Infrared ${ }^{1}$: A Modelling Framework for Targeting Complex Features (Positive Design)

Sebastian Will
(w/ Stefan Hammer and Yann Ponty)

TBI Winterseminar in Bled 2019
${ }^{1}$ providing the infrastructure for RNARedPrint v2

Positive and negative RNA design

Multiple target structures

$$
\begin{aligned}
& (((((.)) .(((\ldots))) .))) . \\
& ((.))(((\ldots)) \ldots(((\ldots))) \\
& \ldots(((((\ldots))) \ldots)) \ldots
\end{aligned}
$$

- Negative RNA design

Design sequences, s.t. the target structure(s) have the best energies among all structures. (Avoid good energies for all other structures.)
$=$ OUT-design

- Positive RNA design

Design sequences, s.t. the target structure(s) have specific (typically, good) energies.

Positive design supports negative design

The challenge of positive design

Given is a secondary structure

- Generate 1000 uniform random compatible sequences

The challenge of positive design

Given is a secondary structure

- Generate 1000 uniform random compatible sequences
- Generate 1000 sequences where $E(R) \approx-50 \mathrm{kcal} / \mathrm{mol}$

The challenge of positive design

Given is a secondary structure

- Generate 1000 uniform random compatible sequences
- Generate 1000 sequences where $E(R) \approx-50 \mathrm{kcal} / \mathrm{mol}$
- Uniform sampling:

The challenge of positive design

Given is a secondary structure $R=((((()(. .(((()((\ldots))))).(((((\ldots . .)) ..))).) . .(((((1 . . .((((\ldots)))) \ldots . .)))))).))).))))))$.

- Generate 1000 uniform random compatible sequences
- Generate 1000 sequences where $E(R) \approx-50 \mathrm{kcal} / \mathrm{mol}$
- Uniform sampling:

The challenge of positive design

Given is a secondary structure $R=((((()(. .(((()((\ldots))))).(((((\ldots . .)) ..))).) . .(((((1 . . .((((\ldots)))) \ldots . .)))))).))).))))))$.

- Generate 1000 uniform random compatible sequences
- Generate 1000 sequences where $E(R) \approx-50 \mathrm{kcal} / \mathrm{mol}$
- Uniform sampling:

- Infrared (multi-dim. Boltzmann sampling): less than $5 s$!

The challenge of positive design

Given is a secondary structure $R=((((()(. .(((()((\ldots))))).(((((\ldots . .)) ..))).) . .(((((1 . . .((((\ldots)))) \ldots . .)))))).))).))))))$.

- Generate 1000 uniform random compatible sequences
- Generate 1000 sequences where $E(R) \approx-50 \mathrm{kcal} / \mathrm{mol}$
- Uniform sampling:

The challenge of positive design

Given is a secondary structure

- Generate 1000 uniform random compatible sequences
- Generate 1000 sequences where $E(R) \approx-50 \mathrm{kcal} / \mathrm{mol}$
- Uniform sampling:

The challenge of positive design

Given is a secondary structure

- Generate 1000 uniform random compatible sequences
- Generate 1000 sequences where $E(R) \approx-50 \mathrm{kcal} / \mathrm{mol}$
- Uniform sampling:

The challenge of positive design

Given is a secondary structure $R=((((()(. .(((()((\ldots))))).(((((\ldots . .)) ..))).) . .(((((1 . . .((((\ldots)))) \ldots . .)))))).))).))))))$.

- Generate 1000 uniform random compatible sequences
- Generate 1000 sequences where $E(R) \approx-50 \mathrm{kcal} / \mathrm{mol}$
- Uniform sampling:

- Now: 1000 samples with very low energies for three targets

The challenge of positive design

Given is a secondary structure $R=((((()(. .(((()((\ldots))))).(((((\ldots . .)) ..))).) . .(((((1 . . .((((\ldots)))) \ldots . .)))))).))).))))))$.

- Generate 1000 uniform random compatible sequences
- Generate 1000 sequences where $E(R) \approx-50 \mathrm{kcal} / \mathrm{mol}$
- Uniform sampling:

- Now: 1000 samples with very low energies for three targets

The challenge of positive design

Given is a secondary structure
$R=((((()(. .(((()((\ldots))))).(((((\ldots . .)) ..))).) . .(((((1 . . .((((\ldots)))) \ldots . .)))))).))).))))))$.

