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Infrared1:Infrared1:Infrared1: A Modelling Framework for
Targeting Complex Features

(Positive Design)

Sebastian Will
(w/ Stefan Hammer and Yann Ponty)

TBI Winterseminar in Bled 2019

1providing the infrastructure for RNARedPrint v2
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Positive and negative RNA design

Multiple target structures

10

20

5'5'

3'

10

20

5'
3'3'

20

10

5'

3'

(((((.)).(((..))).))).

((.))((...))..(((..)))

....(((((..)))...))...

• Negative RNA design
Design sequences, s.t. the target structure(s) have the best
energies among all structures. (Avoid good energies for all other
structures.)

= OUT-design
• Positive RNA design

Design sequences, s.t. the target structure(s) have specific
(typically, good) energies.

= IN-design
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Positive design supports negative design
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The challenge of positive design

Given is a secondary structure
R = (((((((..(((((((....))))((((((......))..))))..((((((....((((...)))).....)))))).))).)))))))

• Generate 1000 uniform random compatible sequences

• Generate 1000 sequences where E (R) ≈ −50kcal/mol

• Uniform sampling:

-8

uniform

-50 kcal/mol0

⇒ quasi-∞ time

• Infrared (multi-dim. Boltzmann sampling): less than 5s!

• Now: 1000 samples with very low energies for three targets

0

• Uniform sampling:

• Infrared: a

a
involves serious CS-fu: CNs, TD, FPT DP,. . .
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The challenge of positive design

Given is a secondary structure
R = (((((((..(((((((....))))((((((......))..))))..((((((....((((...)))).....)))))).))).)))))))

• Generate 1000 uniform random compatible sequences
• Generate 1000 sequences where E (R) ≈ −50kcal/mol

• Uniform sampling:

-8

uniform

-50 kcal/mol0

⇒ quasi-∞ time

• Infrared (multi-dim. Boltzmann sampling): less than 5s!

π=1

-50 kcal/mol0

• Now: 1000 samples with very low energies for three targets

0

• Uniform sampling:

• Infrared: a

a
involves serious CS-fu: CNs, TD, FPT DP,. . .
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The challenge of positive design

Given is a secondary structure
R = (((((((..(((((((....))))((((((......))..))))..((((((....((((...)))).....)))))).))).)))))))

• Generate 1000 uniform random compatible sequences
• Generate 1000 sequences where E (R) ≈ −50kcal/mol

• Uniform sampling:

-8

uniform

-50 kcal/mol0

⇒ quasi-∞ time

• Infrared (multi-dim. Boltzmann sampling): less than 5s!

π=2

-50 kcal/mol0

• Now: 1000 samples with very low energies for three targets

0

• Uniform sampling:

• Infrared: a

a
involves serious CS-fu: CNs, TD, FPT DP,. . .
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The challenge of positive design

Given is a secondary structure
R = (((((((..(((((((....))))((((((......))..))))..((((((....((((...)))).....)))))).))).)))))))

• Generate 1000 uniform random compatible sequences
• Generate 1000 sequences where E (R) ≈ −50kcal/mol

• Uniform sampling:

-8

uniform

-50 kcal/mol0

⇒ quasi-∞ time

• Infrared (multi-dim. Boltzmann sampling): less than 5s!
π=40

-50 kcal/mol0

• Now: 1000 samples with very low energies for three targets

0

• Uniform sampling:

• Infrared: a

a
involves serious CS-fu: CNs, TD, FPT DP,. . .
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The challenge of positive design

Given is a secondary structure
R = (((((((..(((((((....))))((((((......))..))))..((((((....((((...)))).....)))))).))).)))))))

• Generate 1000 uniform random compatible sequences
• Generate 1000 sequences where E (R) ≈ −50kcal/mol

• Uniform sampling:

-8

uniform

-50 kcal/mol0

⇒ quasi-∞ time

• Infrared (multi-dim. Boltzmann sampling): less than 5s!

• Now: 1000 samples with very low energies for three targets

0

• Uniform sampling:

• Infrared: a

a
involves serious CS-fu: CNs, TD, FPT DP,. . .
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What is Infrared?

