Generic Group Contribution Method

Authors: Christoph Flamm^{5,8}, Marc Hellmuth^{1,7}, Daniel Merkle², <u>Nikolai Nøjgaard</u>^{1,2}, Peter F. Stadler^{3,4,5,7}

February 11, 2019

¹ Dpt. of Mathematics and Computer Science, University of Greifswald

² Department of Mathematics and Computer Science, University of Southern Denmark, Denmark

³ Bioinformatics Group, Department of Computer Science; and Interdisciplinary Center of Bioinformatics, University of Leipzig

⁴ Max-Planck-Institute for Mathematics in the Sciences

⁵ Inst. f. Theoretical Chemistry, University of Vienna

⁶ Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe

⁷ Saarland University, Center for Bioinformatics

⁸ Center for Anatomy and Cell Biology, Medical University of Vienna

Glycolaldehyde

Keto-enol isomerization, inverse

The Beginning: A look at MØD

Aldol addition, inverse

The Beginning: A look at MØD

Reactions: Fact or Fiction?

Reactions: Fact or Fiction?

Real or theoretical reaction? Let's look at its energy change!

Reactions: Fact or Fiction?

Real or theoretical reaction? Let's look at its energy change!

Gibbs Free Energy: G = H - TS, where H is enthalpy, T temperature and S entropy.

Gibbs Free Energy Change: $\Delta G = G_{products} - G_{educts}$

- The Gibbs Free Energy of a molecule can measured in the lab.
- But our chemical universe can (in theory) be infinite.
- Hence, we want to create a predictive model on a sampled population.

• We can decompose a molecule into functional groups that linearly relates to G.

Problems with the Group Contribution Method in a Generic Framework:

- What are the functional groups?
- How to tile a graph?
- Introducing new functional group changes the entire input.

State of the Art: Group Contribution Method

• We can decompose a molecule into functional groups that linearly relates to G.

Problems with the Group Contribution Method in a Generic Framework:

- What are the functional groups?
- How to tile a graph?
- Introducing new functional group changes the entire input.

State of the Art: Group Contribution Method

• We can decompose a molecule into functional groups that linearly relates to G.

Problems with the Group Contribution Method in a Generic Framework:

- What are the functional groups?
- How to tile a graph?
- Introducing new functional group changes the entire input.

• The energy of a molecule can be approximated as the sum of its bond energies.

$$t_{obs}(G) = \sum_{e \in E(G)} t_{edge}(e)$$

• The energy of a molecule can be approximated as the sum of its bond energies.

$$t_{obs}(G) = \sum_{e \in E(G)} t_{edge}(e)$$

• The energy of a molecule can be approximated as the sum of its bond energies.

$$t_{obs}(G) = \sum_{e \in E(G)} t_{edge}(e)$$

• The energy of a molecule can be approximated as the sum of its bond energies.

$$t_{obs}(G) = \sum_{e \in E(G)} t_{edge}(e)$$

• The bond energy is determined by its surrounding context.

A context is a pair C = (G, e), where G is a graph and e is an edge in G. The size of C is defined as the number of edges in G and we call e the origin edge.

A context is a pair C = (G, e), where G is a graph and e is an edge in G. The size of C is defined as the number of edges in G and we call e the origin edge.

Definition (Frequency)

Given a graph G and a context C = (H, e')we say that C is a context around $e \in E(G)$, if there is a subgraph isomorphism φ from H to G that satisfy $\varphi(e') = e$. The frequency f(C, G, e) of C around some edge $e \in E(G)$ is the number of subgraph isomorphisms $\varphi_1, \varphi_2, \ldots$ from C to G that satisfy $\varphi_i(e') = e$.

The *frequency* of C in G is defined as:

$$f(C,G) = \sum_{e \in E(G)} f(C,G,e)$$

A context is a pair C = (G, e), where G is a graph and e is an edge in G. The size of C is defined as the number of edges in G and we call e the origin edge.

Definition (Frequency)

Given a graph G and a context C = (H, e')we say that C is a context around $e \in E(G)$, if there is a subgraph isomorphism φ from H to G that satisfy $\varphi(e') = e$. The frequency f(C, G, e) of C around some edge $e \in E(G)$ is the number of subgraph isomorphisms $\varphi_1, \varphi_2, \ldots$ from C to G that satisfy $\varphi_i(e') = e$.

The *frequency* of C in G is defined as:

$$f(C,G) = \sum_{e \in E(G)} f(C,G,e)$$

A context is a pair C = (G, e), where G is a graph and e is an edge in G. The size of C is defined as the number of edges in G and we call e the origin edge.

Definition (Frequency)

Given a graph G and a context C = (H, e')we say that C is a context around $e \in E(G)$, if there is a subgraph isomorphism φ from H to G that satisfy $\varphi(e') = e$. The frequency f(C, G, e) of C around some edge $e \in E(G)$ is the number of subgraph isomorphisms $\varphi_1, \varphi_2, \ldots$ from C to G that satisfy $\varphi_i(e') = e$.

