Exponentially few RNA structures are designable

YAO, Hua-Ting

Ecole Polytechnique, France McGill University, Canada

In collaboration with:
Cedric Chauve, Simon Fraser University, Canada
Supervised by:
Mireille Régnier, Ecole Polytechnique, France Yann Ponty, Ecole Polytechnique, France

35th TBI Winterseminar, Bled - February 12, 2020

In a nutshell (TL;DR)

- Adoption of a given structure essential for many RNA function(s)
- \#Secondary structure grows exponentially with RNA size $n\left(\approx 2.6^{n}\right)$
- but many structures are too unstable for any sequence

How many RNA structures (\rightarrow functions) can be evolved?

In a nutshell (TL;DR)

- Adoption of a given structure essential for many RNA function(s)
- \#Secondary structure grows exponentially with RNA size $n\left(\approx 2.6^{n}\right)$
- but many structures are too unstable for any sequence

How many RNA structures (\rightarrow functions) can be evolved?
Working hypothesis: Nature solves (at least) a design problem

In a nutshell (TL;DR)

- Adoption of a given structure essential for many RNA function(s)
- \#Secondary structure grows exponentially with RNA size $n\left(\approx 2.6^{n}\right)$
- but many structures are too unstable for any sequence

How many RNA structures (\rightarrow functions) can be evolved?

Working hypothesis: Nature solves (at least) a design problem Main results:

- (Algorithmic) discovery of undesignable local motifs
- Proportion of designable structures exponentially decreasing on size

Some undesignable motifs

(Aguirre-Hernández et al, 2007)

- A sequence w is a negative design for a structure S^{*} if and only if \rightarrow Unique minimum free energy structure, $\operatorname{MFE}(w)=\left\{S^{*}\right\}$
\rightarrow No other competitive structures, defect $\mathcal{D}\left(w, S^{*}\right) \leq \varepsilon$
- A sequence w is a negative design for a structure S^{*} if and only if \rightarrow Unique minimum free energy structure, $\operatorname{MFE}(w)=\left\{S^{*}\right\}$
\rightarrow No other competitive structures, defect $\mathcal{D}\left(w, S^{*}\right) \leq \varepsilon$
- Classical defects:
\rightarrow Suboptimal Defect \mathcal{D}_{S}, free-energy dist. to first suboptimal
\rightarrow Probability Defect \mathcal{D}_{P}, Boltzmann prob. of alternative structures
\rightarrow Ensemble Defect \mathcal{D}_{E}, expected BP dist. to a random structure
Existence of a negative design NP-hard (Bonnet et al, RECOMB 2018)
\rightarrow Counting at least as hard \rightarrow Upper bounds

Leaf • : unpaired base
Internal node \square : base pair

Local motif

-•0.0.0.

Local motif

Local motif exceeds defect tolerance
\Rightarrow No structures containing the motif can be designed
But random RNA structures asymptotically contain every motif
Monkeys and (tree-generating) typewriters paradox...

Local motif

Local motif exceeds defect tolerance
\Rightarrow No structures containing the motif can be designed
But random RNA structures asymptotically contain every motif
Monkeys and (tree-generating) typewriters paradox...

Local motif

Undesignable

Local motif exceeds defect tolerance
\Rightarrow No structures containing the motif can be designed
But random RNA structures asymptotically contain every motif
Monkeys and (tree-generating) typewriters paradox...

Object counting

Object counting

z^{9}

z^{9}

z^{23}

Object counting

z^{9}

z^{9}

z^{23}

$$
\begin{aligned}
S(z) & =z^{9}+z^{9}+z^{23}+z^{32}+\cdots \\
& =2 z^{9}+z^{23}+z^{32}+\cdots
\end{aligned}
$$

Analytic combinatorics

$$
S(z)=\sum_{n \geq 0} s_{n} z^{n}
$$

- $S(z)$: Generating function of structures avoiding undesignable motifs \mathcal{F} $s_{n}=\left[z^{n}\right] S(z):$ \#Structures of size n avoiding \mathcal{F}

Analytic combinatorics

$$
S(z)=\sum_{n \geq 0} s_{n} z^{n}
$$

- $S(z)$: Generating function of structures avoiding undesignable motifs \mathcal{F} $s_{n}=\left[z^{n}\right] S(z):$ \#Structures of size n avoiding \mathcal{F}

$$
\mathcal{F}=\begin{array}{ccc}
& \bullet & \bullet \\
() & (\bullet) & (\bullet \bullet)
\end{array}
$$

