Best Matches in large-scale orthology detection

35th TBI Winterseminar in Bled

David Schaller

Max Planck Institute for Mathematics in the Sciences Bioinformatics Group, University of Leipzig sdavid@bioinf.uni-leipzig.de

UNIVERSITÄT LEIPZIG

February 11, 2020

Background

Types of homology:

orthologs

separated by a speciation event (\bullet) , similar functions ('ortholog conjecture')

paralogs

separated by a duplication event (\Box)

(Ica-)xenologs

separated by an HGT event (\triangle)

Gene tree T (with losses) embedded into the species tree S.

Definition (Best Match¹)

Consider a gene tree T with leaf set L(T) and a surjective color map $\sigma : L(T) \rightarrow L(S)$.

Then $y \in L(T)$ is a **best match** of $x \in L(T)$ iff $lca(x, y) \leq lca(x, y')$ holds for all leaves y' from species $\sigma(y') = \sigma(y)$. We write $x \rightarrow y$.

If both $x \to y$ and $y \to x$, x and y are *reciprocal best matches*.

¹Geiß et al. Best match graphs. Journal of Mathematical Biology, 78(7):2015–2057, June 2019.

David Schaller

Background – Best Matches and orthology

Orthology graph Θ ... $xy \in E(\Theta) \iff lca(x, y)$ was a speciation

- the orthology graph is a subgraph of the RBMG (if there is no HGT)
 - \rightarrow no false-negatives
- ► the orthology graph is a cograph ⇔ P₄-free
 - → the gene tree can be interpreted as a corresponding cotree (speciation = join vertex)
 - \rightarrow useful for RBMG editing

Background – Best Matches and orthology

Orthology graph Θ ... $xy \in E(\Theta) \iff lca(x, y)$ was a speciation

- the orthology graph is a subgraph of the RBMG (if there is no HGT)
 - \rightarrow no false-negatives
- ► the orthology graph is a cograph ⇔ P₄-free
 - → the gene tree can be interpreted as a corresponding cotree (speciation = join vertex)
 - \rightarrow useful for RBMG editing

P₄-editing

Identification of false-positive edges w.r.t. orthology

P₄-editing

Identification of false-positive edges w.r.t. orthology

P₄-editing

Identification of false-positive edges w.r.t. orthology

whenever there is a 'witness species', we have good or ugly quartets

Can we use best matches for large-scale orthology detection?

Orthology inference with ProteinOrtho²

- very fast (all-vs-all comparison with diamond, ...)
- best hits \neq best matches, but heuristic via **sub-optimal hits**
- spectral clustering not based on P₄s

²Lechner et al. Proteinortho: Detection of (Co-)orthologs in large-scale analysis. BMC Bioinformatics, 12(1), 2011.

Orthology inference with ProteinOrtho²

- very fast (all-vs-all comparison with diamond, ...)
- best hits \neq best matches, but heuristic via **sub-optimal hits**
- spectral clustering not based on P₄s

²Lechner et al. Proteinortho: Detection of (Co-)orthologs in large-scale analysis. BMC Bioinformatics, 12(1), 2011.

Orthology inference using Best Matches

Orthology inference using Best Matches

Best Match inference with quartets

quartet relations can be determined from distance data (using distance sums)

Best Match inference with quartets

- quartet relations can be determined from distance data (using distance sums)
- given we have a trusted outgroup z, there are exactly four trees:

evaluate all candidate pairs if there are more than two candidates

- candidate genes $(y_1, y_2, ...)$
 - \rightarrow blast hits above a certain E-value

- candidate genes $(y_1, y_2, ...)$
 - \rightarrow blast hits above a certain E-value
- outgroup genes (z, ...)
 - \rightarrow blast hits from outgroup species as heuristic
 - \rightarrow species tree required

- candidate genes $(y_1, y_2, ...)$
 - \rightarrow blast hits above a certain E-value
- outgroup genes (z, ...)
 - \rightarrow blast hits from outgroup species as heuristic
 - \rightarrow species tree required
- distances

Getting distances

Idea I: Realignment

- \rightarrow exact local or global alignments of all required sequence pairs
- → given a sequence evolution model / rate matrix: compute maximum likelihood distance
- \rightarrow possible, but a bottleneck

Getting distances

Idea I: Realignment

- \rightarrow exact local or global alignments of all required sequence pairs
- ightarrow given a sequence evolution model / rate matrix:

compute maximum likelihood distance

 \rightarrow possible, but a bottleneck

Idea II: Bitscores

- \rightarrow infer quartet topology from bitscores
- → transformation into distances?
- \rightarrow length normalization, missing values, ...?

Case I: rooted species tree available (from database, ...)

→ great!

Case II: rooted species tree not available

- \rightarrow inference from orthology / paralogy relations: <code>ParaPhylo^3</code>
- $\rightarrow~\text{e.g.}$ based on <code>ProteinOrtho</code> ouput
- \rightarrow limited to data sets of approx. 20 species
- \rightarrow replace ILP steps by heuristics

³Hellmuth et al. Phylogenomics with Paralogs. *PNAS*, 112(7):2058–2063, 2015.

Species tree

- Case I: rooted species tree available (from database, ...)
 - → great!
- Case II: rooted species tree not available
 - \rightarrow inference from orthology / paralogy relations: ParaPhylo³
 - \rightarrow e.g. based on ProteinOrtho ouput
 - \rightarrow limited to data sets of approx. 20 species
 - \rightarrow replace ILP steps by heuristics

³Hellmuth et al. Phylogenomics with Paralogs. *PNAS*, 112(7):2058–2063, 2015.

David Schaller

Species tree: some results

- 100 scenarios à 10 species
- simulated sequences for 1000 gene families
- orthology estimation with ProteinOrtho
- various tree distance metrics (Triple metric, Robinson-Foulds, Nodal Splitted, Matching Cluster)

David Schaller

Summary

Summary

Summary

Thank you for your attention!

Appendix: Simulation of Distance Data

Appendix: Simulation of Distance Data

David Schaller

Appendix: Best Matches vs Best Hits

- ▶ y is a **best hit** of x if $d(x, y) \le d(x, y')$ holds for all leaves y' from species $\sigma(y') = \sigma(y)$
- orthology assessment: Reciprocal best hits (RBH) or reciprocal best matches (RBM)?

David Schaller

Appendix: Best Match inference with quartets – auxiliary graph

► consider all pairs and construct a digraph Γ on the set of candidates Y of species s $\rightarrow (y'', y') \in E(\Gamma)$ iff $lca(x, y') \leq lca(x, y'')$

Example auxiliary graph Γ for best inference of a gene *x* in species *s* (blue).

Appendix: Differential gene loss

