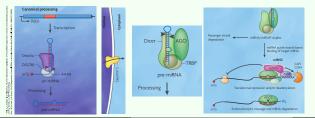
How to improve the detection of miRNA homologs? an outlook from tunicate genomes. 34th TBI Winterseminar in Bled

Cristian A. Velandia Huerto¹

Advisor: Prof. Dr. Peter F. Stadler¹ Collaborations: Ali Yazbeck¹

¹ Inst.f.Informatik, Universität Leipzig, Leipzig, Germany.


February 15, 2019

Context: Do you know miRNAs?

What is a miRNA?

- a class of small RNA (\sim 21-24 bases).
- Endogenous and single strand RNAs.
- Function: *Regulation* of gene expression (via Post-transcriptional gene silencing).
- Produced by microbes, sponges, metazoan, plants and viruses.
- Important role in development and physiology.
- Biogenesis pathway is different between plants and animals [Compartmentalized].

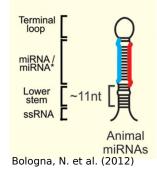
Biogenesis

- Trimming
 Pri-miRNA.
- Transport
 Pre-miRNA.
- Cleavage stem-loop.
- Release miRNA duplex.

Cristian A. Velandia-Huerto

Universität Leipzig

Thanks

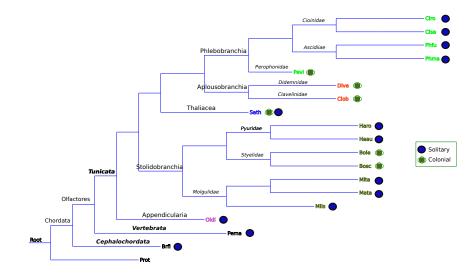

Current approaches of detection

Experimental

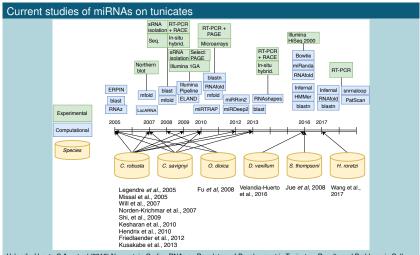
- Northern blot.
- Microarrays.
- In situ hybridization.
- Amplification techniques.

Computational

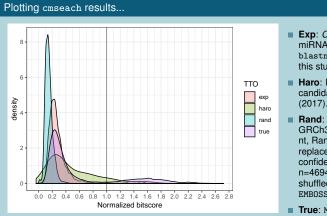
- Homology detection.
- De novo detection.


- Due experimental inability to detect all candidates: Computational approaches.
- Comprehensive understanding of evolution and functional adaptations of miRNAs requires a *Comprehensive annotation*.

Velandia-Huerto, CA. et. al, Evolution and Phylogeny of MicroRNAs-Protocols, Pitfalls, and Problems. Submitted manuscript (2019).


Tunicates as genomic model

Tunicates as genomic model



Tunicates as genomic model

Velandia-Huerto C.A., et. al (2018) Nonprotein-Coding RNAs as Regulators of Development in Tunicates. Results and Problems in Cell Differentiation, vol 65. Springer, Cham

Systematically evaluation: Halocynthia roretzi miRNA annotation

- Exp: C. robusta homology miRNAs sequences by blastn searches (Str 4) in this study.
- Haro: Reported candidates in Wang, et al. (2017).
- Rand: CDS from hsa (v. GRCh38), sizes 80, 150 nt, Rand sampled (with replacement, 95% of confidence, α = 0.05, n=4694, 10 replicas), shuffled nucleotides with EMBOSS and 100 steps.
- **True**: MirGeneDB.

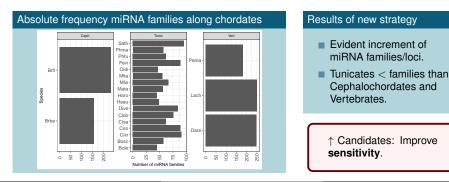
Re-definition

Pre-defined gathering scores GA were re-defined as nGA as follows:

$$nGA = GA * 0.32$$

Cristian A. Velandia-Huerto

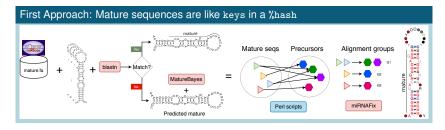
Universität Leipzig


(1) February 15, 2019 7 / 13

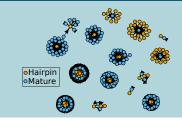
Tunicates miRNAs complement

After applying new nGA filters from cmseach results...

- 27/37 candidates were detected applying nGA.
- 4 candidates correspond to miRNA families without reported CM. (New candidates?)
- 6 loci were discarded by our strategy.

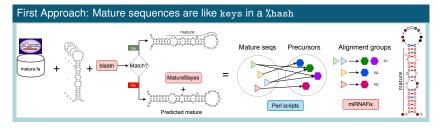

Cristian A. Velandia-Huerto

miRBase and RFAM missannotation


Some considerations...

