Generic Group Contribution Method

Authors: Christoph Flamm ${ }^{5,8}$, Marc Hellmuth ${ }^{1,7}$, Daniel Merkle ${ }^{2}$, Nikolai Nøjgaard ${ }^{1,2}$, Peter F. Stadler ${ }^{3,4,5,7}$

February 11, 2019

1 Dpt. of Mathematics and Computer Science, University of Greifswald
${ }^{2}$ Department of Mathematics and Computer Science, University of Southern Denmark, Denmark
${ }^{3}$ Bioinformatics Group, Department of Computer Science; and Interdisciplinary Center of Bioinformatics, University of Leipzig
${ }^{4}$ Max-Planck-Institute for Mathematics in the Sciences
${ }^{5}$ Inst. f. Theoretical Chemistry, University of Vienna
${ }^{6}$ Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe
${ }^{7}$ Saarland University, Center for Bioinformatics
${ }^{8}$ Center for Anatomy and Cell Biology, Medical University of Vienna

The Beginning: A look at MØD

The Beginning: A look at MØD

The Beginning: A look at MØD

Aldol addition

Aldol addition, inverse

The Beginning: A look at MØD

Reactions: Fact or Fiction?

Reactions: Fact or Fiction?

Real or theoretical reaction? Let's look at its energy change!

Reactions: Fact or Fiction?

Real or theoretical reaction? Let's look at its energy change!
Gibbs Free Energy: $G=H-T S$, where H is enthalpy, T temperature and S entropy.

Gibbs Free Energy Change: $\Delta G=G_{\text {products }}-G_{\text {educts }}$

So How Do We Compute the Energy

- The Gibbs Free Energy of a molecule can measured in the lab.
- But our chemical universe can (in theory) be infinite.
- Hence, we want to create a predictive model on a sampled population.

State of the Art: Group Contribution Method

- We can decompose a molecule into functional groups that linearly relates to G. Problems with the Group Contribution Method in a Generic Framework:
- What are the functional groups?
- How to tile a graph?
- Introducing new functional group changes the entire input.

State of the Art: Group Contribution Method

- We can decompose a molecule into functional groups that linearly relates to G.

Problems with the Group Contribution Method in a Generic Framework:

- What are the functional groups?
- How to tile a graph?
- Introducing new functional group changes the entire input.

State of the Art: Group Contribution Method

- We can decompose a molecule into functional groups that linearly relates to G.

Problems with the Group Contribution Method in a Generic Framework:

- What are the functional groups?
- How to tile a graph?
- Introducing new functional group changes the entire input.

A Closer Look at Molecular Energies

- The energy of a molecule can be approximated as the sum of its bond energies.

$$
t_{o b s}(G)=\sum_{e \in E(G)} t_{\text {edge }}(e)
$$

A Closer Look at Molecular Energies

- The energy of a molecule can be approximated as the sum of its bond energies.

$$
t_{o b s}(G)=\sum_{e \in E(G)} t_{\text {edge }}(e)
$$

A Closer Look at Molecular Energies

- The energy of a molecule can be approximated as the sum of its bond energies.

$$
t_{o b s}(G)=\sum_{e \in E(G)} t_{\text {edge }}(e)
$$

A Closer Look at Molecular Energies

- The energy of a molecule can be approximated as the sum of its bond energies.

$$
t_{o b s}(G)=\sum_{e \in E(G)} t_{\text {edge }}(e)
$$

- The bond energy is determined by its surrounding context.

Defining Contexts

Definition (Context)

A context is a pair $C=(G, e)$, where G is a graph and e is an edge in G. The size of C is defined as the number of edges in G and we call e the origin edge.

Defining Contexts

Definition (Context)

A context is a pair $C=(G, e)$, where G is a graph and e is an edge in G. The size of C is defined as the number of edges in G and we call e the origin edge.