Analytic combinatorics

$$
S(z)=\sum_{n \geq 0} s_{n} z^{n}
$$

- $S(z)$: Generating function of structures avoiding undesignable motifs \mathcal{F} $s_{n}=\left[z^{n}\right] S(z):$ \#Structures of size n avoiding \mathcal{F}

$$
\begin{gathered}
\mathcal{F}=\begin{array}{l}
\bullet \\
(\bullet) \\
S=\left(T_{0}\right) S|\bullet S| \varepsilon
\end{array} \\
\hline(\bullet)
\end{gathered}
$$

Analytic combinatorics

$$
S(z)=\sum_{n \geq 0} s_{n} z^{n}
$$

- $S(z)$: Generating function of structures avoiding undesignable motifs \mathcal{F} $s_{n}=\left[z^{n}\right] S(z):$ \#Structures of size n avoiding \mathcal{F}

Analytic combinatorics

$$
S(z)=\sum_{n \geq 0} s_{n} z^{n}
$$

- $S(z)$: Generating function of structures avoiding undesignable motifs \mathcal{F} $s_{n}=\left[z^{n}\right] S(z)$: \#Structures of size n avoiding \mathcal{F}

Analytic combinatorics

$$
S(z)=\sum_{n \geq 0} s_{n} z^{n}
$$

- $S(z)$: Generating function of structures avoiding undesignable motifs \mathcal{F} $s_{n}=\left[z^{n}\right] S(z):$ \#Structures of size n avoiding \mathcal{F}

$$
\begin{aligned}
& \mathcal{F}= \\
& \text { () (•) (••) } \\
& S(z)=z^{2} T_{0}(z) S(z)+z S(z)+1 \\
& T_{0}(z)=z^{2} T_{0}(z) S(z)+z T_{1}(z) \\
& T_{1}(z)=z^{2} T_{0}(z) S(z)+z T_{2}(z) \\
& T_{2}(z)=z^{2} T_{0}(z) S(z)+z S(z)
\end{aligned}
$$

Analytic combinatorics

$$
S(z)=\sum_{n \geq 0} s_{n} z^{n}
$$

- $S(z)$: Generating function of structures avoiding undesignable motifs \mathcal{F} $s_{n}=\left[z^{n}\right] S(z):$ \#Structures of size n avoiding \mathcal{F}

$$
\begin{aligned}
& \mathcal{F}=\begin{array}{ccc}
\bullet & \bullet & \bullet \\
() & \bullet) & (\bullet \bullet)
\end{array} \\
& S=\left(T_{0}\right) S|\bullet S| \varepsilon \\
& T_{0}=\left(T_{0}\right) S \mid \bullet T_{1} \\
& T_{1}=\left(T_{0}\right) S \mid \bullet T_{2} \\
& T_{2}=\left(T_{0}\right) S \mid \bullet S \\
& \begin{aligned}
S(z) & =z^{2} T_{0}(z) S(z)+z S(z)+1 \\
T_{0}(z) & =z^{2} T_{0}(z) S(z)+z T_{1}(z) \\
T_{1}(z) & =z^{2} T_{0}(z) S(z)+z T_{2}(z) \\
T_{2}(z) & =z^{2} T_{0}(z) S(z)+z S(z)
\end{aligned} \\
& z^{2} S(z)^{2}-\left(z^{4}+z^{3}+z^{2}-z+1\right) S(z)+1=0
\end{aligned}
$$

Analytic combinatorics

$$
S(z)=\sum_{n \geq 0} s_{n} z^{n}=\frac{z^{4}+z^{3}+z^{2}-z+1-\sqrt{\left(z^{4}+z^{3}+z^{2}-z+1\right)^{2}-4 z^{2}}}{2 z^{2}}
$$