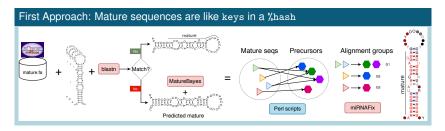
- Definition miRNA families on miRBase and RFAM are different, so equal names do not mean equal biological entities!.
- Mature sequences are not reported on for RFAM miRNA families.
- miRBase is the biggest repository of reported mature sequences.
- Not all miRBase sequences have a correspondent CM on RFAM.

MIRFix annotation (Yazbeck A, (2018) personal comm.)


Brief Methodology: miRNAFix in let-7 miRNAs from Tunicates

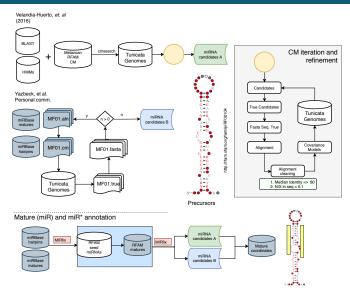
Let-7: Group 11: Ciro, Cisa, Phma, Phfu, Haro, Haau, Bosc, Bole, Pevi

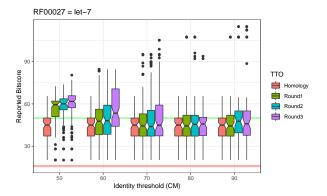
STOCKHOLM 1.0			
aro-let-7-2			UGUAAUAU - ACU AGCAA CAGGAGGUAA
in-let-7c			UG-AUUAUAUGAACCAGGAGAUAA
			UG - AAUAU - UUU AC C AUGGUGAUAA
			UUUGGCUUAaCACGuGCAAUGGAGAUAA
			UUUGGCUUAUCACGc-GCAACUGGAGGUAA
			UGUUUGCAACAACCCGGAGGUAA
evi-let-7-18			UGUUUGCAACAACCCGGAGGUAA
evi-let-7-13		UGAGGUAGUAGGUUAUAUCAGU	UGUUUGCAACAACCCGGAGGUAA
evi-let-7-1			UGUUUGCAACAACCCGGAGGUAA
aau-let-7-3			UGUAAUAU - AC c AG CAA CAGGAGGUAA
isa-let-7-3			UG-AAUAU-UUUACCAUGGUGAUAA
iro-let-7-4			UG - AUUAUAUG AAC CAGGAGAUAA
iin-let-7-4			UG-AUUAUAUGAACCAGGAGAUAA
iosc-let-7-6			UGUAAUAU - UGA GC C AAGGAGAUAA
iosc-let-7-0			UGUAAUAU - UGA GC C AAGGAGAUAA
iole-let-7-1			UGUAAUAU - UCACG AA AAGGCGAUAA
11n-RF00027-30	UGAUG CAAGI	UGAGGUAGUAGGUUAUAUCAGU	UG-AUUAUAUGAACCAGGAGAUAA
t=GC_SS_cons			(()))


MIRFix annotation (Yazbeck A, (2018) personal comm.)

H. roretzi let-7 loci evaluation

miRNA	Mature	Valid?	Alignment Species
S93,68608-68698,-	miRBase	YES	Cionidae, Ascidiiae, Molgulidae, Styel- idae, Pyuridae, Phlebobranchia
S93,67725-67805,-	Predicted	YES	Pyuridae
S93,68282-68361,-	miRBase	YES	Cionidae, Ascidiiae, Pyuridae, Styeli- dae, Phlebobranchia
S93,68444-68525,-	Predicted	YES	Pyuridae, Molgulidae, Styelidae
S648,2294-2373,-	miRBase	YES	Nematoda, Cephalochordata, Styeli- dae, Pyuridae, Vertebrata


MIRFix annotation (Yazbeck A, (2018) personal comm.)


Good try...but not enough.

- Grouping rule for miRNAs families is too strict and artificial.
- Due grouping strategy, some already homologous families have been splited.

Second Approach: Mixed approach on RFAM and miRBase.

CM modifications for miRNAs sequences

Conclusions

- Most conserved miRNAs candidates were successfully detected applying default cmsearch threshold parameters, but *derivated* miRNA loci have to be detected with a new methods to avoid misannotation.
- Additional criteria could be included effectively taking advantage of important features from miRNAs structure (precursor folding, mature position and inspection by multiple alignments) like the evaluated ones by miRNAFix.

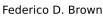
Thanks

Thanks!, Vielen Dank!, Obrigado!, ¡Gracias!

Peter F. Stadler

RNomica teórica

Clara I. Bermúdez



Adriaan Gittenberger

Cristian A. Velandia-Huerto

Universität Leipzig

Conclusions

CM re-definition scores

Plotting cmseach results... Positive Negative n=29962 3 n=4539 Evaluation density Classification isity Other ! Same 2.5 0.00 0.50 Normalized bitscore 1.00 Normalized bitscore Haro data evaluated and nGA n=6441 Classification density 2 0.50 0 E 0.0 1.0 1.5 Normalized bitscore 0.00 nGA = 0.32nGA Assumption: Haro candidates are true candidates. Cristian A. Velandia-Huerto Universität Leipzig February 15, 2019