- Generate 1000 uniform random compatible sequences
- Generate 1000 sequences where $E(R) \approx-50 \mathrm{kcal} / \mathrm{mol}$
- Uniform sampling:

- Now: 1000 samples with very low energies for three targets

- Uniform sampling:
- Infrared:
${ }^{a_{\text {involves }} \text { serious CS-fu: CNs, TD, FPT DP,... }}$

What is Infrared?

- Infrared is a $\mathbf{C +}+$ /Python-hybrid ${ }^{2}$ library for positive design
- generic C++ engine for efficient Boltzmann sampling
- Python classes to support the modeling of specific (positive design) problems e.g. RNA Design in RNARedPrint v2

What is Infrared?

- Infrared is a $\mathbf{C +}+$ /Python-hybrid ${ }^{2}$ library for positive design
- generic $\mathbf{C +}+$ engine for efficient Boltzmann sampling
- Python classes to support the modeling of specific (positive design) problems e.g. RNA Design in RNARedPrint v2

Thus: new functionality and entire tools can be conveniently implemented in Python

The world (of positive design) according to Infrared

General Task: Generate things ${ }^{T M}$ with very specific properties

1) Define features, e.g.

- GC content
- \#occurrences of the dinucleotide $X Y$
- \#occurrences of some k-mer (motif)
- energy of the i th target structure

2) Constrain features to values: specific GC\%, energies, dinucl. freq's, forbid and enforce motifs, ...
3) Sample things ${ }^{T M}$ that satisfy constraints "Feature \approx Value"

Modelling complex constraints "Feature \approx Value"

Examples:

- GC content \Rightarrow per position i, register one contribution

$$
\operatorname{GCContrib}\left(i, \pi_{G C}\right)= \begin{cases}1 & \text { if } S_{i} \text { in }\{G, C\} \\ 0 & \text { otherwise }\end{cases}
$$

Define feature: GCContent $\left(\pi_{G C}\right)=\sum_{i}$ GCContrib($\left.i, \pi_{G C}\right)$
Then constrain to specific value [filter; to be effective, learn $\pi_{G C}$]

Modelling complex constraints "Feature \approx Value"

Examples:

- GC content \Rightarrow per position i, register one contribution

$$
\operatorname{GCContrib}\left(i, \pi_{G C}\right)= \begin{cases}1 & \text { if } S_{i} \text { in }\{G, C\} \\ 0 & \text { otherwise }\end{cases}
$$

Define feature: GCContent $\left(\pi_{G C}\right)=\sum_{i}$ GCContrib $\left(i, \pi_{G C}\right)$
Then constrain to specific value [filter; to be effective, learn $\pi_{G C}$]

- Base pair energy
\Rightarrow register contribution BPEnergy (i,j, π_{k})
per base pair (i, j) in structure k
Then constrain [again: filter; learn π_{k}]

Modelling complex constraints "Feature \approx Value"

Examples:

- GC content \Rightarrow per position i, register one contribution

$$
\operatorname{GCContrib}\left(i, \pi_{G C}\right)= \begin{cases}1 & \text { if } S_{i} \text { in }\{G, C\} \\ 0 & \text { otherwise }\end{cases}
$$

Define feature: GCContent $\left(\pi_{G C}\right)=\sum_{i}$ GCContrib $\left(i, \pi_{G C}\right)$
Then constrain to specific value [filter; to be effective, learn $\pi_{G C}$]

- Base pair energy
\Rightarrow register contribution BPEnergy (i,j, π_{k})
per base pair (i, j) in structure k
Then constrain [again: filter; learn π_{k}]

Modelling complex constraints "Feature \approx Value"

Examples:

- GC content \Rightarrow per position i, register one contribution

$$
\operatorname{GCContrib}\left(i, \pi_{G C}\right)= \begin{cases}1 & \text { if } S_{i} \text { in }\{G, C\} \\ 0 & \text { otherwise }\end{cases}
$$

Define feature: GCContent $\left(\pi_{G C}\right)=\sum_{i}$ GCContrib $\left(i, \pi_{G C}\right)$
Then constrain to specific value [filter; to be effective, learn $\pi_{G C}$]

- Base pair energy
\Rightarrow register contribution BPEnergy ($\mathrm{i}, \mathrm{j}, \pi_{k}$)
per base pair (i, j) in structure k
Then constrain [again: filter; learn π_{k}]

Idea:

Modelling complex constraints "Feature \approx Value"

Examples:

- GC content \Rightarrow per position i, register one contribution

$$
\operatorname{GCContrib}\left(i, \pi_{G C}\right)= \begin{cases}1 & \text { if } S_{i} \text { in }\{G, C\} \\ 0 & \text { otherwise }\end{cases}
$$

Define feature: GCContent $\left(\pi_{G C}\right)=\sum_{i}$ GCContrib $\left(i, \pi_{G C}\right)$
Then constrain to specific value [filter; to be effective, learn $\pi_{G C}$]

- Base pair energy
\Rightarrow register contribution BPEnergy ($\mathrm{i}, \mathrm{j}, \pi_{k}$)
per base pair (i, j) in structure k
Then constrain [again: filter; learn π_{k}]

Idea:

Modelling complex constraints "Feature \approx Value"

Examples:

- GC content \Rightarrow per position i, register one contribution

$$
\operatorname{GCContrib}\left(i, \pi_{G C}\right)= \begin{cases}1 & \text { if } S_{i} \text { in }\{G, C\} \\ 0 & \text { otherwise }\end{cases}
$$

Define feature: GCContent $\left(\pi_{G C}\right)=\sum_{i}$ GCContrib $\left(i, \pi_{G C}\right)$
Then constrain to specific value [filter; to be effective, learn $\pi_{G C}$]

- Base pair energy
\Rightarrow register contribution BPEnergy ($\mathrm{i}, \mathrm{j}, \pi_{k}$)
per base pair (i, j) in structure k
Then constrain [again: filter; learn π_{k}]

Idea:

Modelling complex constraints "Feature \approx Value"

Examples:

- GC content \Rightarrow per position i, register one contribution

$$
\operatorname{GCContrib}\left(i, \pi_{G C}\right)= \begin{cases}1 & \text { if } S_{i} \text { in }\{G, C\} \\ 0 & \text { otherwise }\end{cases}
$$

Define feature: GCContent $\left(\pi_{G C}\right)=\sum_{i}$ GCContrib $\left(i, \pi_{G C}\right)$
Then constrain to specific value [filter; to be effective, learn $\pi_{G C}$]

- Base pair energy
\Rightarrow register contribution BPEnergy ($\mathrm{i}, \mathrm{j}, \pi_{k}$)
per base pair (i, j) in structure k
Then constrain [again: filter; learn π_{k}]

Idea:

Base pair energies approximate Turner energies

base pair energy model: | non-stacked | | | stacked | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | AU | CG | GU | AU | GC | GU |
| 1.27 | -0.09 | 0.79 | -0.52 | -2.10 | -0.88 | |

$$
R^{2}=0.99, \mathrm{BUT}:
$$

This approximation suffices for positive design, not prediction!

Base pair energies approximate Turner energies

base pair energy model: | non-stacked | | | stacked | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | AU | CG | GU | AU | GC | GU |
| | 1.27 | -0.09 | 0.79 | -0.52 | -2.10 | -0.88 |

$$
R^{2}=0.99, \mathrm{BUT}:
$$

This approximation suffices for positive design, not prediction!

How to target Turner energies:

- start with initial weight $\pi_{k}=1$ of base pair energy (!) of k th structure
- generate samples and estimate mean Turner energy (!) of k th structure
- adapt weight π_{k} and iterate

Multi-target design to three RNA structures

Uniform sample: 1000 sequences; generated in seconds Boltzmann sample: 1000 good sequences; generated in seconds Targeted sample: 1000 highly specific sequences; in minutes

```
https://github.com/s-will/Infrared
```

- framework based on multi-dim. Boltzmann sampling: effectively satisfies multiple (complex) constraints
- Promising application to RNA design: RNARedprint
- Generic modeling system to extend RNA design and develop novel sampling-based tools
- Supports construction of fancy background models: e.g. sample RNA alignments with fixed phylo-distances and energies of multiple structures
- Makes extensions easy (in Python) due to C++/Python-hybrid programming

Collaborators

Team

(Ivo Hofacker) at

Funding

稂 Federal Ministry of Education and Research

FШF

Read more 8 , abstract' .https://arxiv.org/abs/1804.00841

APPENDIX

Dependency graphs

```
((((.((....)).)))).((.(((.((((.....(((..((((((.((..(((.(.....).)))..)).)).))))...)))..)))).))).))....
```



```
ABC DEF GH IJ
```


Tree decomposition

The tree decomposition...

