Generative Chemistries and $M \not \subset D$

Jakob L. Andersen, Christoph Flamm, Daniel Merkle, Peter F. Stadler

Department of Mathematics and Computer Science University of Southern Denmark

Bled, February 2019

Background

- Modelling and analysis of chemical systems.
- Coherent, flexible models and methods.
- Based on formal methods, instead of chemical "rules".

Molecules as graphs

modelled as

Reactions as rules

Modelling of Molecules

Def: a molecule is a labelled, connected, simple, undirected graph.

(a) Chemical depiction.

(b) Visualisation of underlying model.

Vertex label \equiv chemical element and charge $\{\mathrm{H}, \mathrm{He}, \mathrm{Li}, \mathrm{Be}, \mathrm{B}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \ldots, \mathrm{Uuo}\} \times \mathbb{Z}$
Edge label \equiv bond type \{Single, Double, Triple, Aromatic\}

Chemical Reactions (of the Same Type)

Chemical Reaction Patterns

Educts

Chemical Reaction Patterns

Chemical Reaction Patterns

Rule

Modelling Chemistries as Graph Grammars

- Starting graphs (molecules)
- Graph transformation rules (reaction patterns)

Direct derivation \equiv reaction
Example: The Formose Chemistry
Formaldehyde: Glycolaldehyde:
Keto-enol tautomerism:

Aldol addition:

Retro aldol addition:

Generation of Derivation Graphs (Reaction Networks)

Networks are modelled as directed hypergraphs.
Vertex \equiv molecule (labelled with the molecule graph)
Directed hyperedge, (pair of multisets of vertices)
\equiv reaction (labelled with a graph transformation rule)

$$
\mathrm{H}_{2} \mathrm{C}=\mathrm{O}
$$

Generation of Derivation Graphs (Reaction Networks)

Networks are modelled as directed hypergraphs.
Vertex \equiv molecule (labelled with the molecule graph)
Directed hyperedge, (pair of multisets of vertices)
\equiv reaction (labelled with a graph transformation rule)

$$
\mathrm{H}_{2} \mathrm{C}=\mathrm{O}
$$

Whenever a new graph/molecule is create, we must check if we have it already: the graph isomorphism problem.

Generation of Derivation Graphs (Reaction Networks)

Networks are modelled as directed hypergraphs.
Vertex \equiv molecule (labelled with the molecule graph)
Directed hyperedge, (pair of multisets of vertices)
\equiv reaction (labelled with a graph transformation rule)

Generation of Derivation Graphs (Reaction Networks)

Networks are modelled as directed hypergraphs.
Vertex \equiv molecule (labelled with the molecule graph)
Directed hyperedge, (pair of multisets of vertices)
\equiv reaction (labelled with a graph transformation rule)

Generation of Derivation Graphs (Reaction Networks)

Networks are modelled as directed hypergraphs.
Vertex \equiv molecule (labelled with the molecule graph)
Directed hyperedge, (pair of multisets of vertices)

$$
\equiv \text { reaction (labelled with a graph transformation rule) }
$$

Chemical Rules

- What is a "good" reaction rule?
- It should represent the underlying mechanism.
- But how do we know the mechanism?
- Well, maybe there is a paper/book somewhere ...
- But what if not?
- Maybe we can decompose the reaction into elementary steps.
- What is an elementary step?
- What is a good decomposition?

[^0]
Conversion Routes in Networks，i．e．，Pathways

Given a network，how can 〈input〉 be converted to 〈output〉？
－ 6 ribulose 5 －phosphate $\longrightarrow * 5$ fructose 6－phosphate？

- sugar $\longrightarrow{ }^{*} \mathrm{CO}_{2}+$ 〈energy molecules）？
$-\mathrm{HCN}+\mathrm{H}_{2} \mathrm{O} \longrightarrow{ }^{*}$ 〈biomolecules〉？
Specialised routes（pathway motifs）：
－Catalysis
－Autocatalysis
Can we find a set of necessary constraints？
－Pathway model implemented with Integer Linear Programming．
－Enumeration of（sub）optimal solutions．

The Formose Reaction - $\mathrm{C} 2_{\mathrm{a}}+2 \mathrm{C} 1 \longrightarrow 2 \mathrm{C} 2_{\mathrm{a}}$

Network Generation

Problem

- Sometimes the network is implicitly defined.
- An explicit version may be very large.
- It may even be infinite, so how much to generate?

Rule-Based ("Network-Free") Simulation

- Use the stochastic simulation algorithm by Gillespie.
- Only enabled reactions are required in each step.
- Generate reactions (and corresponding molecules) as needed.
- Compute reaction rates dynamically. (Probably needs specialization for each individual system)

Rule-Based Simulation

- What is the structure of a "molecule"?
- What rule formalism to use for generating reactions?

Examples

- Molecule: just a name.

Rules: lazy reaction enumeration.

- Kinfold, for kinetic folding of RNA:

Molecule: RNA sequence with base pairs.
Rules: hard-coded base-paring rules.

- Kappa (or BioNetGen), designed for cell signalling networks:

Molecule: site-graph.
Rules: single-pushout (SPO) formalism.
How about "ordinary" atomic-level (bio)chemistry?
E.g., simulation of stable isotope experiments.
[Flamm et al., RNA, 2000], [Danos et al., FSTTCS, 2012],
[Harris et al., Bioinformatics, 2016], [Suderman et al., B. Math. Biol]

Rule-Based Simulation Using MØD

Simulation as a network computation.

```
strat = ( addSubset(initialMolecules)
    >> repeat(
    inputRules
    >> simulationCallback
    >> clear
    >> addUniverse(lambda: M_U)
    >> addSubset(lambda: M_S)
)
)
```

- If the cached network becomes too large: simply discard it and start a new.
- Network generation and simulation is separated.
- The simulation can be customized on the user side.

[^0]: [Andersen et al., MathChemComp, 2018]

