Structure-based RNA alignment: the trouble with locality

Teresa Müller

Albert-Ludwigs-Universität Freiburg

Local alignment: What could go wrong?

JNI REIBURG

Local alignment: What could go wrong?

context

Local alignment

- Sequence alignment
 - Assumption of negative expected score for alignments of ungapped random sequences holds
 - No length dependency

Local alignment

- Sequence alignment
 - Assumption of negative expected score for alignments of ungapped random sequences holds
 - No length dependency
- Sankoff-like sequence-structure alignment
 - Sequence scoring scheme can easily be transformed
 - Structure scoring uses free energy (Zuker) or base pair probability (McCaskill)

M

Local alignment

- Sequence alignment
 - Assumption of negative expected score for alignments of ungapped random sequences holds
 - No length dependency
- Sankoff-like sequence-structure alignment
 - Sequence scoring scheme can easily be transformed
 - Structure scoring uses free energy (Zuker) or base pair probability (McCaskill)
- Trouble: structure creates a positive scoring bias in the objective function

M

$$\sum_{ij;kl)\in S} \left(\omega(\Psi_{ij}^a + \Psi_{kl}^b) + \tau \sigma'(a_i, a_j, b_k, b_l) \right) + \sum_{(i,k)\in A_s} \sigma(a_i, b_k) - N_{gap}\gamma - N_{gap}^o \beta$$

- Structure weight ω
- Tau factor τ
- Base pair score ψ
- Ribosome scoring σ
- Gap extension γ
- Gap opening β

Objective function:

$$\sum_{(ij;kl)\in S} \left(\omega(\Psi_{ij}^a + \Psi_{kl}^b) + \tau \sigma'(a_i, a_j, b_k, b_l) \right) + \sum_{(i,k)\in A_s} \sigma(a_i, b_k) - N_{gap}\gamma - N_{gap}^o \beta$$

Structure contribution

- Structure weight ω
- Tau factor τ
- Base pair score ψ
- Ribosome scoring σ
- Gap extension \u03c6
- Gap opening β

a1

А

Α

G

G

G

8

ΤŢ

ТΤ

ΤŢ

ΤŢ

Objective function:

$$\sum_{(ij;kl)\in S} \left(\omega(\Psi_{ij}^a + \Psi_{kl}^b) + \tau \sigma'(a_i, a_j, b_k, b_l) \right) + \sum_{(i,k)\in A_s} \sigma(a_i, b_k) - N_{gap}\gamma - N_{gap}^o \beta$$

Sequence contribution

- Structure weight ω
- Tau factor T
- Base pair score \u03c8
- Ribosome scoring σ
- Gap extension γ
- Gap opening β

Data	Scoring
Bralibase	Sequence structure
Shuffled Bralibase	Sequence structure
Shuffled Bralibase	Sequence-only

Clear distinction between ncRNAs and context

Data	Scoring
Bralibase	Sequence structure
Shuffled Bralibase	Sequence structure
Shuffled Bralibase	Sequence-only

Clear distinction between ncRNAs and context

- Increased scores already for structure weight 0
- High structure weight positive normalized score

Data	Scoring
Bralibase	Sequence structure
Shuffled Bralibase	Sequence structure
Shuffled Bralibase	Sequence-only

Alignment length growth

Comparing alignment length of random sequences

Alignment length growth

Comparing alignment length of random sequences

m

Alignment length growth

Comparing alignment length of random sequences

Boundary detection trade-off: structure weight

Dataset: localBralibase (pairwise alignments)

Boundary detection trade-off: structure weight

Dataset: localBralibase (pairwise alignments)

Boundary detection trade-off: structure weight

Dataset: localBralibase (pairwise alignments)

2

One scoring system (global + local)

Blackbox parameter optimization:

parameter	Gap <mark>y</mark>	Gap opening β	Structure weight ω	Tau factor τ
default	350	500	200	0
Global optimized	68	807	210	72
Local optimized	136	975	115	38
Local optimized (λ 15)	82	883	176	71

IBURG

Blackbox parameter optimization:

parameter	Gap <mark>y</mark>	Gap opening β	Structure weight ω	Tau factor τ
default	350	500	200	0
Global optimized	68	807	210	72
Local optimized	136	975	115	38
Local optimized (λ 15)	82	883	176	71

