Infrared¹: A Modelling Framework for Targeting Complex Features (Positive Design)

Sebastian Will (w/ Stefan Hammer and Yann Ponty)

TBI Winterseminar in Bled 2019

¹providing the infrastructure for RNARedPrint v2

Positive and negative RNA design

Multiple target structures

(((((.)).(((..))).))).((.))((...)).(((..))) $\dots((((((..)))...))...$

Negative RNA design

Design sequences, s.t. the target structure(s) have the best energies among **all** structures. (**Avoid** good energies for all other structures.)

= **OUT**-design

= IN-design

• **Positive RNA design** Design sequences, s.t. **the target** structure(s) have specific (typically, good) energies.

Positive design supports negative design

Given is a secondary structure

• Generate 1000 uniform random compatible sequences \checkmark

Given is a secondary structure

- Generate 1000 uniform random compatible sequences \checkmark
- Generate 1000 sequences where $E(R) \approx -50 \mathrm{kcal/mol}$

Given is a secondary structure

- Generate 1000 uniform random compatible sequences \checkmark
- Generate 1000 sequences where $E(R) \approx -50 \mathrm{kcal/mol}$
 - Uniform sampling:

Given is a secondary structure

- Generate 1000 uniform random compatible sequences \checkmark
- Generate 1000 sequences where $E(R) pprox -50 \mathrm{kcal/mol}$
 - Uniform sampling:

• Infrared (multi-dim. Boltzmann sampling): less than 5s!

...

Given is a secondary structure

- Generate 1000 uniform random compatible sequences \checkmark
- Generate 1000 sequences where $E(R) pprox -50 \mathrm{kcal/mol}$
 - Uniform sampling:

• Infrared (multi-dim. Boltzmann sampling): less than 5s!

•••

Given is a secondary structure

- Generate 1000 uniform random compatible sequences \checkmark
- Generate 1000 sequences where $E(R) pprox -50 \mathrm{kcal/mol}$
 - Uniform sampling:

• Infrared (multi-dim. Boltzmann sampling): less than 5s!

•••

Given is a secondary structure

- Generate 1000 uniform random compatible sequences \checkmark
- Generate 1000 sequences where $E(R) pprox -50 \mathrm{kcal/mol}$
 - Uniform sampling:

Infrared (multi-dim. Boltzmann sampling): less than 5s!
 π=40
 -50
 kcal/mol

•••

Given is a secondary structure

- Generate 1000 uniform random compatible sequences \checkmark
- Generate 1000 sequences where $E(R) pprox -50 \mathrm{kcal/mol}$
 - Uniform sampling:

• Infrared (multi-dim. Boltzmann sampling): less than 5s! $\pi = 40$ -50 0 $k_{cal/mol}$ •••

Given is a secondary structure

- Generate 1000 uniform random compatible sequences \checkmark
- Generate 1000 sequences where $E(R) pprox -50 \mathrm{kcal/mol}$
 - Uniform sampling:

- Infrared (multi-dim. Boltzmann sampling): less than 5s!
- Now: 1000 samples with very low energies for three targets

••

...

Given is a secondary structure

- Generate 1000 uniform random compatible sequences \checkmark
- Generate 1000 sequences where $E(R) pprox -50 \mathrm{kcal/mol}$
 - Uniform sampling:

- Infrared (multi-dim. Boltzmann sampling): less than 5s!
- Now: 1000 samples with very low energies for three targets

•••

...

Given is a secondary structure

- Generate 1000 uniform random compatible sequences \checkmark
- Generate 1000 sequences where $E(R) pprox -50 \mathrm{kcal/mol}$
 - Uniform sampling:

- Infrared (multi-dim. Boltzmann sampling): less than 5s!
- Now: 1000 samples with very low energies for three targets

•••

What is Infrared?

- Infrared is a C++/Python-hybrid² library for positive design
- generic **C++ engine** for efficient Boltzmann sampling
- **Python classes** to support the modeling of specific (positive design) problems e.g. RNA Design in RNARedPrint v2

What is Infrared?

- Infrared is a C++/Python-hybrid² library for positive design
- generic C++ engine for efficient Boltzmann sampling
- **Python classes** to support the modeling of specific (positive design) problems e.g. RNA Design in RNARedPrint v2

Thus: new functionality and entire tools can be conveniently implemented in Python

Positive Design w/ Infrared · S. Will

The world (of positive design) according to Infrared

General Task: Generate *things*TM with very specific properties

1) Define features, e.g.

