Intro	Equivalence Classes	Correctness	Results	Markov Chains	Summary

Reduction of Graph-Grammar Models by grouping of tautomers

Emil Houtved Andersen, Jakob L. Andersen, Daniel Merkle

Department of Mathematics and Computer Science, University of Southern Denmark

Bled, February 2019

Intro	Equivalence Classes	Correctness	Results	Markov Chains	Summary
●00	0000	0000	0000000	00	O
Overvi	ew				

In this presentation, we will be talking about:

- Sugar chemistry, in particular, the formose chemistry
- Equivalence Classes
- Auto catalysis
- Gillespie's exact stochastic simulation algorithm
- Bisimulation
- Markov Chains

- Derivation graphs can get LARGE
- Many nodes may have extremely similar properties
- Stack these nodes together in a projection

Intro	Equivalence Classes	Correctness	Results	Markov Chains	Summary
00●		0000	0000000	00	O
Why d	o this?				

- Projected derivation graphs have much fewer nodes
- Much faster auto catalysis computation, and more correct results
- Stochastic simulations run significantly faster, and potentially produce more correct results

Formos	e reaction	autocatalysis	example:	Projection	
Intro	Equivalence Classes	Correctness	Results	Markov Chains	Summary
000		0000	0000000	00	0

J

- $\{x \in X : xRy\}$
- y is an element of X
- The notation "*xRy*" means there is an equivalence relation between *x* and *y*
- for all $x, y \in X$, we have $xRy \Leftrightarrow x$ and y belong to the same equivalence class

M/hy	is projected a	ito catalvei	s more co	rrect?	
		0000			
Intro	Equivalence Classes	Correctness	Results	Markov Chains	Summary

Intro
oooEquivalence Classes
oooCorrectness
oooResults
ooooMarkov Chains
ooSummary
oWhy could projected stochastic simulation be more
correct?

- Keto-Enol reactions are said to be extremely fast, especially comapred to Aldol-addition reactions
- Getting a realistic relative reaction rate, and also a reasonable computation time, is not possible normally
- "Removing" the Keto-Enol reactions from the equation makes it much easier to get something closer to real life

Intro Equivalence Classes Correctness Results Markov Chains Summary Concurrency Theory: Bisimulations

Bisimilarity definitions:

- Strong Bisimilarity: A binary relation R over the set of states of an Labelled Transition System is a strong bisimulation if and only if whenever s₁Rs₂ and α is an action:
 - if $s_1 \xrightarrow{\alpha} s_1'$, then there is a transition $s_2 \xrightarrow{\alpha} s_2'$ such that $s_1' \mathcal{R} s_2'$, and
 - if $s_2 \xrightarrow{\alpha} s_2'$, then there is a transition $s_1 \xrightarrow{\alpha} s_1'$ such that $s_1' \mathcal{R} s_2'$
- Weak Bisimilarity: A binary relation \mathcal{R} over the set of states of a Labelled Transition System is a weak bisimulation if and only if whenever $s_1\mathcal{R}s_2$ and α is an action (Including τ , the internal action):
 - If $s_1 \xrightarrow{\alpha} s_1'$, then there is a transition $s_2 \xrightarrow{\alpha} s_2'$ such that $s_1' \mathcal{R} s_2'$ and
 - If $s_2 \xrightarrow{\alpha} s'_2$, then there is a transition $s_1 \stackrel{\alpha}{\Rightarrow} s'_1$ such that $s'_1 \mathcal{R}s'_2$.

Intro	Equivalence Classes	Correctness	Results	Markov Chains	Summary
000		000●	0000000	00	O
Concur	rency Theory:	Bisimula	tions, exai	mple	

Intro	Equivalence Classes	Correctness	Results	Markov Chains	Summary
000	0000	0000	●000000	00	O
Results	5				

- A "Unique reaction" in the following table means specifically a 1-2 or 2-1 reaction.
- The autocatalysis results are best described by how many different solutions are found and how fast. This is reflected in how much of the table is actually filled out.
- The stochastic simulation results are best described by how fast a simulation reaches its end, and how far the simulation got towards its end.

Autoc	oooo	oooo	otod	00	o
AIIIOC	alaivsis result	s unbroie	cied		

Cells: How many different solutions

Columns: How many carbons are contained in the largest molecule in the solution

	4 C	5 C	6 C	7 C	8 C	9 C	Sum
3 Unique Reactions	1	0	0	0	0	0	1
4 Unique Reactions	0	2	8	4	6	12	32
5 Unique Reactions	0	32	119	394	927	—	1472
6 Unique Reactions	1	36	412	1640	4880	—	6969
7 Unique Reactions	0	92	2556	25586	—	—	28234
8 Unique Reactions	0	144	10053	137364	—	—	147561
9 Unique Reactions	0	185	45469			—	45654
10 Unique Reactions	0	239	170536	—		—	170775

Results 00●0000

	\utocotol	VICIC	KOCUL	ter	ro	laction
-			T EST			
	<i>u</i> ccucu	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- Cou			
		9				

	4 C	5 C	6 C	7 C	8 C	9 C	Sum
3 Unique Reactions	1	0	0	0	0	0	1
4 Unique Reactions	0	0	2	0	0	0	2
5 Unique Reactions	0	18	29	106	196	357	706
6 Unique Reactions	1	21	162	561	1278	—	2023
7 Unique Reactions	0	57	891	7271	27768	—	35987
8 Unique Reactions	0	102	4012	45817		—	49931
9 Unique Reactions	0	125	17529	377398			395052
10 Unique Reactions	0	166	67407	—		—	67573

 Intro
 Equivalence Classes
 Correctness
 Results
 Markov Chains
 Summary

 Stochastic simulation results:
 Unprojected

Runtime: 81 minutes and 51.395 seconds Details: 100 times higher reaction rate on keto-enol than on aldol-addition

Runtime: 6 minutes and 26.545 seconds

Details: Same reaction rate on aldol-addition as for unprojected

Runtime: 25 minutes and 18.185 seconds Details: Keto-enol reaction rate same as aldol-addition

Runtime: 3 minutes and 42.391 seconds Details: reaction rate 1/5th of unprojected.

Markov	Chains.	Example 1.	Formose rea	action	
Intro 000	Equivalence Classe	es Correctness	Results 0000000	Markov Chains ●0	Summary 0

Intro 000	Equivalence Classes	Correctness	Results 0000000	Markov Chai ○●	ns Summary O
Markov	Chains:	Example 1:	Formose	reaction	

Intro	Equivalence Classes	Correctness	Results	Markov Chains	Summary
000		0000	0000000	00	•
Summa	ary				

- Equivalence classes can be used to reduce derivation graphs based on (for instance) tautomerisms
- Such projections improve both the computation time and quality of auto catalysis and
- also improves the computation time of Stochastic simulations, and may sometimes also improve the quality of the stochastic simulation itself
- Markov Chains can be used to show that the projection does not appear to cause any negative effect on the concentration differences in such a stochastic simulation
- The comparison between the unprojected and projected solutions can be proven to be weakly bisimilar