RNA alignment and folding

with Markov chains

Milad Miladi

University of Freiburg

TBI Bled meeting

February 2019

RNA simultaneous alignment and folding

Example of an *alignment* A of two *RNA sequences* A and B together with (*non-crossing*) structures $S = \{a_1, a_2, a_3, a_4, a_5\}$ and $T = \{b_1, b_2, b_3, b_4, b_5\}$.

Figure: [Will, Otto, Miladi, Möhl, Backofen; SPARSE; *Bioinf.*, 2015]

Some of the related pioneering works

1985	Simultaneous solution of the RNA folding, alignment and protosequence problems by: <u>D. Sankoff</u>		
	RNA multi-structure landscapes		
1990-1993	A study based on temperature dependent partition functions		
	Authors Authors and affiliations		
	S. Bonhoeffer, J. S. McCaskill, P. F. Stadler, P. Schuster		
~2004:	Alignment of RNA base pairing probability matrices @ Ivo L. Hofacker 🕿, Stephan H. F. Bernhart, Peter F. Stadler		
	LOCAL SEQUENCE-STRUCTURE MOTIFS IN RNA ROLF BACKOFEN and SEBASTIAN WILL		
Pairwise local structural alignment of RNA sequences with sequence similarity less			
	than 40% @		
	Jakob Hull Havgaard 🖾, Rune B. Lyngsø, Gary D. Stormo, Jan Gorodkin		

Meanwhile me

Playing with bro's C64 machine

figures adapted from: wikimedia.org

Prologue: RNA secondary structure probability dotplots

The abstraction making it feasible to visualize the RNA ensemble is:

• Base-pair independency or disconnection

Implicit base-pair dependency or relation hints available via:

- Stacking patterns
- Mutual exclusion rules

Can we really percept stackings inter-relations?

Back to the target problem: RNA alignment and folding

Example of an *alignment* A of two *RNA sequences* A and B together with (*non-crossing*) structures $S = \{a_1, a_2, a_3, a_4, a_5\}$ and $T = \{b_1, b_2, b_3, b_4, b_5\}$.

- An optimization problem that considers the stability of the predicted structures and the alignment quality
- Objective function:
 - f (energy_model (*S*, *T*) + alignment-score (A, B))

Sankoff's algorithm for simultaneous RNA alignment and folding

- Sankoff's objective function:
 - -FreeEnergy(S) FreeEnergy(T) + SequenceAlignScore(A, B)
- Linear straightforward(?) combination of:
 - the free energies of two compatible structures
 - $\circ\;$ the alignment score of the two sequences
- The "golden" standard with efficient dynamic programming recursions
- But computationally expensive O(n^6) so not suitable ...

PMcomp and PMcomp-like objective function

- Using a light-weight base-pair energy model
- Using precomputed McCaskill base-pair probability dotplots to compute the base-pair scores.
- Estimating energy by combining weights and assuming independency of the pairing evens
- PMcomp coarse model:
 - $\Sigma_i \operatorname{score}(a_i) + \Sigma_i \operatorname{score}(b_i) + \operatorname{SequenceAlignScore}(A, B)$
- PMcomp-like:
 - PMcomp, LocARNA, FoldAlignM(?), SPARSE, ...

Sankoff-Zuker's nearest-neighbor energy model

The free energy depends on the neighboring bases and adjacent loops.

E = E (a, b) + E (b, c) + E (c)

E = E (a, b1, b2) + E (b1) + E (b2)

PMcomp base-pair energy model

- An independency between base-pairing probability events
- Efficient computations and flexible pairing, reduces complexity to O(n^4)

Score (a, b, c) = (P (a) . P (b) . P (c)) / P (p0^3)

Score (a, b1, b2) ~= (P (a) . P (b1) . P (b2)) / P (p0^3)

p0: a length-dependent estimation of the minimum significant/background probability

A Markov chain model: non-branching loops

For a sub-structure S with set of basepairs {a,b,c} let have:

 $P(a, b, c) = P(a) \cdot P(b, c | a)$

nearest-neighbor rule:

= P(a) . P(b|a) . P(c|a,b)= P(a) . P(b|a) . P(c|b)

Basic math for conditional probabilities to the joint probabilities.

 $P(a, b, c) = P(a) \cdot P(b|a) \cdot P(c|b)$

= P(a) . P(b, a) / P(a) . P(c, b) / P(b)

A Markov chain model: multi-loops

 $P(a, b1, b2) = P(a) \cdot P(b1, b2 | a)$

Nearest-neighbor rule not enough for decomposition:

= P(a) . P(b1|a) . P(b2|a, b1)

Assuming multiloop independency:

= P(a) . P(b1|a) . P(b2|a)

A better trick:

= P(a) . min(P(b1|a), P(b2|a))

Alright but how to get chain probabilities?

- Extending the base-pair stacking probabilities (RNAfold -p2) to loops
- A: Joint probability pre-computations

D

Figures: [Will, Otto, Miladi, Möhl, Backofen; SPARSE; Bioinf., 2015], [Otto, Möhl, Heyne, Amit, Landau, Backofen, Will; ExpaRNA-P: BMC Bioinf., 2014]

Evaluation of the energy model: rnasubopt trna

• In this plot, dots represents suboptimal structures of a tRNA sequence, sorted by free energy.

Evaluate energy models on RNAstrand dataset

Pankov: Probabilistic Sankoff's-like alignment with Markov chains

Name		Size	Last commit
	Bralibase		2019-02-07
	RNAStrand		2019-02-07
	lib		2016-10-06
	src		2016-10-06
Ð	.gitignore	54 B	2016-09-07
₽	README.md	80 B	1 minute ago
Ð	conda-env-pankoff.yml	4.79 KB	2019-02-06

README.md

Pankov: Probabilistic Sankoff's-like alignment with Markov chains

Currently protected access, feel free to contact me: bitbucket.org:mmiladi/pankov

Primary evaluation on Bralibase dataset

"Dent"less Bralibase; same data as the previous slide

Conclusion and speculation

- Pankov: Our closest attempt to enter the Eutopia
- Flexibility introduced by the base-pairing energy model may have benefits beyond a computational complexity reduction
- It's actually very hard to combine the folding-energy and alignment scoring components that have two different natures
- The conditional probability of loops has the potential to be applied for other purposes as well
 - Please reach me if you have ideas

Acknowledgment

Rolf, Sebastian, Teresa and the Bionf-Freiburg team.

Thanks to everyone for sharing your joy of TBI-Bled with me these years!

• The dilemma of TBI-Bled Villa