Definition (Frequency)

Given a graph G and a context $C=\left(H, e^{\prime}\right)$ we say that C is a context around $e \in E(G)$, if there is a subgraph isomorphism φ from H to G that satisfy $\varphi\left(e^{\prime}\right)=e$. The frequency $f(C, G, e)$ of C around some edge $e \in E(G)$ is the number of subgraph isomorphisms $\varphi_{1}, \varphi_{2}, \ldots$ from

C to G that satisfy $\varphi_{i}\left(e^{\prime}\right)=e$.
The frequency of C in G is defined as:

$$
f(C, G)=\sum_{e \in E(G)} f(C, G, e)
$$

Defining Contexts

Definition (Context)

A context is a pair $C=(G, e)$, where G is a graph and e is an edge in G. The size of C is defined as the number of edges in G and we call e the origin edge.

Definition (Frequency)

Given a graph G and a context $C=\left(H, e^{\prime}\right)$ we say that C is a context around $e \in E(G)$, if there is a subgraph isomorphism φ from H to G that satisfy $\varphi\left(e^{\prime}\right)=e$. The frequency $f(C, G, e)$ of C around some edge $e \in E(G)$ is the number of subgraph isomorphisms $\varphi_{1}, \varphi_{2}, \ldots$ from C to G that satisfy $\varphi_{i}\left(e^{\prime}\right)=e$.

The frequency of C in G is defined as:

$$
f(C, G)=\sum_{e \in E(G)} f(C, G, e)
$$

Defining Contexts

Definition (Context)

A context is a pair $C=(G, e)$, where G is a graph and e is an edge in G. The size of C is defined as the number of edges in G and we call e the origin edge.

Definition (Frequency)

Given a graph G and a context $C=\left(H, e^{\prime}\right)$ we say that C is a context around $e \in E(G)$, if there is a subgraph isomorphism φ from H to G that satisfy $\varphi\left(e^{\prime}\right)=e$. The frequency $f(C, G, e)$ of C around some edge $e \in E(G)$ is the number of subgraph isomorphisms $\varphi_{1}, \varphi_{2}, \ldots$ from
 C to G that satisfy $\varphi_{i}\left(e^{\prime}\right)=e$.

The frequency of C in G is defined as:

$$
f(C, G)=\sum_{e \in E(G)} f(C, G, e)
$$

Significant Contexts

$$
\mathcal{K}_{1}=\{\mathrm{O}=\mathrm{C}, \mathrm{C}-\mathrm{C}, \mathrm{O}-\mathrm{C}, \mathrm{O}-\mathrm{H}\}
$$

Significant Contexts

$$
\mathcal{K}_{1}=\{\mathrm{O}=\mathrm{C}, \mathrm{C}-\mathrm{C}, \mathrm{O}-\mathrm{C}, \mathrm{O}-\mathrm{H}\}
$$

Significant Contexts

$$
\begin{aligned}
& \mathcal{K}_{1}=\{0=\mathrm{C}, \mathrm{C}-\mathrm{C}, 0-\mathrm{C}, 0-\mathrm{H}\} \\
& t_{\mathcal{C}}(\mathrm{C}-\mathrm{C})=\text { avg. energy }=3.5 \\
& t_{\text {edge }}(e) \approx f(C, G, e) \cdot t_{\mathcal{C}}(\mathrm{C}-\mathrm{C})=3.5
\end{aligned}
$$

Significant Contexts

$$
\begin{aligned}
& \mathcal{K}_{1}=\{0=\mathrm{C}, \mathrm{C}-\mathrm{C}, 0-\mathrm{C}, \mathrm{O}-\mathrm{H}\} \\
& t_{\mathcal{C}}(\mathrm{C}-\mathrm{C})=\text { avg. energy }=3.5 \\
& t_{\text {edge }}(e) \approx f(\mathrm{C}-\mathrm{C}, G, e) \cdot t_{\mathcal{C}}(\mathrm{C}-\mathrm{C})+f(G, \mathrm{O}=\mathrm{C}-\mathrm{C}) \cdot t_{\mathcal{C}}(\mathrm{O}=\mathrm{C}-\mathrm{C})
\end{aligned}
$$