- GC content
- #occurrences of the dinucleotide XY
- #occurrences of some k-mer (motif)
- energy of the *i*th target structure
- 2) Constrain features to values: *specific* GC%, energies, dinucl. freq's, forbid and enforce motifs, ...
- 3) Sample thingsTM that satisfy constraints "Feature \approx Value"

Modelling complex constraints "Feature \approx Value"

Examples:

• **GC content** ⇒ per position *i*, register one contribution

$$\texttt{GCContrib}(i, \pi_{GC}) = \begin{cases} 1 & \text{if } S_i \text{ in}\{G, C\} \\ 0 & \text{otherwise} \end{cases}$$

Define feature: GCContent(π_{GC}) = \sum_i GCContrib(i, π_{GC}) Then constrain to specific value [filter; to be effective, learn π_{GC}]

Modelling complex constraints "Feature \approx Value"

Examples:

• **GC content** ⇒ per position *i*, register one contribution

$$\texttt{GCContrib}(i, \pi_{GC}) = \begin{cases} 1 & \text{if } S_i \text{ in}\{G, C\} \\ 0 & \text{otherwise} \end{cases}$$

Define feature: GCContent(π_{GC}) = \sum_i GCContrib(i, π_{GC}) Then constrain to specific value [filter; to be effective, learn π_{GC}]

Base pair energy

⇒ register contribution BPEnergy(i,j, π_k) per base pair (i,j) in structure k Then constrain [again: filter; learn π_k]

Modelling complex constraints "Feature \approx Value"

Examples:

• **GC content** ⇒ per position *i*, register one contribution

$$\texttt{GCContrib}(i, \pi_{GC}) = \begin{cases} 1 & \text{if } S_i \text{ in}\{G, C\} \\ 0 & \text{otherwise} \end{cases}$$

Define feature: GCContent(π_{GC}) = \sum_i GCContrib(i, π_{GC}) Then constrain to specific value [filter; to be effective, learn π_{GC}]

Base pair energy

⇒ register contribution BPEnergy(i,j, π_k) per base pair (i,j) in structure k Then constrain [again: filter; learn π_k]

Examples:

• **GC content** \Rightarrow per position *i*, register one contribution

$$\texttt{GCContrib}(i, \pi_{GC}) = \begin{cases} 1 & \text{if } S_i \text{ in}\{G, C\} \\ 0 & \text{otherwise} \end{cases}$$

Define feature: GCContent(π_{GC}) = \sum_i GCContrib(i, π_{GC}) Then constrain to specific value [filter; to be effective, learn π_{GC}]

• Base pair energy

 \Rightarrow register contribution BPEnergy(i,j, π_k)

per base pair (i, j) in structure k

Then constrain [again: filter; learn π_k]

Examples:

-50

• **GC content** \Rightarrow per position *i*, register one contribution

$$\texttt{GCContrib}(i, \pi_{GC}) = \begin{cases} 1 & \text{if } S_i \text{ in}\{G, C\} \\ 0 & \text{otherwise} \end{cases}$$

Define feature: GCContent(π_{GC}) = \sum_i GCContrib(i, π_{GC}) Then constrain to specific value [filter; to be effective, learn π_{GC}]

kcal/mol

Examples:

• **GC content** \Rightarrow per position *i*, register one contribution

$$\texttt{GCContrib}(i, \pi_{GC}) = \begin{cases} 1 & \text{if } S_i \text{ in}\{G, C\} \\ 0 & \text{otherwise} \end{cases}$$

Define feature: GCContent(π_{GC}) = \sum_i GCContrib(i, π_{GC}) Then constrain to specific value [filter; to be effective, learn π_{GC}]

• Base pair energy \Rightarrow register contribution BPEnergy(i,j, π_k) per base pair (*i*,*j*) in structure *k* Then constrain [again: filter; learn π_k] Idea:

Examples:

• **GC content** \Rightarrow per position *i*, register one contribution

$$\texttt{GCContrib}(i, \pi_{GC}) = \begin{cases} 1 & \text{if } S_i \text{ in}\{G, C\} \\ 0 & \text{otherwise} \end{cases}$$

Define feature: GCContent(π_{GC}) = \sum_i GCContrib(i, π_{GC}) Then constrain to specific value [filter; to be effective, learn π_{GC}]

• Base pair energy \Rightarrow register contribution BPEnergy(i,j, π_k) per base pair (*i*,*j*) in structure *k* Then constrain [again: filter; learn π_k] Idea: $\frac{\pi^{-40}}{-50}$, but multi-dimensional

Base pair energies approximate Turner energies

 $R^2 = 0.99$, BUT: This approximation suffices for positive design, not prediction!

Base pair energies approximate Turner energies

 $R^2 = 0.99$, BUT: This approximation suffices for positive design, not prediction!