- $S(z)$: Generating function of structures avoiding undesignable motifs \mathcal{F} $s_{n}=\left[z^{n}\right] S(z):$ \#Structures of size n avoiding \mathcal{F}

$$
\begin{aligned}
& \mathcal{F}=\quad \bullet \quad \bullet \quad \\
& \text { () (-) (••) } \\
& S=\left(T_{0}\right) S|\bullet S| \varepsilon \\
& T_{0}=\left(T_{0}\right) S \mid \bullet T_{1} \\
& T_{1}=\left(T_{0}\right) S \mid \bullet T_{2} \\
& T_{2}=\left(T_{0}\right) S \mid \bullet S \\
& S(z)=z^{2} T_{0}(z) S(z)+z S(z)+1 \\
& T_{0}(z)=z^{2} T_{0}(z) S(z)+z T_{1}(z) \\
& T_{1}(z)=z^{2} T_{0}(z) S(z)+z T_{2}(z) \\
& T_{2}(z)=z^{2} T_{0}(z) S(z)+z S(z) \\
& z^{2} S(z)^{2}-\left(z^{4}+z^{3}+z^{2}-z+1\right) S(z)+1=0
\end{aligned}
$$

Analytic combinatorics

$$
S(z)=\sum_{n \geq 0} s_{n} z^{n}=\frac{z^{4}+z^{3}+z^{2}-z+1-\sqrt{\left(z^{4}+z^{3}+z^{2}-z+1\right)^{2}-4 z^{2}}}{2 z^{2}}
$$

- $S(z)$: Generating function of structures avoiding undesignable motifs \mathcal{F} $s_{n}=\left[z^{n}\right] S(z)$: \#Structures of size n avoiding \mathcal{F}
- Dominant singularity ρ of $S(z)$ drives asymptotics

$$
\left[z^{n}\right] S(z) \in \Theta\left(\frac{\rho^{-n}}{n \sqrt{n}}\right)
$$

Example: For motifs below, $s_{n} \equiv 2.289^{n}$ (vs 2.618^{n} for all 2D structs)

$$
\mathcal{F}=\begin{array}{ccc}
& \bullet & \bullet \succ \\
() & (\bullet) & (\bullet \bullet)
\end{array}
$$

Workflow

Workflow

Workflow

Workflow

Undesignable motifs

A sequence w is a negative design for a structure S^{*} if and only if \rightarrow Unique minimum free energy structure, $\operatorname{MFE}(w)=\left\{S^{*}\right\}$
\rightarrow No other competitive structures, $\mathcal{D}\left(w, S^{*}\right) \leq \varepsilon$

- $\mathcal{D}_{S} \leq 1,104$ local motifs

Undesignable motifs

A sequence w is a negative design for a structure S^{*} if and only if \rightarrow Unique minimum free energy structure, $\operatorname{MFE}(w)=\left\{S^{*}\right\}$
\rightarrow No other competitive structures, $\mathcal{D}\left(w, S^{*}\right) \leq \varepsilon$

- $\mathcal{D}_{S} \leq 1,104$ local motifs
- $\mathcal{D}_{P} \leq 0.5,117$ local motifs

Undesignable motifs

A sequence w is a negative design for a structure S^{*} if and only if \rightarrow Unique minimum free energy structure, $\operatorname{MFE}(w)=\left\{S^{*}\right\}$
\rightarrow No other competitive structures, $\mathcal{D}\left(w, S^{*}\right) \leq \varepsilon$

- $\mathcal{D}_{S} \leq 1,104$ local motifs
- $\mathcal{D}_{P} \leq 0.5,117$ local motifs
- $\mathcal{D}_{P} \leq 0.1,152$ local motifs
- $\mathcal{D}_{P} \leq 0.01,174$ local motifs

Asymptotic results

		Asymptotic	Proportion (vs 2.289 $)$		
Defect	ε	equivalent	$P_{50}(\%)$	$P_{100}(\%)$	$P_{1000}(\%)$
\mathcal{D}_{S}	1	$\Theta\left(\frac{2.226^{n}}{n \sqrt{n}}\right)$	25.4	6.48	$1.30 \cdot 10^{-10}$
\mathcal{D}_{P}	.5	$\Theta\left(\frac{2.224^{n}}{n \sqrt{n}}\right)$	24.2	5.84	$4.64 \cdot 10^{-11}$
\mathcal{D}_{P}	.1	$\Theta\left(\frac{2.176^{n}}{n \sqrt{n}}\right)$	7.69	0.59	$5.29 \cdot 10^{-21}$
\mathcal{D}_{P}	.01	$\Theta\left(\frac{2.078^{n}}{n \sqrt{n}}\right)$	0.80	$6.44 \cdot 10^{-3}$	$1.22 \cdot 10^{-40}$

Note: Asymptotic equivalents are upper bound
Exact proportion of designable structures could be even lower...
https://gitlab.com/htyao/countingdesign/