Significant Contexts

$$
\begin{aligned}
& \mathcal{K}_{1}=\{0=\mathrm{C}, \mathrm{C}-\mathrm{C}, \mathrm{O}-\mathrm{C}, \mathrm{O}-\mathrm{H}\} \\
& t_{\mathcal{C}}(\mathrm{C}-\mathrm{C})=\text { avg. energy }=3.5 \\
& t_{\text {edge }}(e) \approx f(\mathrm{C}-\mathrm{C}, G, e) \cdot t_{\mathcal{C}}(\mathrm{C}-\mathrm{C})+f(G, 0=\mathrm{C}-\mathrm{C}) \cdot t_{\mathcal{C}}(\mathrm{O}=\mathrm{C}-\mathrm{C})+f(G, 0-\mathrm{C}-\mathrm{C}) \cdot t_{\mathcal{C}}(\mathrm{O}-\mathrm{C}-\mathrm{C})
\end{aligned}
$$

$$
\mathcal{K}_{1} \subseteq \mathcal{K}_{2} \subseteq \cdots \subseteq \mathcal{K}_{k}
$$

Significant Contexts

$$
\begin{aligned}
& \mathcal{K}_{1}=\{0=\mathrm{C}, \mathrm{C}-\mathrm{C}, \mathrm{O}-\mathrm{C}, \mathrm{O}-\mathrm{H}\} \\
& t_{\mathcal{C}}(\mathrm{C}-\mathrm{C})=\text { avg. energy }=3.5 \\
& t_{\text {edge }}(e) \approx f(\mathrm{C}-\mathrm{C}, G, e) \cdot t_{\mathcal{C}}(\mathrm{C}-\mathrm{C})+f(G, 0=\mathrm{C}-\mathrm{C}) \cdot t_{\mathcal{C}}(0=\mathrm{C}-\mathrm{C})+f(G, 0-\mathrm{C}-\mathrm{C}) \cdot t_{\mathcal{C}}(\mathrm{O}-\mathrm{C}-\mathrm{C})
\end{aligned}
$$

$$
\mathcal{K}_{1} \subseteq \mathcal{K}_{2} \subseteq \cdots \subseteq \mathcal{K}_{k}
$$

$$
t_{\text {edge }}(e) \approx \sum_{C \in \mathcal{K}_{i}} f(C, G, e) \cdot t_{\mathcal{C}}(C)
$$

Frequency Matrix and Learning the Significant Contexts

$$
t_{\text {edge }}(e) \approx \sum_{C \in \mathcal{K}_{i}} f(C, G, e) \cdot t_{\mathcal{C}}(C)
$$

Frequency Matrix and Learning the Significant Contexts

$$
\begin{aligned}
& t_{\text {edge }}(e) \approx \sum_{C \in \mathcal{K}_{i}} f(C, G, e) \cdot t_{\mathcal{C}}(C) \\
& \Rightarrow t_{\text {obs }}(S)- \\
& \sum_{C \in \mathcal{K}_{k-1}} f(C, S) \cdot t_{\mathcal{C}}(C)=\sum_{C \in \mathcal{C}_{k}^{S}} f(C, S) \cdot t_{\mathcal{C}}(C)+\epsilon
\end{aligned}
$$

Frequency Matrix and Learning the Significant Contexts

$$
\begin{aligned}
t_{\text {edge }}(e) & \approx \sum_{C \in \mathcal{K}_{i}} f(C, G, e) \cdot t_{\mathcal{C}}(C) \\
\Rightarrow t_{\text {obs }}(S) & -\sum_{C \in \mathcal{K}_{k-1}} f(C, S) \cdot t_{\mathcal{C}}(C)=\sum_{C \in \mathcal{C}_{k}^{\mathcal{S}}} f(C, S) \cdot t_{\mathcal{C}}(C)+\epsilon
\end{aligned}
$$