• Infrared is a C++/Python-hybrid2 library for positive design

• generic C++ engine for efficient Boltzmann sampling

• Python classes to support
the modeling of specific (positive design) problems
e.g. RNA Design in RNARedPrint v2

Thus: new functionality and entire tools can be conveniently
implemented in Python

2using Boost.Python
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The world (of positive design)
according to Infrared

General Task: Generate thingsTM with very specific properties

1) Define features, e.g.

• GC content

• #occurrences of the dinucleotide XY

• #occurrences of some k-mer (motif)

• energy of the ith target structure

2) Constrain features to values: specific GC%, energies,
dinucl. freq’s, forbid and enforce motifs, . . .

3) Sample thingsTM that satisfy constraints “Feature ≈ Value”
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Modelling complex constraints
“Feature ≈ Value”

Examples:

• GC content ⇒ per position i , register one contribution

GCContrib(i , πGC ) =

{
1 if Si in{G ,C}
0 otherwise

Define feature: GCContent(πGC ) =
∑

i GCContrib(i , πGC )
Then constrain to specific value [filter; to be effective, learn πGC ]

• Base pair energy
⇒ register contribution BPEnergy(i,j,πk)

per base pair (i , j) in structure k
Then constrain [again: filter; learn πk ]

Idea: , but multi-dimensional
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Modelling complex constraints
“Feature ≈ Value”

Examples:

• GC content ⇒ per position i , register one contribution

GCContrib(i , πGC ) =

{
1 if Si in{G ,C}
0 otherwise

Define feature: GCContent(πGC ) =
∑

i GCContrib(i , πGC )
Then constrain to specific value [filter; to be effective, learn πGC ]

• Base pair energy
⇒ register contribution BPEnergy(i,j,πk)

per base pair (i , j) in structure k
Then constrain [again: filter; learn πk ]

Idea:

π=1

-50 kcal/mol0

, but multi-dimensional
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Modelling complex constraints
“Feature ≈ Value”

Examples:

• GC content ⇒ per position i , register one contribution

GCContrib(i , πGC ) =

{
1 if Si in{G ,C}
0 otherwise

Define feature: GCContent(πGC ) =
∑

i GCContrib(i , πGC )
Then constrain to specific value [filter; to be effective, learn πGC ]

• Base pair energy
⇒ register contribution BPEnergy(i,j,πk)

per base pair (i , j) in structure k
Then constrain [again: filter; learn πk ]

Idea:

π=2

-50 kcal/mol0

, but multi-dimensional
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Modelling complex constraints
“Feature ≈ Value”

Examples:

• GC content ⇒ per position i , register one contribution

GCContrib(i , πGC ) =

{
1 if Si in{G ,C}
0 otherwise

Define feature: GCContent(πGC ) =
∑

i GCContrib(i , πGC )
Then constrain to specific value [filter; to be effective, learn πGC ]

• Base pair energy
⇒ register contribution BPEnergy(i,j,πk)

per base pair (i , j) in structure k
Then constrain [again: filter; learn πk ]

Idea:

π=40

-50 kcal/mol0

, but multi-dimensional
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Modelling complex constraints
“Feature ≈ Value”

Examples:

• GC content ⇒ per position i , register one contribution

GCContrib(i , πGC ) =

{
1 if Si in{G ,C}
0 otherwise

Define feature: GCContent(πGC ) =
∑

i GCContrib(i , πGC )
Then constrain to specific value [filter; to be effective, learn πGC ]

• Base pair energy
⇒ register contribution BPEnergy(i,j,πk)

per base pair (i , j) in structure k
Then constrain [again: filter; learn πk ]

Idea:

π=40

-50 kcal/mol0

, but multi-dimensional
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Base pair energies approximate Turner energies

base pair energy model:
non-stacked stacked

AU CG GU AU GC GU
1.27 -0.09 0.79 -0.52 -2.10 -0.88
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R2 = 0.99, BUT:
This approximation suffices for
positive design, not prediction!

