Annotation and differential expression analysis of non-coding RNAs in 16 freely accessible bat genomes

Marie Lataretu, Friedrich-Schiller-Universität Jena

14th February, 2019

Features

The only flying mammals

- The only flying mammals
- Laryngeal echolocation

- The only flying mammals
- Laryngeal echolocation
- Vocal learning

- The only flying mammals
- Laryngeal echolocation
- Vocal learning
- Account for ~ 20 % of all mammal species

- The only flying mammals
- Laryngeal echolocation
- Vocal learning
- Account for ~ 20 % of all mammal species
- Immunity against various pathogenic viruses

Features

- The only flying mammals
- Laryngeal echolocation
- Vocal learning
- Account for ~ 20 % of all mammal species
- Immunity against various pathogenic viruses
- Show homosexual behavior¹

¹B. Bagemihl. Biological Exuberance: Animal Homosexuality and Natural Diversity. 1999.

Freely available genomes and annotations (today)

Freely available genomes and annotations (today)

- Genomes: 32 of more than 1,300 species
- Annotations: 11 of 32 species

Freely available genomes (before 15 January 2019)

Freely available annotations (before 15 January 2019)

Freely available annotations (before 15 January 2019)

Maximal number of annotated RNAs for each RNA class.

1. Annotation of non-coding RNAs in 16 bats

- $1. \ \mbox{Annotation of non-coding RNAs in 16 bats}$
- 2. Differential expression analysis of non-coding RNAs

Coordinator Martin

Coordinator Martin

ncRNA classes

- tRNAs
- snoRNAs
- miRNAs
- IncRNAs
- Mitochondrial annotation
- And others (e.g. snRNAs)

rRNA

RNAmmer (v1.2)²
► Hidden markov models
→ 5.8S, 18S and 28S rRNA

²K. Lagesen et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. 2007.

tRNA

- 1. tRNAscan-SE³
 - Default parameters
- 2. Remove 'Undet' or 'Pseudo' types

 $^{^3} T.$ M. Lowe and S. R. Eddy. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. 1997.

snoRNA, miRNA and others

1. Gorap 4 (uses Infernal) with alignments from the ${\tt Rfam}^5$ data base

⁴github.com/koriege/gorap

⁵I. Kalvari et al. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. 2017.

snoRNA, miRNA and others

- 1. Gorap⁴ (uses Infernal) with alignments from the \mathtt{Rfam}^5 data base
- 2. For snoRNAs:
 - Classification of C/D box and H/ACA box

⁴github.com/koriege/gorap

⁵I. Kalvari et al. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. 2017.

miRNA

- miRDeep2 (v2.0.0.8)⁶
 - Input:
 - Combined smallRNA-Seq data set⁷
 - Mapped to each individual bat assembly

 $^{^{6}\}text{M.}$ R. Friedländer et al. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. 2012.

⁷Unpublished data, provided by Friedemann Weber, Justus-Liebig-Universität Giessen

IncRNA

Data

- LNCipedia (v5.2)⁸ data base
 - High confidence set:
 - 107,039 transcript of potential human IncRNAs

- ⁸P.-J. Volders et al. LNCipedia 5: towards a reference set of human long non-coding RNAs. 2019.
- ⁹S. F. Altschul et al. Basic local alignment search tool. 1990.

IncRNA

Data

- LNCipedia (v5.2)⁸ data base
 - High confidence set:
 - 107,039 transcript of potential human IncRNAs

Tool

1. $BLASTn^9$ (v2.7.1+, $1e^{-10}$)

⁸P.-J. Volders et al. LNCipedia 5: towards a reference set of human long non-coding RNAs. 2019.

⁹S. F. Altschul et al. Basic local alignment search tool. 1990.

IncRNA

Data

- LNCipedia (v5.2)⁸ data base
 - High confidence set:
 - 107,039 transcript of potential human IncRNAs

Tool

- 1. $BLASTn^9$ (v2.7.1+, 1e⁻¹⁰)
- 2. Filter and re-structure the result
 - \rightarrow Gene transcript exon structure
 - \rightarrow Indroduce IncRNA hot spots

⁹S. F. Altschul et al. Basic local alignment search tool. 1990.

⁸P.-J. Volders et al. LNCipedia 5: towards a reference set of human long non-coding RNAs. 2019.

Mitochondrial annotation

Data

- 10 NCBI mitogenomes
- 1 blasted mitogenome
 - Rearrange the mitogenome

¹⁰M. Bernt et al. MITOS: Improved de novo metazoan mitochondrial genome annotation. 2013.

Mitochondrial annotation

Data

- 10 NCBI mitogenomes
- 1 blasted mitogenome
 - Rearrange the mitogenome

Tool

- MITOS2 ¹⁰
 - \rightarrow Protein coding and non-coding RNA annotation

¹⁰M. Bernt et al. MITOS: Improved de novo metazoan mitochondrial genome annotation. 2013.