- Solution: position penalty λ
 - Each position of the local alignment is penalized by λ

$$\sum_{(ij;kl)\in S} \left(\omega(\Psi_{ij}^a + \Psi_{kl}^b) + \tau \sigma'(a_i, a_j, b_k, b_l) - 4\lambda \right) + \sum_{(i,k)\in A_s} \left(\sigma(a_i, b_k) - 2\lambda \right) - N_{gap}(\gamma - \lambda) - N_{gap}^o \beta$$

2

Structure weight penalty comparison

maxSPS: alignment quality accounting for context

Structure weight penalty comparison

Low structure weight needs lower penalty

m

Higher structure weight needs a higher penalty

maxSPS: alignment quality accounting for context

Boundary detection trade-off: position penalty

Structure weight 200

BURG

Boundary detection trade-off: position penalty

- Structure weight 200
- Low penalty: ncRNA well covered
- High penalty: context not covered

22

Boundary detection trade-off: position penalty

- Structure weight 200
- Low penalty: ncRNA well covered
- High penalty: context not covered

- 0 50 100 150 200 250 300 Structure weight
- Remember: Structure weight
- Penalty compensates for context extension

Parameter	Gap y	Gap opening β	Structure weight ω	Tau factor τ	Penalty λ
Default scoring	350	500	200	0	no
Suggested scoring	68	807	210	72	15

Parameter	Gap y	Gap opening β	Structure weight ω	Tau factor τ	Penalty λ
Default scoring	350	500	200	0	no
Suggested scoring	68	807	210	72	15

Positive scoring bias due to structure

Positive scoring bias due to structure

Summary

 Bias leads to alignment length extension for random sequences

Summary

- Positive scoring bias due to structure
- Bias leads to alignment length extension for random sequences
- Trade-off: increased structure weight leads to higher ncRNA coverage but also extension into context

Positive scoring bias due to structure

Summary

- Bias leads to alignment length extension for random sequences
- Trade-off: increased structure weight leads to higher ncRNA coverage but also extension into context
- Position-specific penalty improves alignment detection

Summary

1.0

Positive scoring bias due to structure

- Bias leads to alignment length extension for random sequences
- Trade-off: increased structure weight leads to higher ncRNA coverage but also extension into context
- Position-specific penalty improves alignment detection
- Compensate context extension with penalty

Positive scoring bias due to structure

Summary

- Bias leads to alignment length extension for random sequences
- Trade-off: increased structure weight leads to higher ncRNA coverage but also extension into context
- Position-specific penalty improves alignment detection
- Compensate context extension with penalty
- Suggested scoring improves alignment quality

Thanks to:

Positive scoring bias due to structure

Summary

- Bias leads to alignment length extension for random sequences
- Trade-off: increased structure weight leads to higher ncRNA coverage but also extension into context
- Position-specific penalty improves alignment detection
- Compensate context extension with penalty
- Suggested scoring improves alignment quality

Boundary detection

Objective function:

$$\sum_{(ij;kl)\in S} \left(\omega(\Psi_{ij}^a + \Psi_{kl}^b) + \tau \sigma'(a_i, a_j, b_k, b_l) \right) + \sum_{(i,k)\in A_s} \sigma(a_i, b_k) - N_{gap}\gamma - N_{gap}^o \beta$$

Structure contribution

Sequence contribution

- Structure weight ω
- Tau factor τ
- Base pair score \u03c8
- Ribosome scoring σ
- Gap extension γ
- Gap opening β

MaxSPS example

 $maxSPS = \frac{correct \ predicted \ edges}{maxLength(reference, predicted)}$

reference alignment UGGCACGCUGC --||||||----CAGGAACCAAG

reference length = 6

predicted alignment 1

predicted alignment 2 UGGCACGCUGC --|||||----CAGGA-ACCAAG

GCA-CGC

CAGGAA-CCAAG

maxSPS = $\frac{3}{6}$

predicted length = 5

maxSPS = $\frac{5}{8}$

predicted length = 8

Ž

m

Sensitivity and Specificity

How to count TP, TN, FP and FN:

context (not aligned sequence) sequence within alignment

Sensitivity (RNA) = TP/(TP+FN)

Specificity (Context) = TN/(TN +FP)

Optimization using penalty 15

parameter	Gap	Gap opening	Structure weight	Tau factor
default	350	500	200	0
Global optimized	68	807	210	72
Local optimized	136	975	115	38
Local optimized (pen15)	82	883	176	71

REIBURG