How to target Turner energies:

- start with initial weight $\pi_k = 1$ of base pair energy (!) of kth structure
- generate samples and estimate mean *Turner energy* (!) of *kth* structure
- adapt weight π_k and iterate

Uniform sample: 1000 sequences; generated in seconds Boltzmann sample: 1000 good sequences; generated in seconds Targeted sample: 1000 highly specific sequences; in minutes

- framework based on **multi-dim. Boltzmann sampling**: effectively satisfies multiple (complex) constraints
- Promising application to RNA design: RNARedprint
- Generic modeling system to extend RNA designand develop novel sampling-based tools
- Supports construction of fancy background models:
 e.g. sample RNA alignments with fixed phylo-distances and energies of multiple structures
- Makes extensions easy (in Python) due to C++/Python-hybrid programming

Collaborators

Stefan Hammer

Funding

'abstract' · https://arxiv.org/abs/1804.00841

APPENDIX

Dependency graphs

Tree decomposition

The tree decomposition ...

- ... is computed from the dependency graph
- ... works as a template to guide our dynamic programming sampling algorithm
- ... allows to consider all feature contributions in the sampling

Treewidths can be kept low

Base pair model

Stacking model

Why multi-dim. Boltzmann sampling?

Problem

IN: structures \mathcal{R} , length *n*, *d* features F_1, \dots, F_d ; objective values f_1^*, \dots, f_d^* ; and tolerance $\varepsilon > 0$ **OUT:** *t* random sequences *S*, compatible w/ \mathcal{R} , s.t.

$$orall 1 \leq \ell \leq d : F_\ell(S) \in [f_\ell^\star \cdot (1 - arepsilon), f_\ell^\star \cdot (1 + arepsilon)]$$

Possible approaches:

• Multi-dim. Boltzmann sampling (+ rejection step)

Classified Dynamic Programming

Why multi-dim. Boltzmann sampling?

Problem

IN: structures \mathcal{R} , length *n*, *d* features F_1, \dots, F_d ; objective values f_1^*, \dots, f_d^* ; and tolerance $\varepsilon > 0$ **OUT:** *t* random sequences *S*, compatible w/ \mathcal{R} , s.t.

$$orall 1 \leq \ell \leq d : F_\ell(\mathcal{S}) \in [f_\ell^\star \cdot (1-arepsilon), f_\ell^\star \cdot (1+arepsilon)]$$

Possible approaches:

- Multi-dim. Boltzmann sampling (+ rejection step) works well b/c distributions are typically concentrated
 - expect $\mathcal{O}(1)$ rejections for $\varepsilon > 1/\sqrt{n}$,
 - $\Theta(n^{d/2})$ for $\varepsilon = 0$ [Bender et al., 1983; Drmota, 1997].
- Classified Dynamic Programming

Why multi-dim. Boltzmann sampling?

Problem

IN: structures \mathcal{R} , length *n*, *d* features F_1, \dots, F_d ; objective values f_1^*, \dots, f_d^* ; and tolerance $\varepsilon > 0$ **OUT:** *t* random sequences *S*, compatible w/ \mathcal{R} , s.t.

$$orall 1 \leq \ell \leq {\sf d}: {\sf F}_\ell({\sf S}) \in [f_\ell^\star \cdot (1-arepsilon), f_\ell^\star \cdot (1+arepsilon)]$$

Possible approaches:

- Multi-dim. Boltzmann sampling (+ rejection step) works well b/c distributions are typically concentrated
 - expect $\mathcal{O}(1)$ rejections for $\varepsilon > 1/\sqrt{n}$,
 - $\Theta(n^{d/2})$ for $\varepsilon = 0$ [Bender et al., 1983; Drmota, 1997].
- Classified Dynamic Programming
 - convolution: $\times \Theta(n^{2d})$ time / $\Theta(n^d)$ space [Cupal et al., 1996]
 - using DFT to avoid convolution allows more efficient uniform sampling over range (case $\varepsilon > 0$) [cf. Senter et al., 2012]

Complex sequence constraints

Task: forbid a set \mathcal{W} of subwords of length $\leq k$

Naïve: add k-ary constraints for each k successive sequence positions

Proposed:

- construct Aho-Corasick automaton (states Q)
- extend alphabet from Σ to $Q imes \Sigma$
- restrict consecutive positions to transitions of the automaton (adds Hamiltonian path of binary constraints)
- new complexity $\mathcal{O}(n \cdot |\mathcal{R}| \cdot (|\Sigma| \cdot |Q|)^{w'+1})$; new tree width w' (!)

Similarly: enforce subwords

transfers ideas of [Zhou et al, 2013]

Boltzmann sample: 1000 low energy sequences; generated in seconds

Boltzmann sample: 1000 low energy sequences; generated in seconds **Targeted samples**: 1000 highly specific sequences; in minutes

Boltzmann sample: 1000 low energy sequences; generated in seconds **Targeted samples**: 1000 highly specific sequences; in minutes

Boltzmann sample: 1000 low energy sequences; generated in seconds **Targeted samples**: 1000 highly specific sequences; in minutes