Finalization

Check gtf format

Finalization

- Check gtf format
- Merge all annotations for each bat
 - Check for overlaps:
 - 1. Within the new annotations
 - 2. In the existing NCBI annotations

Finalization

- Check gtf format
- Merge all annotations for each bat
 - Check for overlaps:
 - 1. Within the new annotations
 - $2. \ \mbox{In the existing NCBI annotations}$
- Produce nice html tables for each annotation
 - Automated csv and xlsx generation

Finalization

+RNA<

- Check gtf format
- Merge all annotations for each bat
 - Check for overlaps:
 - 1. Within the new annotations
 - 2. In the existing NCBI annotations
- Produce nice html tables for each annotation
 - Automated csv and xlsx generation

Results

Maximal number of newly annotated RNAs for each RNA class. Newly annotated $\mathsf{IncRNAs:}\ 286805$

Results

- Final annotation for each bat in gft format
- Annotations for each ncRNA class and bat
 - \rightarrow Compatible and useable annotations

- 1. Annotation of non-coding RNAs in 16 bats
- 2. Differential expression analysis of non-coding RNAs

Data

- ► 6 RNA-Seq data sets
 - 98 samples in total
 - From 4 different bat species

Pipeline

Preprocessing with Trimmomatic (v0.36)¹¹

¹¹A. M. Bolger et al. Trimmomatic: A flexible trimmer for Illumina sequence data. 2014.

¹²D. Kim et al. HISAT: a fast spliced aligner with low memory requirements. 2015.

Pipeline

- Preprocessing with Trimmomatic (v0.36)¹¹
- ▶ Mapping with HISAT (v2.1.0) ¹²
 - Each sample individually
 - \rightarrow 1568 mappings in total

¹¹A. M. Bolger et al. Trimmomatic: A flexible trimmer for Illumina sequence data. 2014.

¹²D. Kim et al. HISAT: a fast spliced aligner with low memory requirements. 2015.

 $^{^{13}\}mathrm{Y}.$ Liao et al. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. 2014.

Pipeline

- Preprocessing with Trimmomatic (v0.36)¹¹
- ▶ Mapping with HISAT (v2.1.0) ¹²
 - Each sample individually
 - ightarrow 1568 mappings in total
- Counting with featureCounts (v1.6.3)¹³
 - Only unique mapped reads

¹¹A. M. Bolger et al. Trimmomatic: A flexible trimmer for Illumina sequence data. 2014.

¹²D. Kim et al. HISAT: a fast spliced aligner with low memory requirements. 2015.

¹³Y. Liao et al. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. 2014.

Analysis

Differential gene expression analyses with DESeq2¹⁴

DESeq2 normalization

 \rightarrow Pairwise comparisons

 \rightarrow Significantly 15 differentially expressed ncRNAs

 $^{^{14}}$ M. I. Love et al. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. 2014. 15 Adjusted p-value < 0.05; absolute log 2 fold change > 2

Analysis

Differential gene expression analyses with DESeq2¹⁴

DESeq2 normalization

 \rightarrow Pairwise comparisons

- \rightarrow Significantly 15 differentially expressed ncRNAs
- ▶ TPM (transcripts per million) for each ncRNA in each sample
 - \rightarrow Normalized expression level of each ncRNA

 $^{^{14}}$ M. I. Love et al. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. 2014. 15 Adjusted p-value < 0.05; absolute log 2 fold change > 2

RNA-Seq data set: Field-2015¹⁶

- 5 mock samples
- ▶ 6 infected (white-nose syndrome, WNS) samples

 $^{^{16}}$ K. A. Field et al. The white-nose syndrome transcriptome: activation of anti-fungal host responses in wing tissue of hibernating little brown myotis. 2015.

PCA on ncRNAs.

DESeq2

PCA on ncRNAs.

MA plot.

Expression levels of significantly differentially expressed genes.

Expression levels of significantly differentially expressed genes.

What is next?

- Analyze the other RNA-Seq data sets
- Make the annotations and results available

¹⁷https://bat1k.ucd.ie/

What is next?

- Analyze the other RNA-Seq data sets
- Make the annotations and results available
- Hack the 16 new NCBI assemblies
- Bat1K project¹⁷: sequence the genomes of all living bat species

¹⁷https://bat1k.ucd.ie/

Thanks to

- Manja Marz
- Martin Hölzer
- Nelly Fernanda Mostajo Berrospi
- RNA Bioinformatics & High-Throughput Analysis Jena

Genome quality

Icarus plot of the 16 investigated bat species: assembly lengths, N50 and N75 values.