The *frequency* of C in G is defined as:

$$f(C,G) = \sum_{e \in E(G)} f(C,G,e)$$

$$\mathcal{K}_1 = \{ 0=C, C-C, 0-C, 0-H \}$$

$$\mathcal{K}_1 = \{ 0=C, C-C, 0-C, 0-H \}$$

$$\begin{split} \mathcal{K}_1 &= \{\texttt{0=C, C-C, 0-C, 0-H}\}\\ t_{\mathcal{C}}(\texttt{C-C}) &= \texttt{avg. energy} = 3.5\\ t_{edge}(e) &\approx f(\mathcal{C}, \mathcal{G}, e) \cdot t_{\mathcal{C}}(\texttt{C-C}) = 3.5 \end{split}$$

$$\begin{split} \mathcal{K}_1 &= \{ \texttt{0=C, C-C, 0-C, 0-H} \} \\ t_{\mathcal{C}}(\texttt{C-C}) &= \texttt{avg. energy} = 3.5 \\ t_{edge}(e) &\approx f(\texttt{C-C, }G, e) \cdot t_{\mathcal{C}}(\texttt{C-C}) + f(G, \texttt{0=C-C}) \cdot t_{\mathcal{C}}(\texttt{0=C-C}) \end{split}$$

$$\begin{split} \mathcal{K}_1 &= \{ \texttt{0=C, C-C, 0-C, 0-H} \} \\ t_{\mathcal{C}}(\texttt{C-C}) &= \texttt{avg. energy} = 3.5 \\ t_{edge}(e) &\approx f(\texttt{C-C, }G, e) \cdot t_{\mathcal{C}}(\texttt{C-C}) + f(G, \texttt{0=C-C}) \cdot t_{\mathcal{C}}(\texttt{0=C-C}) + f(G, \texttt{0-C-C}) \cdot t_{\mathcal{C}}(\texttt{0-C-C}) \end{split}$$

 $\mathcal{K}_1 \subseteq \mathcal{K}_2 \subseteq \cdots \subseteq \mathcal{K}_k$

$$\begin{split} \mathcal{K}_1 &= \{ \texttt{0=C, C-C, 0-C, 0-H} \} \\ t_{\mathcal{C}}(\texttt{C-C}) &= \texttt{avg. energy} = 3.5 \\ t_{edge}(\texttt{e}) &\approx f(\texttt{C-C}, \textit{G}, \texttt{e}) \cdot t_{\mathcal{C}}(\texttt{C-C}) + f(\textit{G}, \texttt{0=C-C}) \cdot t_{\mathcal{C}}(\texttt{0=C-C}) + f(\textit{G}, \texttt{0-C-C}) \cdot t_{\mathcal{C}}(\texttt{0-C-C}) \end{split}$$

 $\mathcal{K}_1 \subseteq \mathcal{K}_2 \subseteq \cdots \subseteq \mathcal{K}_k$ $t_{edge}(e) \approx \sum_{C \in \mathcal{K}_i} f(C, G, e) \cdot t_{\mathcal{C}}(C)$

$$t_{edge}(e) \approx \sum_{C \in \mathcal{K}_i} f(C, G, e) \cdot t_{\mathcal{C}}(C)$$

$$t_{edge}(e) \approx \sum_{C \in \mathcal{K}_i} f(C, G, e) \cdot t_{\mathcal{C}}(C)$$

$$\Rightarrow t_{obs}(S) - \sum_{C \in \mathcal{K}_{k-1}} f(C, S) \cdot t_{\mathcal{C}}(C) = \sum_{C \in \mathcal{C}_k^S} f(C, S) \cdot t_{\mathcal{C}}(C) + \epsilon$$

• Structural information that determines bond energies must be stored in their frequencies in \mathcal{S} .

- Structural information that determines bond energies must be stored in their frequencies in S.
- The number of non-isomorphic subgraphs in a graph can grow exponentially with its size.

- Structural information that determines bond energies must be stored in their frequencies in \mathcal{S} .
- The number of non-isomorphic subgraphs in a graph can grow exponentially with its size.
- Contexts that only occur in "few" samples are unreliable.

- Structural information that determines bond energies must be stored in their frequencies in \mathcal{S} .
- The number of non-isomorphic subgraphs in a graph can grow exponentially with its size.
- Contexts that only occur in "few" samples are unreliable.
- The frequencies of two contexts $C_1 = (G_1, e_1)$ and $C_2 = (G_2, e_2)$ where $G_1 \simeq G_2$ are collinear in S.

Context Mining

Definition

The support $\sup(C)$ of a context $C \in C^S$ is the number of graphs in S which C can be embedded into. Given a positive integer τ we say that C is supported if $\sup(C) \geq \tau$.

Context Mining

Definition

The support $\sup(C)$ of a context $C \in C^S$ is the number of graphs in S which C can be embedded into. Given a positive integer τ we say that C is supported if $\sup(C) \geq \tau$.

Definition

Let \mathcal{G} be a set of graphs and k and τ two integers such that k > 0 and $\tau > 0$. Then FSM(\mathcal{G}, k, τ) is the set of all subgraphs in \mathcal{G} that contains k edges and are subgraph isomorphic to at least τ graphs in \mathcal{G} .

Context Mining

Definition

The support $\sup(C)$ of a context $C \in C^S$ is the number of graphs in S which C can be embedded into. Given a positive integer τ we say that C is supported if $\sup(C) \geq \tau$.

Definition

Let \mathcal{G} be a set of graphs and k and τ two integers such that k > 0 and $\tau > 0$. Then FSM(\mathcal{G}, k, τ) is the set of all subgraphs in \mathcal{G} that contains k edges and are subgraph isomorphic to at least τ graphs in \mathcal{G} .

How does it perform: Construction of synthetic dataset.

Results: Synthetic dataset

Results: Synthetic dataset

Results: Synthetic dataset

Results: Minimum Free Energy of RNA secondary structures

Results: Boiling point acyclic molecules

Results: Boiling point acyclic molecules

Results: Boiling point acyclic molecules

Conclusion

- Constructed a generic group contribution method based on the approximation of molecular energies.
- Can be used on a wide range of thermo dynamic properties.