Frequency Matrix and Learning the Significant Contexts

$$
\begin{aligned}
& t_{\text {edge }}(e) \approx \sum_{C \in \mathcal{K}_{i}} f(C, G, e) \cdot t_{\mathcal{C}}(C) \\
& \Rightarrow t_{\text {obs }}(S)-\sum_{C \in \mathcal{K}_{k-1}} f(C, S) \cdot t_{\mathcal{C}}(C)=\sum_{C \in \mathcal{C}_{k}^{S}} f(C, S) \cdot t_{\mathcal{C}}(C)+\epsilon \\
& X=\mathrm{C} \\
& \text { LASSO: } \min \left(\sum_{i=1}^{\left|\mathcal{C}_{1}^{\mathcal{S}}\right|+|\mathcal{S}|}\left(\mathrm{y}_{i}-\sum_{j=1}^{\left|\mathcal{C}_{k}^{\mathcal{S}}\right|} \mathrm{X}_{i j} \mathrm{t}_{j}\right)^{2}+\lambda \sum_{j=1}^{\left|\mathcal{C}_{k}^{\mathcal{S}}\right|}\left|\mathrm{t}_{j}\right|\right) .
\end{aligned}
$$

Some considerations about contexts

- Structural information that determines bond energies must be stored in their frequencies in \mathcal{S}.

Some considerations about contexts

- Structural information that determines bond energies must be stored in their frequencies in \mathcal{S}.
- The number of non-isomorphic subgraphs in a graph can grow exponentially with its size.

Some considerations about contexts

- Structural information that determines bond energies must be stored in their frequencies in \mathcal{S}.
- The number of non-isomorphic subgraphs in a graph can grow exponentially with its size.
- Contexts that only occur in "few" samples are unreliable.

Some considerations about contexts

- Structural information that determines bond energies must be stored in their frequencies in \mathcal{S}.
- The number of non-isomorphic subgraphs in a graph can grow exponentially with its size.
- Contexts that only occur in "few" samples are unreliable.
- The frequencies of two contexts $C_{1}=\left(G_{1}, e_{1}\right)$ and $C_{2}=\left(G_{2}, e_{2}\right)$ where $G_{1} \simeq G_{2}$ are collinear in \mathcal{S}.

Context Mining

Definition

The support $\sup (C)$ of a context $C \in \mathcal{C}^{\mathcal{S}}$ is the number of graphs in \mathcal{S} which C can be embedded into. Given a positive integer τ we say that C is supported if $\sup (C) \geq \tau$.

Context Mining

Definition

The support $\sup (C)$ of a context $C \in \mathcal{C}^{\mathcal{S}}$ is the number of graphs in \mathcal{S} which C can be embedded into. Given a positive integer τ we say that C is supported if $\sup (C) \geq \tau$.

Definition

Let \mathcal{G} be a set of graphs and k and τ two integers such that $k>0$ and $\tau>0$. Then $\operatorname{FSM}(\mathcal{G}, k, \tau)$ is the set of all subgraphs in \mathcal{G} that contains k edges and are subgraph isomorphic to at least τ graphs in \mathcal{G}.

Context Mining

Definition

The support $\sup (C)$ of a context $C \in \mathcal{C}^{\mathcal{S}}$ is the number of graphs in \mathcal{S} which C can be embedded into. Given a positive integer τ we say that C is supported if $\sup (C) \geq \tau$.

Definition

Let \mathcal{G} be a set of graphs and k and τ two integers such that $k>0$ and $\tau>0$. Then $\operatorname{FSM}(\mathcal{G}, k, \tau)$ is the set of all subgraphs in \mathcal{G} that contains k edges and are subgraph isomorphic to at least τ graphs in \mathcal{G}.

Algorithm

Predicting new graphs

How does it perform: Construction of synthetic dataset.

Results: Synthetic dataset

Results: Synthetic dataset

Results: Synthetic dataset

7.18
 10.03

$d b$

17.21

Results: Gibbs Free Energy in metabolic networks

Results: Minimum Free Energy of RNA secondary structures

Results: Minimum Free Energy of RNA secondary structures

Results: Minimum Free Energy of RNA secondary structures

Results: Boiling point acyclic molecules

Results: Boiling point acyclic molecules

Results: Boiling point acyclic molecules

Conclusion

- Constructed a generic group contribution method based on the approximation of molecular energies.
- Can be used on a wide range of thermo dynamic properties.

