Annotation and differential expression analysis of non-coding RNAs in 16 freely accessible bat genomes

Marie Lataretu, Friedrich-Schiller-Universität Jena
$14^{\text {th }}$ February, 2019

Bats are cool!

Features

- The only flying mammals

Bats are cool!

Features

- The only flying mammals
- Laryngeal echolocation

Bats are cool!

Features

- The only flying mammals
- Laryngeal echolocation
- Vocal learning

Bats are cool!

Features

- The only flying mammals
- Laryngeal echolocation
- Vocal learning
- Account for ~20 \% of all mammal species

Bats are cool!

Features

- The only flying mammals
- Laryngeal echolocation
- Vocal learning
- Account for ~ 20 \% of all mammal species
- Immunity against various pathogenic viruses

Bats are cool!

Features

- The only flying mammals
- Laryngeal echolocation
- Vocal learning
- Account for ~ 20 \% of all mammal species
- Immunity against various pathogenic viruses
- Show homosexual behavior ${ }^{1}$

[^0]
Freely available genomes and annotations (today)

- Genomes: 32 of more than 1,300 species

Freely available genomes and annotations (today)

- Genomes: 32 of more than 1,300 species
- Annotations: 11 of 32 species

Freely available genomes (before 15 January 2019)

Freely available annotations (before 15 January 2019)

Freely available annotations (before 15 January 2019)

Maximal number of annotated RNAs for each RNA class.

Hackaton

Hackaton

1. Annotation of non-coding RNAs in 16 bats

Hackaton

1. Annotation of non-coding RNAs in 16 bats
2. Differential expression analysis of non-coding RNAs

Annotation of ncRNA in 16 bats

Coordinator
Martin

Annotation of ncRNA in 16 bats

Coordinator
Martin

ncRNA classes

- tRNAs
- snoRNAs
- miRNAs
- IncRNAs
- Mitochondrial annotation
- And others (e.g. snRNAs)

Annotation of ncRNA in 16 bats

rRNA

1. RNAmmer $(\mathrm{v} 1.2)^{2}$

- Hidden markov models
$\rightarrow 5.8 \mathrm{~S}, 18 \mathrm{~S}$ and 28 S rRNA
${ }^{2}$ K. Lagesen et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. 2007.

Annotation of ncRNA in 16 bats

tRNA

1. tRNAscan-SE ${ }^{3}$

- Default parameters

2. Remove 'Undet' or 'Pseudo' types
[^1]
Annotation of ncRNA in 16 bats

snoRNA, miRNA and others

1. Gorap ${ }^{4}$ (uses Infernal) with alignments from the Rfam^{5} data base
[^2]
Annotation of ncRNA in 16 bats

snoRNA, miRNA and others

1. Gorap ${ }^{4}$ (uses Infernal) with alignments from the Rfam^{5} data base
2. For snoRNAs:

- Classification of C/D box and H/ACA box

[^3]
Annotation of ncRNA in 16 bats

miRNA

- miRDeep2 $(v 2 \cdot 0.0 .8)^{6}$
- Input:
- Combined smallRNA-Seq data set ${ }^{7}$
- Mapped to each individual bat assembly

[^4]
Annotation of ncRNA in 16 bats

IncRNA

Data

- LNCipedia (v5.2) ${ }^{8}$ data base

- High confidence set:
- 107,039 transcript of potential human IncRNAs

[^5]
Annotation of ncRNA in 16 bats

IncRNA

Data

- LNCipedia (v5.2) ${ }^{8}$ data base
- High confidence set:
- 107,039 transcript of potential human IncRNAs

Tool

1. $\mathrm{BLASTn}^{9}\left(\mathrm{v} 2.7 .1+, 1 \mathrm{e}^{-10}\right)$
[^6]
Annotation of ncRNA in 16 bats

IncRNA

Data

- LNCipedia (v5.2) ${ }^{8}$ data base
- High confidence set:
- 107,039 transcript of potential human IncRNAs

