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Real or theoretical reaction? Let's look at its energy change!

Gibbs Free Energy: G = H — TS, where H is enthalpy, T temperature and S
entropy.

Gibbs Free Energy Change: AG = Gp,oducts = G



So How Do We Compute the Energy

e The Gibbs Free Energy of a molecule can measured in the lab.
e But our chemical universe can (in theory) be infinite.

e Hence, we want to create a predictive model on a sampled population.



State of the Art: Group Contribution Method
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Problems with the Group Contribution Method in a Generic Framework:

e What are the functional groups?
e How to tile a graph?

e Introducing new functional group changes the entire input.
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A Closer Look at Molecular Energies

OH

O tedge(c_c) = 207

OH

e The energy of a molecule can be approximated as the sum of its bond energies.

tobs(G): Z tedge(e)

ecE(G)

e The bond energy is determined by its surrounding context.
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graph and e is an edge in G. The size of C
is defined as the number of edges in G and
we call e the origin edge.
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Definition (Frequency)

Given a graph G and a context C = (H, ¢’)

we say that C is a context around

e € E(G), if there is a subgraph

isomorphism ¢ from H to G that satisfy
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Significant Contexts
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K1 = {0=c, c-C, 0-C, 0-H}
te(C-C) = avg. energy = 3.5
tucge(€) % F(C-C, G, €)£c(C-C) + (G, 0=C=C)- o (0=C-C) + F(G, 0-C-C) £ (0-CC)

KiCKaC- CKx

tedge(e) ~ Z f(C’ G, e) : tC(C)

CeKr;
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Some considerations about contexts

e Structural information that determines bond energies must be stored in their
frequencies in S.
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Some considerations about contexts

e Structural information that determines bond energies must be stored in their
frequencies in S.

e The number of non-isomorphic subgraphs in a graph can grow exponentially with its
size.

e Contexts that only occur in "few" samples are unreliable.

e The frequencies of two contexts C; = (Gi, e1) and G = (G2, e2) where Gy ~ G, are
collinear in S.
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Predicting new graphs
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How does it perform: Construction of sy
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Results: Synthetic dataset
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Results:

Synthetic dataset
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Results: Synthetic dataset
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Results: Gibbs Free Energy in metabolic networks
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Results: Gibbs Free Energy in metabolic networks
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Results: Gibbs Free Energy in metabolic networks
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Results: Minimum Free Energy of RNA secondary structures
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Results: Minimum Free Energy of RNA secondary structures
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Results: Boiling point acyclic molecules
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Results: Boiling point acyclic molecules
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Results: Boiling point acyclic molecules
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Conclusion

e Constructed a generic group contribution method based on the approximation of
molecular energies.

e Can be used on a wide range of thermo dynamic properties.
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