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Why Orthology Analysis?

Orthology analysis is an important part of data analysis in many
areas such as comparative genomics and molecular phylogenetics

source: https://en.wikipedia.org/wiki/Tree of life (biology)

Idea: There is only one true tree of life – we just need good
methods to detect it!
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Tree-based vs. graph-based methods

Tree-based:

species tree must be known,
gene tree via sequence
alignments
→ tree reconciliation gives
orthology relation

accuracy highly depends on
quality of trees

high computational costs

Graph-based:

construction of the trees
from sequence data

lower computational costs

many tools restricted to
small number of species
(except ProteinOrtho1)

some tools even include
manual correction

→ Our overall-goal: improve orthology inference/develop new
methods

1Lechner M, Findeiß S, Steiner L, Marz M, Stadler PF, Prohaska SJ, 2011.
Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC
Bioinformatics 12:124

Manuela Geiß More ideas about new orthology inference methods



Tree-based vs. graph-based methods

Tree-based:

species tree must be known,
gene tree via sequence
alignments
→ tree reconciliation gives
orthology relation

accuracy highly depends on
quality of trees

high computational costs

Graph-based:

construction of the trees
from sequence data

lower computational costs

many tools restricted to
small number of species
(except ProteinOrtho1)

some tools even include
manual correction

→ Our overall-goal: improve orthology inference/develop new
methods

1Lechner M, Findeiß S, Steiner L, Marz M, Stadler PF, Prohaska SJ, 2011.
Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC
Bioinformatics 12:124

Manuela Geiß More ideas about new orthology inference methods



What are best matches?

True divergence times of genes/species often not known → many
tools use Best Match Heuristics

Definition

The sequence y of species Y is a best match of the sequence x of
species X if y is “closest” to x among all genes in species Y .

Definition

The sequences x and y are reciprocal best matches if y is closest
to x and x is closest to y .

→ Goal: Deeper understanding of (reciprocal) Best Match Graphs
to make the process more efficient
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Best Match Graphs (BMGs)

here: “closest” = closest last common ancestor (lca)

Definition

The leaf y is a best match of the leaf x in a tree T if σ(x) 6= σ(y),
and

(i) lca(x , y) � lca(x , y ′) for all leaves y ′ from species
σ(y ′) = σ(y).

We write x → y .

σ = colors (= species)

a1 b2b1 a2c1

c2

a1

b2

b1

a2

c1

c2
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Reciprocal Best Match Graphs (RBMGs)

Definition

The leaf y is a reciprocal best match of the leaf x in a tree T if
σ(x) 6= σ(y), and

(i) lca(x , y) � lca(x , y ′) for all leaves y ′ from species
σ(y ′) = σ(y), and

(ii) lca(x , y) � lca(y , x ′) for all leaves x ′ from species
σ(x ′) = σ(x).

σ = colors (= species)
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c2

a1

b2

b1

a2

c1

c2

→ Which (un-)directed graphs are (Reciprocal) Best Match Graphs, i.e.,
have a tree representation?
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Mathematical Results about (Reciprocal) Best Match
Graphs

BMGs1

Two characterizations for
2-cBMGs via triples and
neighborhoods
→ Recognition in polynomial
time

Characterization for n-cBMGs
via Aho-Tree from 2-cBMGs
→ Recognition and tree
reconstruction in polynomial
time

Unique least resolved tree

RBMGs2

Classification of three distinct
groups of 3-cRBMGs
→ Recognition in polynomial
time

Characterization for n-cRBMGs
via supertree from 3-cRBMGs
→ Recognition and tree
reconstruction presumably not
in polynomial time

No unique least resolved tree
→ Much information lost by
only looking at RBMGs!

1
M. Geiß, E. Chavez, M. Gonzalez, A. Lopez, D. Valdivia, M. H. Rosales, B.M.R. Stadler, Marc Hellmuth,

P.F. Stadler, 2018, Best Match Graphs, J. Math. Biology (accepted - to appear)
2

M. Geiß, Marc Hellmuth, P.F. Stadler, 2019, Reciprocal Best Match Graphs.. (manuscript in preparation)
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How can we use all this?

Theorem 1

In pure DL scenarios (i.e. in the absence of HGT events) the
reciprocal best match graph can only produce false positive but not
false negative orthology assignments.
⇒ The true orthology relation has to be contained in the RBMG.