Tool

1. BLASTn $^{9}\left(\mathrm{v} 2.7 .1+, 1 \mathrm{e}^{-10}\right)$
2. Filter and re-structure the result
\rightarrow Gene - transcript - exon structure
\rightarrow Indroduce IncRNA hot spots
[^7]
Annotation of ncRNA in 16 bats

Mitochondrial annotation

Data

- 10 NCBI mitogenomes
- 1 blasted mitogenome
- Rearrange the mitogenome

[^8]
Annotation of ncRNA in 16 bats

Mitochondrial annotation

Data

- 10 NCBI mitogenomes
- 1 blasted mitogenome
- Rearrange the mitogenome

Tool

- MITOS2 ${ }^{10}$
\rightarrow Protein coding and non-coding RNA annotation

[^9]
Annotation of ncRNA in 16 bats

Finalization

- Check gtf format

Annotation of ncRNA in 16 bats

Finalization

- Check gtf format
- Merge all annotations for each bat
- Check for overlaps:

1. Within the new annotations
2. In the existing NCBI annotations

Annotation of ncRNA in 16 bats

Finalization

- Check gtf format
- Merge all annotations for each bat
- Check for overlaps:

1. Within the new annotations
2. In the existing NCBI annotations

- Produce nice html tables for each annotation
- Automated csv and xlsx generation

Annotation of ncRNA in 16 bats

Finalization

- Check gtf format
- Merge all annotations for each bat
- Check for overlaps:

1. Within the new annotations
2. In the existing NCBI annotations

- Produce nice html tables for each annotation
- Automated csv and xlsx generation
tRNAs

Results

Maximal number of newly annotated RNAs for each RNA class. Newly annotated IncRNAs: 286805

Results

- Final annotation for each bat in gft format
- Annotations for each ncRNA class and bat \rightarrow Compatible and useable annotations

Hackaton

1. Annotation of non-coding RNAs in 16 bats
2. Differential expression analysis of non-coding RNAs

Differential expression analysis of non-coding RNAs

Data

- 6 RNA-Seq data sets
- 98 samples in total
- From 4 different bat species

Differential expression analysis of non-coding RNAs

Pipeline
- Preprocessing with Trimmomatic (v0.36) ${ }^{11}$

[^10]
Differential expression analysis of non-coding RNAs

Pipeline

- Preprocessing with Trimmomatic (v0.36) ${ }^{11}$
- Mapping with HISAT (v2.1.0) ${ }^{12}$
- Each sample individually
$\rightarrow 1568$ mappings in total

[^11]
Differential expression analysis of non-coding RNAs

Pipeline

- Preprocessing with Trimmomatic (v0.36) ${ }^{11}$
- Mapping with HISAT (v2.1.0) ${ }^{12}$
- Each sample individually $\rightarrow 1568$ mappings in total
- Counting with featureCounts (v1.6.3) ${ }^{13}$
- Only unique mapped reads

[^12]
Differential expression analysis of non-coding RNAs

Analysis

- Differential gene expression analyses with DESeq2 ${ }^{14}$
- DESeq2 normalization
\rightarrow Pairwise comparisons
\rightarrow Significantly ${ }^{15}$ differentially expressed ncRNAs

[^13]
Differential expression analysis of non-coding RNAs

Analysis

- Differential gene expression analyses with DESeq2 ${ }^{14}$
- DESeq2 normalization
\rightarrow Pairwise comparisons
\rightarrow Significantly ${ }^{15}$ differentially expressed ncRNAs
- TPM (transcripts per million) for each ncRNA in each sample \rightarrow Normalized expression level of each ncRNA

[^14]
Preliminary results

- RNA-Seq data set: Field-2015 ${ }^{16}$
- 5 mock samples
- 6 infected (white-nose syndrome, WNS) samples

[^15]
Preliminary results

PCA on ncRNAs.

Preliminary results

Preliminary results

Expression levels of significantly differentially expressed genes.