How to target Turner energies:
• start with initial weight πk = 1 of base pair energy (!) of kth structure

• generate samples and estimate mean Turner energy (!) of kth structure

• adapt weight πk and iterate
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Base pair energies approximate Turner energies

base pair energy model:
non-stacked stacked

AU CG GU AU GC GU
1.27 -0.09 0.79 -0.52 -2.10 -0.88
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R2 = 0.99, BUT:
This approximation suffices for
positive design, not prediction!

How to target Turner energies:
• start with initial weight πk = 1 of base pair energy (!) of kth structure

• generate samples and estimate mean Turner energy (!) of kth structure

• adapt weight πk and iterate
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Multi-target design to three RNA structures
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Uniform sample: 1000 sequences; generated in seconds
Boltzmann sample: 1000 good sequences; generated in seconds
Targeted sample: 1000 highly specific sequences; in minutes
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https://github.com/s-will/Infrared

• framework based on multi-dim. Boltzmann sampling:
effectively satisfies multiple (complex) constraints

• Promising application to RNA design: RNARedprintRNARedprintRNARedprint

• Generic modeling system to extend RNA design . . .
. . . and develop novel sampling-based tools

• Supports construction of fancy background models:
e.g. sample RNA alignments with fixed phylo-distances and
energies of multiple structures

• Makes extensions easy (in Python) due to
C++/Python-hybrid programming

https://github.com/s-will/Infrared
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Collaborators

Stefan Hammer Yann Ponty

Team (Ivo Hofacker) at

Funding

Read more ’abstract’ · https://arxiv.org/abs/1804.00841

https://arxiv.org/abs/1804.00841
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APPENDIX
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Dependency graphs
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Tree decomposition

1 102 3 4 5 6 7 8 9

1 10

1 10

3 4 6 7

3

3 4

3 4 6

1 2 4 5

2 3 4 7 6 7 9

2 3 7 8 1 2 4 6 7 9 10

The tree decomposition . . .
• . . . is computed from the dependency graph
• . . . works as a template to guide our dynamic programming

sampling algorithm
• . . . allows to consider all feature contributions in the sampling
• . . . gets more complex with increasing dependencies

(complexity measure: treewidth =̂ bag size)
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Treewidths can be kept low

Modena
3 Structures
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Base pair model Stacking model

bio-relevant stress-test bio-relevant stress-test
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Why multi-dim. Boltzmann sampling?

Problem
IN: structures R, length n, d features F1, · · · ,Fd ;

objective values f ?1 , · · · , f ?d ; and tolerance ε > 0
OUT: t random sequences S , compatible w/ R, s.t.

∀1 ≤ ` ≤ d : F`(S) ∈ [f ?` · (1− ε), f ?` · (1 + ε)]

Possible approaches:

• Multi-dim. Boltzmann sampling (+ rejection step)

works well b/c distributions are typically concentrated
• expect O(1) rejections for ε > 1/

√
n,

• Θ(nd/2) for ε = 0 [Bender et al., 1983; Drmota, 1997].

• Classified Dynamic Programming

• convolution: ×Θ(n2d) time / Θ(nd) space [Cupal et al., 1996]
• using DFT to avoid convolution allows more efficient uniform

sampling over range (case ε > 0) [cf. Senter et al., 2012]
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Complex sequence constraints

Task: forbid a set W of subwords of length ≤ k

Näıve: add k-ary constraints for each k successive sequence positions

Proposed:

• construct Aho-Corasick automaton (states Q)

• extend alphabet from Σ to Q × Σ

• restrict consecutive positions to transitions of the automaton
(adds Hamiltonian path of binary constraints)

• new complexity O(n · |R| · (|Σ| · |Q|)w ′+1); new tree width w ′ (!)

Similarly: enforce subwords

transfers ideas of [Zhou et al, 2013]
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Multi-target design to three RNA structures
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Boltzmann sample: 1000 low energy sequences; generated in seconds
Targeted samples: 1000 highly specific sequences; in minutes
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Boltzmann sample: 1000 low energy sequences; generated in seconds

Targeted samples: 1000 highly specific sequences; in minutes
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