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The Beginning: A look at MØD
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The Beginning: A look at MØD
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Reactions: Fact or Fiction?
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Real or theoretical reaction? Let’s look at its energy change!

Gibbs Free Energy: G = H − TS, where H is enthalpy, T temperature and S
entropy.

Gibbs Free Energy Change: ∆G = Gproducts − Geducts
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So How Do We Compute the Energy

• The Gibbs Free Energy of a molecule can measured in the lab.

• But our chemical universe can (in theory) be infinite.

• Hence, we want to create a predictive model on a sampled population.
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State of the Art: Group Contribution Method
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• We can decompose a molecule into functional groups that linearly relates to G.

Problems with the Group Contribution Method in a Generic Framework:

• What are the functional groups?

• How to tile a graph?

• Introducing new functional group changes the entire input.
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A Closer Look at Molecular Energies

OH
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tedge(C-C) = 5tedge(C-C) = 2??

• The energy of a molecule can be approximated as the sum of its bond energies.

tobs (G) =
∑

e∈E(G)

tedge(e)

• The bond energy is determined by its surrounding context.
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Defining Contexts

Definition (Context)
A context is a pair C = (G, e), where G is a
graph and e is an edge in G. The size of C
is defined as the number of edges in G and
we call e the origin edge.

Definition (Frequency)
Given a graph G and a context C = (H, e′)
we say that C is a context around
e ∈ E(G), if there is a subgraph
isomorphism ϕ from H to G that satisfy
ϕ(e′) = e. The frequency f (C ,G, e) of C
around some edge e ∈ E(G) is the number
of subgraph isomorphisms ϕ1, ϕ2, . . . from
C to G that satisfy ϕi (e′) = e.

The frequency of C in G is defined as:

f (C ,G) =
∑

e∈E(G)

f (C ,G, e)
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Significant Contexts
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K1 = {O=C, C-C, O-C, O-H}

tC(C-C) = avg. energy = 3.5

K1 ⊆ K2 ⊆ · · · ⊆ Kk

tedge(e) ≈
∑
C∈Ki

f (C ,G, e) · tC(C)
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Frequency Matrix and Learning the Significant Contexts
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Some considerations about contexts

• Structural information that determines bond energies must be stored in their
frequencies in S.

• The number of non-isomorphic subgraphs in a graph can grow exponentially with its
size.

• Contexts that only occur in "few" samples are unreliable.

• The frequencies of two contexts C1 = (G1, e1) and C2 = (G2, e2) where G1 ' G2 are
collinear in S.
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Context Mining

Definition
The support sup(C) of a context C ∈ CS is
the number of graphs in S which C can be
embedded into. Given a positive integer τ
we say that C is supported if sup(C) ≥ τ .

Definition
Let G be a set of graphs and k and τ two
integers such that k > 0 and τ > 0. Then
FSM(G, k, τ) is the set of all subgraphs in G
that contains k edges and are subgraph
isomorphic to at least τ graphs in G.

A

BB

C

A C

A

BD

C

BA

BC

A

B

C

BA

BC

A

B

C

A

B

C

11



Context Mining

Definition
The support sup(C) of a context C ∈ CS is
the number of graphs in S which C can be
embedded into. Given a positive integer τ
we say that C is supported if sup(C) ≥ τ .

Definition
Let G be a set of graphs and k and τ two
integers such that k > 0 and τ > 0. Then
FSM(G, k, τ) is the set of all subgraphs in G
that contains k edges and are subgraph
isomorphic to at least τ graphs in G.

A

BB

C

A C

A

BD

C

BA

BC

A

B

C

BA

BC

A

B

C

A

B

C

11



Context Mining

Definition
The support sup(C) of a context C ∈ CS is
the number of graphs in S which C can be
embedded into. Given a positive integer τ
we say that C is supported if sup(C) ≥ τ .

Definition
Let G be a set of graphs and k and τ two
integers such that k > 0 and τ > 0. Then
FSM(G, k, τ) is the set of all subgraphs in G
that contains k edges and are subgraph
isomorphic to at least τ graphs in G.

A

BB

C

A C

A

BD

C

BA

BC

A

B

C

BA

BC

A

B

C

A

B

C

11



Algorithm

Initialization

Matrix
Construction

Context
Construction

Regression
Learning

Termination
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Predicting new graphs
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How does it perform: Construction of synthetic dataset.

0.4 3

→

A A

A

BB

A C A

BC

File: out/059_g_3_10110100
energy: 274.655, predicted_energy: 0, residual: 274.655

0.5 4

→

A

BA

AA

B
B

A

A
C

A

BB

File: out/060_g_4_10110100
energy: 279.795, predicted_energy: 0, residual: 279.795

0.6 5

→

A

A

A C

C

A

B

A

A

A

C

A

B

File: out/061_g_5_10110100
energy: 246.965, predicted_energy: 0, residual: 246.965
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Results: Synthetic dataset
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Results: Synthetic dataset
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Results: Synthetic dataset
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Results: Gibbs Free Energy in metabolic networks
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Results: Gibbs Free Energy in metabolic networks
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Results: Gibbs Free Energy in metabolic networks
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Results: Gibbs Free Energy in metabolic networks
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Results: Minimum Free Energy of RNA secondary structures
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Results: Minimum Free Energy of RNA secondary structures
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Results: Minimum Free Energy of RNA secondary structures
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Results: Boiling point acyclic molecules
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Results: Boiling point acyclic molecules
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Results: Boiling point acyclic molecules
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Conclusion

• Constructed a generic group contribution method based on the approximation of
molecular energies.

• Can be used on a wide range of thermo dynamic properties.
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