→ Some false positive edges can be identified using best match graphs

a b c1c2

c2

c1

b

a

Remove middle edge:
P4-Editing (P4E)

1
M. Geiß, A. Lopez, D. Valdivia, M. H. Rosales, Marc Hellmuth, P.F. Stadler, 2019, Best Match Graphs and

Reconciliation of Gene Trees with Species Trees. J. Math. Biology (manuscript in preparation)
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Simulation results with 0 HGT events
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Simulation results with 1 HGT event
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Simulation results with 4 HGT events
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Summary & Outlook

Results so far:

Characterization and tree reconstruction algorithms for BMGs
and RBMGs

RBMG contains no false positive orthologs in the absence of
HGT

P4-Editing in the absence of HGT

RBMG contains false negative orthologs in the presence of
HGT

→ RBMG loses much information that is still contained in the
BMG!

Next steps:

BMGs might help to detect HGT events

Improved graph editing based on characterization of BMGs
and RBMGs
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Special Thanks to:
Peter F. Stadler
Marc Hellmuth
Nicolas Wieseke
Edgar Chávez
Marcos González
Maribel Hernández Rosales
Alitzel López
Dulce Valdivia

Thank you
for your attention!
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Some basics: Rooted Trees and Triples

Rooted Tree T :

a cb ed
acyclic, connected graph

Triples:

T displays a triple ab|c if the path
from c to the root is not
intersected by the path from a to b.

R(T ) = {ab|c , ab|d , ab|e}
A set of triples R is said to be
consistent if there is a tree T with
R ⊆ R(T ).

Consistency-check via
BUILD-algorithm in polynomial
time. In case of consistency, it
returns a tree T (the ”Aho Tree”)
with R ⊆ R(T ).
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How do n-cBMGs look like?

Theorem

A colored digraph (G , σ) is a n-cBMG if and only if all induced
subgraphs on two colors are 2-cBMG’s and the union of the triples
obtained from their least resolved trees forms a consistent set.

least resolved = ”lowest possible resolution”

→ The unique least resolved tree for (G , σ) can be reconstructed
in cubic time

→ All information that is needed, is contained in the 2-colored
best match graphs!

Manuela Geiß More ideas about new orthology inference methods



The case of two colors: Characterization via triples

Some 2-colored subgraphs on 3 vertices give us constraints on the
tree topology:

a b

c

a b

c

a b

c

a b

c

X1, X2, X3, and X4 all give the informative triple ab|c.

Theorem

A connected 2-colored digraph (G , σ) is a 2-cBMG if and only if
(G , σ) = G (Aho(R(G , σ)), σ), where R(G , σ) is the set of all
informative triples of (G , σ).
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The case of two colors: Characterization via
out-neighborhoods

Augenkrätze-Theorem

A connected 2-colored digraph (G , σ) is a 2-cBMG if and only if
(G , σ) satisfies properties (N0), (N1), (N2), and (N3). Moreover,
the tree T defined by the H′ := {R ′(α) | α ∈ N} is the unique
least resolved tree that explains (G , σ).

(N0) β ⊆ N(α) or β ∩ N(α) = ∅
(N1) α ∩ N(β) = β ∩ N(α) = ∅ implies

N(α) ∩ N(N(β)) = N(β) ∩ N(N(α)) = ∅.
(N2) N(N(N(α))) ⊆ N(α)

(N3) α ∩ N(N(β)) = β ∩ N(N(α)) = ∅ and N(α) ∩ N(β) 6= ∅
implies N−(α) = N−(β) and N(α) ⊆ N(β) or N(β) ⊆ N(α)

properties can be nicely checked by an algorithm
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The three classes of 3-cRBMGs

There are exactly three classes of 3-cRBMGs:

a1 b1

c

a1 b1

c

a1 b1 a2 c1

a2a1 b1 c1

a1 b1 a2 c1 b2c2

a1 b1

a2

c1

b2

c2

(A) (B) (C)

Theorem

A graph (G , σ) is a 3-cRBMG if and only if the construction
algorithm returns a tree that explains (G , σ).
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Theorem

A graph (G , σ) is a 3-cRBMG if and only if the construction
algorithm returns a tree that explains (G , σ).
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What can we say so far about n-cRBMGs?

Idea: Similarly to the case of BMGs, all information needed is
contained in the 3-colored induced subgraphs of (G , σ)

Conjecture

An undirected colored graph (G , σ) is an n-cRBMG if and only if
for any (Grst , σrst) there exists a tree (Trst , σrst) that explains
(Grst , σrst), such that P :=

⋃
r ,s,t Trst is compatible.

(Grst , σrst) := induced subgraph on colors r , s, t of (G , σ)

→ It looks like there is no polynomial-time construction algorithm
for n-cRBMGs
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