- Proportion of designable structures decreases exponentially
\rightarrow Library-based approaches for design (Bellaousovet al, RNA 2018)
\rightarrow Revisit neutral networks theory
https://gitlab.com/htyao/countingdesign/
- Proportion of designable structures decreases exponentially
\rightarrow Library-based approaches for design (Bellaousovet al, RNA 2018)
\rightarrow Revisit neutral networks theory
- Extends to pseudoknotted structures
\rightarrow Multiple grammars \rightarrow Same combinatorial prop.
https://gitlab.com/htyao/countingdesign/
- Proportion of designable structures decreases exponentially
\rightarrow Library-based approaches for design (Bellaousovet al, RNA 2018)
\rightarrow Revisit neutral networks theory
- Extends to pseudoknotted structures
\rightarrow Multiple grammars \rightarrow Same combinatorial prop.
- Better upper bounds for popular ensemble defect
\rightarrow Bivariate generating functions

Conclusions/perspectives

https://gitlab.com/htyao/countingdesign/

- Better upper bounds for popular ensemble defect
\rightarrow Bivariate generating functions

Acknowledgement

Backup slides

Defect and RNA negative design

- Defect: $\mathcal{D}: \Sigma^{*} \times \mathcal{S} \rightarrow \mathbb{R}$
- Suboptimal Defect \mathcal{D}_{S}

$$
\log \mathcal{D}_{S}\left(w, S^{*}\right):=-\min _{\substack{S \in \mathcal{S}_{|w|} \\ S \neq S^{*}}} E(w, S)-E\left(w, S^{*}\right)
$$

- Probability Defect \mathcal{D}_{P}

$$
\mathcal{D}_{P}\left(w, S^{*}\right):=\sum_{\substack{S \in \mathcal{S}_{|w|} \\ S \neq S^{*}}} \mathbb{P}(S \mid w)=1-\mathbb{P}\left(S^{*} \mid w\right)
$$

Defect and RNA negative design

- Defect: $\mathcal{D}: \Sigma^{*} \times \mathcal{S} \rightarrow \mathbb{R}$
- Suboptimal Defect \mathcal{D}_{S}

$$
\log \mathcal{D}_{S}\left(w, S^{*}\right):=-\min _{\substack{S \in \mathcal{S}_{|w|} \\ S \neq S^{*}}} E(w, S)-E\left(w, S^{*}\right)
$$

- Probability Defect \mathcal{D}_{P}

$$
\mathcal{D}_{P}\left(w, S^{*}\right):=\sum_{\substack{S \in \mathcal{S}_{|w|} \\ S \neq S^{*}}} \mathbb{P}(S \mid w)=1-\mathbb{P}\left(S^{*} \mid w\right)
$$

- Given $\varepsilon \geq 0$ and a defect \mathcal{D}, a sequence w is a (negative) (\mathcal{D}, ε)-design for a structure S^{*} if and only if

$$
\operatorname{MFE}(w)=\left\{S^{*}\right\} \quad \text { and } \quad \mathcal{D}\left(w, S^{*}\right) \leq \varepsilon
$$

Methods

$$
\begin{aligned}
S & =(T) S|\bullet S| \varepsilon \\
T & =S \backslash \overline{M^{\prime}}
\end{aligned}
$$

where

$$
\overline{M^{\prime}}:=\left\{m^{\prime} \mid \forall m \in \overline{\mathcal{M}}, m=\left(m^{\prime}\right)\right\}
$$

Methods

$$
\begin{aligned}
S & =(T) S|\bullet S| \varepsilon \\
T & =S \backslash \overline{M^{\prime}}
\end{aligned}
$$

where

$$
\overline{M^{\prime}}:=\left\{m^{\prime} \mid \forall m \in \overline{\mathcal{M}}, m=\left(m^{\prime}\right)\right\}
$$

$$
\begin{aligned}
S(z) & =z^{2} T(z) S(z)+z S(z)+1 \\
T(z) & =S(z)-\overline{M^{\prime}}(z, T)
\end{aligned}
$$

where

$$
\overline{M^{\prime}}(z, T)=\sum_{m^{\prime} \in \overline{\mathcal{M}^{\prime}}} z^{\gamma\left(m^{\prime}\right)} T^{\delta\left(m^{\prime}\right)}-c(z, T)
$$