Preliminary results

Expression levels of significantly differentially expressed genes.

What is next?

- Analyze the other RNA-Seq data sets
- Make the annotations and results available

What is next?

- Analyze the other RNA-Seq data sets
- Make the annotations and results available
- Hack the 16 new NCBI assemblies
- Bat1K project ${ }^{17}$: sequence the genomes of all living bat species

[^16]Thanks to

- Manja Marz
- Martin Hölzer
- Nelly Fernanda Mostajo Berrospi
- RNA Bioinformatics \& High-Throughput Analysis Jena

Genome quality

Icarus plot of the 16 investigated bat species: assembly lengths, N50 and N75 values.

[^0]: ${ }^{1}$ B. Bagemihl. Biological Exuberance: Animal Homosexuality and Natural Diversity. 1999.

[^1]: ${ }^{3}$ T. M. Lowe and S. R. Eddy. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. 1997.

[^2]: ${ }^{4}$ github.com/koriege/gorap
 ${ }^{5}$ I. Kalvari et al. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. 2017.

[^3]: ${ }^{4}$ github.com/koriege/gorap
 ${ }^{5}$ I. Kalvari et al. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. 2017.

[^4]: ${ }^{6}$ M. R. Friedländer et al. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. 2012.
 ${ }^{7}$ Unpublished data, provided by Friedemann Weber, Justus-Liebig-Universität Giessen

[^5]: ${ }^{8}$ P.-J. Volders et al. LNCipedia 5: towards a reference set of human long non-coding RNAs. 2019.
 ${ }^{9}$ S. F. Altschul et al. Basic local alignment search tool. 1990.

[^6]: ${ }^{8}$ P.-J. Volders et al. LNCipedia 5: towards a reference set of human long non-coding RNAs. 2019.
 ${ }^{9}$ S. F. Altschul et al. Basic local alignment search tool. 1990.

[^7]: ${ }^{8}$ P.-J. Volders et al. LNCipedia 5: towards a reference set of human long non-coding RNAs. 2019.
 ${ }^{9}$ S. F. Altschul et al. Basic local alignment search tool. 1990.

[^8]: ${ }^{10}$ M. Bernt et al. MITOS: Improved de novo metazoan mitochondrial genome annotation. 2013.

[^9]: ${ }^{10}$ M. Bernt et al. MITOS: Improved de novo metazoan mitochondrial genome annotation. 2013.

[^10]: ${ }^{11}$ A. M. Bolger et al. Trimmomatic: A flexible trimmer for Illumina sequence data. 2014.
 ${ }^{12}$ D. Kim et al. HISAT: a fast spliced aligner with low memory requirements. 2015.

[^11]: ${ }^{11}$ A. M. Bolger et al. Trimmomatic: A flexible trimmer for Illumina sequence data. 2014.
 ${ }^{12}$ D. Kim et al. HISAT: a fast spliced aligner with low memory requirements. 2015.
 ${ }^{13}$ Y. Liao et al. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. 2014.

[^12]: ${ }^{11}$ A. M. Bolger et al. Trimmomatic: A flexible trimmer for Illumina sequence data. 2014.
 ${ }^{12}$ D. Kim et al. HISAT: a fast spliced aligner with low memory requirements. 2015.
 ${ }^{13}$ Y. Liao et al. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. 2014.

[^13]: ${ }^{14}$ M. I. Love et al. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. 2014.
 ${ }^{15}$ Adjusted p-value <0.05; absolute log 2 fold change >2

[^14]: ${ }^{14}$ M. I. Love et al. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. 2014.
 ${ }^{15}$ Adjusted p-value <0.05; absolute $\log 2$ fold change >2

[^15]: ${ }^{16}$ K. A. Field et al. The white-nose syndrome transcriptome: activation of anti-fungal host responses in wing tissue of hibernating little brown myotis. 2015.

[^16]: ${ }^{17}$ https://bat1k.ucd.ie/