- ... is computed from the dependency graph
- ... works as a template to guide our dynamic programming sampling algorithm
- ... allows to consider all feature contributions in the sampling
- ...gets more complex with increasing dependencies (complexity measure: treewidth $\hat{=}$ bag size)

Treewidths can be kept low

Base pair model

Stacking model

Why multi-dim. Boltzmann sampling?

Problem

IN: structures \mathcal{R}, length n, d features F_{1}, \cdots, F_{d};
objective values $f_{1}^{\star}, \cdots, f_{d}^{\star}$; and tolerance $\varepsilon>0$
OUT: t random sequences S, compatible w / \mathcal{R}, s.t.

$$
\forall 1 \leq \ell \leq d: F_{\ell}(S) \in\left[f_{\ell}^{\star} \cdot(1-\varepsilon), f_{\ell}^{\star} \cdot(1+\varepsilon)\right]
$$

Possible approaches:

- Multi-dim. Boltzmann sampling (+ rejection step)
- Classified Dynamic Programming

Why multi-dim. Boltzmann sampling?

Problem

IN: structures \mathcal{R}, length n, d features F_{1}, \cdots, F_{d}; objective values $f_{1}^{\star}, \cdots, f_{d}^{\star}$; and tolerance $\varepsilon>0$
OUT: t random sequences S, compatible w / \mathcal{R}, s.t.

$$
\forall 1 \leq \ell \leq d: F_{\ell}(S) \in\left[f_{\ell}^{\star} \cdot(1-\varepsilon), f_{\ell}^{\star} \cdot(1+\varepsilon)\right]
$$

Possible approaches:

- Multi-dim. Boltzmann sampling (+ rejection step) works well b / c distributions are typically concentrated
- expect $\mathcal{O}(1)$ rejections for $\varepsilon>1 / \sqrt{n}$,
- $\Theta\left(n^{d / 2}\right)$ for $\varepsilon=0 \quad$ [Bender et al., 1983; Drmota, 1997].
- Classified Dynamic Programming

Why multi-dim. Boltzmann sampling?

Problem
IN: structures \mathcal{R}, length n, d features F_{1}, \cdots, F_{d}; objective values $f_{1}^{\star}, \cdots, f_{d}^{\star}$; and tolerance $\varepsilon>0$
OUT: t random sequences S, compatible w / \mathcal{R}, s.t.

$$
\forall 1 \leq \ell \leq d: F_{\ell}(S) \in\left[f_{\ell}^{\star} \cdot(1-\varepsilon), f_{\ell}^{\star} \cdot(1+\varepsilon)\right]
$$

Possible approaches:

- Multi-dim. Boltzmann sampling (+ rejection step) works well b / c distributions are typically concentrated
- expect $\mathcal{O}(1)$ rejections for $\varepsilon>1 / \sqrt{n}$,
- $\Theta\left(n^{d / 2}\right)$ for $\varepsilon=0 \quad$ [Bender et al., 1983; Drmota, 1997].
- Classified Dynamic Programming
- convolution: $\times \Theta\left(n^{2 d}\right)$ time $/ \Theta\left(n^{d}\right)$ space [Cupal et al., 1996]
- using DFT to avoid convolution allows more efficient uniform sampling over range (case $\varepsilon>0$) [cf. Senter et al., 2012]

Complex sequence constraints

Task: forbid a set \mathcal{W} of subwords of length $\leq k$
Naïve: add k-ary constraints for each k successive sequence positions

Proposed:

- construct Aho-Corasick automaton (states Q)
- extend alphabet from Σ to $Q \times \Sigma$
- restrict consecutive positions to transitions of the automaton (adds Hamiltonian path of binary constraints)
- new complexity $\mathcal{O}\left(n \cdot|\mathcal{R}| \cdot(|\Sigma| \cdot|Q|)^{w^{\prime}+1}\right)$; new tree width $w^{\prime}(!)$

Similarly: enforce subwords

Multi-target design to three RNA structures

Multi-target design to three RNA structures

Boltzmann sample: 1000 low energy sequences; generated in seconds

Multi-target design to three RNA structures

Boltzmann sample: 1000 low energy sequences; generated in seconds Targeted samples: 1000 highly specific sequences; in minutes

Multi-target design to three RNA structures

Boltzmann sample: 1000 low energy sequences; generated in seconds Targeted samples: 1000 highly specific sequences; in minutes

Multi-target design to three RNA structures

Boltzmann sample: 1000 low energy sequences; generated in seconds Targeted samples: 1000 highly specific sequences; in minutes

